CHAPTER 111
GENERALIZED SEMINEAR-FIELDS

In this chapter we shall generalize the concept of a
seminear-field by giving a new definition which contains
J. Hattakosol's definition as a special case.

Definition « Aseminear-ring (K,+*) is said to be a
generalized seminear-field iff there exists an element a in K
such that (Ks{a},*) is a group. Such an element a is called
a special element of K

Clearly a seminear-field is a generalized seminear-field
therefore every example of a seminear-field given in chapter |
and Il is anexample of generalized seminear-fields,

Example 3»2. Let (G,*) be a group and let d G Let a be a
symbol not representing any element of G Let K=G {a}.
Define + on Kand extend ¢ to Khy a*x = d*x and x*a= x*d
for all X£ G, a"= d and either

(1) X+y =y for all x,y e Kor

(2) X+y=Xforall x,y £ K

It is easy to show that (K,+«) is a seminear-field.

Example s.3. Let K= {a,e}. Define +and « on Kby

. e a + e a
e e a and e e a
a a ¢é a e a

Then (K,+,0 is a generalized seminear-field.
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Example 3«"« Let D be a ratio seminear-ring. Let a be a symbol
not representing any element of Dand dE D. Extend + and « from
Dto D {a} by

(1) ax = dx and xa = xd for all X£D, a* = d"

(2) a+x=d+x and X+a =X+d for all XEDand
(3) a+a=d+d.

I

3
t is easy to check that D |a" is a generalized
seminear-field.

From now on the word "seminear-field" will mean a
generalized seminear-field.

Theorem 3»5« Let Khe a seminear-field with a as a special

element. Then exactly one of the following statements hold
1) ax :xa=a for all X£ K

ax = xa : Xfor all Xe K

(

(2)

(3) ax Xfor all Xt K
(M) ax a for all X K
(5)
(6)

a and xa

X and xa
a® [ aand ae =ea : a.
a® [ a and ae =ea/ a where e is the identity of
(K\{a} 1-).
Proof. Consider .
Case 1. a" = a. By Theorem 1.29, we obtain (1) - (*+).
Case 2. 2" [ a Consider ae andea,.
Subcase 2.1. ae = ea . a. Then we obtain (5)*
Subcase 2.2. ae =aand ea/ a. Claim that ax = a
for all X£ KN{a} and ea = e. Let X. K\{a}. Then @ =ae :
a(xx N = (ax)x~\ If ax [ a then (ax)x A K\{a} which is a
group. This is a contradiction. Hence ax : a for all X£ K"a}.
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Since ea / a, there is ay E K'{a} such that (ea)y =e. So
e =e(ay) =ea. Nowat = (ae)a = a(ea) = ae = . Contradicting
the fact that a® v a. Hence this case cannot occur.

Subcase 2.3. ae/ a and ea =a. Using a proof similar
to the proof of Subcase 2.2, we can show that this case cannot
oceur.

Subcase 2.~. ae/ aand ea/ a Then ae = e(ae)
= (ea)e = ea.  Hence we obtain (6).

From Theorem 3*5 we see that there are 6 types of special
elements in a seminear-field and we call a special element
satisfying (1),(2).(3)»(*0, () or (6) a category 1,11,111 1V v or
VI special element respectively.

Note that Example 3»3 is a seminear-field with a category
V special element and Example 3*2 and 3«" are seminear-fieldswith
a as a category VI special element.

In this chapter we shall only study seminear-fields with
category V and VI special elements because seminear-fields with
category I, 11,111 and IV special elements were studied already
in [1] and Chapter 2.

Theorem 3»6. If Kis a seminear-field with a category V special
element then IKI = 2.

Proof. Let Kbhe a seminear-field with a as a category V special

element and let e be the identity of (K"{a},*)« Claim that

ax = a for all X E KMa}. Let X K>{a}. Then a =a =ae =a(xx

= (ax)x"\ If ax / a then (ax)x e K™a} which is a group.

This is a contradiction. Hence ax =a for all X £ K>{a}. Since
/a1 there is a y £ K"{a} such that a®y =e. S0 e aly



a(ay) = a". Hence a® =e. Suppose that IK > 2. Let ze K\{ae}.
Then z =ez = a"z = a(az) =a"= e, a contradiction. Hence KI = 2.

Remark i Aseminear-field with a category V special elementis a
ratio semineir-ring. Now we shall find, up to isomorphism, all
seminear-fields Kwith a category V special elementa. By Theorem
3*6, K {a,e}. Claim thate+te=aora+a=a. |Ife +te/ a
then ¢ +e =e. Thus a + a=ea +ea = (ete)a = ea = a.

Case 1. e +e=a Then ata =-¢ea +ea = (ete)a = a = esince
a"la. e+a=et+ (ete) = (ete) +e=a+te Hencee+a=a
or e +a=¢ So we have 2 tables.

t e a t e a
() e a a or (2) e a ¢
a a ¢ a e e

Case 2. a+a a Thena=a+a=-ea+tea = (ete)a. If

e +e=athen a=(ete)a =a =e, acontradiction. Hence
e+te=e. Ife+ta=athena+e=e¢a+ = (eta)a = =¢
If e+a=-ethena+e=ea+a® =(eta)a = ea =a S0 we

have 2 tables.

+ e a + e d
3) e ¢ a or (k) €& e @
a e a a a a

It is easy to verify that (1),(2),(3) and (*) are tables of
semigroups under addition. By defining f(e) = a and f(a) = e,
we have that semigroups defined by (1) and (2) are isomorphic.
Therefore, up to isomorphism, there are 3 seminear-fields containing

a category special element.
Remark s.7. Let K= -ja,e- with stucture
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e a +1 e 4
e e a and s ls a
a a a @il g

Then (K,+1*) is a seminear-field with a as a category | special
element. And note that (K,+*) is a sominear-field with e as a
category Il special element. In this case we see that there does
not exist a unique special element of K However, if 1K > 2, we
do get uniqueness as the following theorem shows.

Theorem 3.8. If Kis a seminear-field of order greater than 2
then there exists a unique special element of K

Proof. Assume that Kis a seminear-field with 1K > 2 and let a
and a Dbe special elements of K~ W must show that a = a *
Suppose that a / a . Let e be the identity of (Kx{a},.) and e
the identity of (K>{a } 1%

Case 1. ' =a. Since a®=ae KMa}la=¢ . LetXEfKNa,a} .
Then there is ay £KN{a } such that xy =e¢ =a. If y =a then
X = xe xa =xy =e =ala contradiction. Hence y ¢ a, S0

we have X~ a, y “~aand xy =a This contradicts the fact that
(KA{a} 1.) is a group.
Case 2. a4 a. Since ~/ and (K\{a) 1*) is a group, e is the

2- ¢” o =¢. Thus

only multiplicative idempotent of K. Since e
a=a = a anda=ea= ea Hence Kis a seminear-field
with a as a category V seminear-field. By Theorem 3*6, IK = 2,

a contradiction. Therefore a = a .

Remark 3*9. Let Kbe a seminear-field. Then the following
statements hold
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(1) If there are elements aand b in Ksuchthat aand b
are category V special elements of Kthen a = b.

(2) |If there are elements aand b in Ksuchthat aandb
are category VI special elements of Kthen a = b,

Proof, (1) By Theorem 3*6» IK = 2. Let K= {ab}, Since
a® [ aand b*/ b, (K\{a},«) is not a group, a contradiction.

(2) If 1K] p 2 then, by Theorem 3*8, we obtain («). |If
[K§ =2 then use the same proof as in (1).

Remark 3»10, Let K= {a,e} with structure

e a +|le]a
(1) & e a and e|e|a or
a e a alela
v e A +lela
(2) e e ¢ and el e|e
a a a alala

Then K with structure (1) is a seminear-field with a and e as category
[I1 special elements. Kwith structure(2)is a seminear-field with a
and e as category IV special elements. Hence category 11l and IV
special elements are never unique.

We shall noV study seminear-fields with a category VI
special element,

Theorem 3»11. Let Kbe a seminear-field with a as a special
element. Then a is a category VI special element of Kif and
only if there exists a unique element d in KN{a} such that
ax = dx and xa = xd for all X£ K

Proof. Let e be the identity of (K”a) 1'). Assume that a is
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a category M1 special element of K Let d =ae =ea Let x e
any element of K If x=athen x=a*= e =(ea)a =da
If x/ athen ax =a(ex) = (ag)x =, Hence ax =dx. Similarly,
vie can show that xa =xd. Therefore & = dx and xa = xd for all
x £ K To show uniqueness, let 8 K{ale suchthat ax =d*x
adxa=xd forall xEK Thend = =@ =de = d.

Conversely, assume that there exists a unique element d
In K{a) such that ax dxandxa = xd  for allx &K Then
=al d“/a a d dadea=d =d 50 aisa category
Ml special element of K #

Theorem 3.12. Let (K+*) be  seminear-field with a as a category
V special element. Then (KN{al,+,*) Is a ratio seminear-ring.

Proof. Let e denote the identity of (K>{a}-). Then a& =ea, a
To show that (K>{a},+,*) Is a ratio seminear-ring, it is sufficient
to snow that x +y £ KNa} for all x,y e KNa}. Let x,y £ K\{a}.
Suppose x +y =a. Thena=Xx+y=xetye= (xty)e :ae a
contradiction. Hence x +y £ KA}, #

Theorem 3 12 indicates that every seminear-field with a
category M special element comes from a ratio seminear-ring by
adding an element.

Remark 3»13» Let Khe a seminear-field with a as a category M
special element. Thenxy / afor all xy £K

Proof. Let e denote the identity of (K'{a},')* By assumption,
/a a ela LtxyfK Ifx/aady=athen
Xy :Xa=(xe)a = x(ea) / asince x, ea £ KN@} which is a group.

Similarly, if x ;aady- athenxy: a #



\

\ o\ 8/
Theorem 3.14%. Let K be a seméﬁéé’;-field with a as a category VI
special element and let d £ K”a} be such that ax = dx and xa = xd
for all X £ K Then the following statements hold

(1) If a +a =a then (K,+) is a band.

(2) Ifa+al athena+a=d+d

(3) For all x,y £ K'{a}, X+ X:y+yif and only if

(y Forall x£ K"{a}xta =aorx +a=x+d
(s) Forall x£ K>a}, a+x=aora+x=d+x

Proof. () Asumethat a+a-a Letxs K. Then
Xx+x=ex+ex=d(d”x) +d(d"*x)=ad"'x) +a(d"'x) =
(ata)d~1x = ad'fx = d(d-1x) = x. Henee (K+) is a band.

(2) Asumethata+a/ a Thenata=(ata)e =
etae-ktdk=-d+d

(3) Let x,y £ K>{a) be such that X+ X =y +y. By
Theorem 3»12, (Kv{a},+) is a semigroup. So X + X £ K\{a}. Thus
(ete)x =x+x =y+ y= (e+te)y. Since e +e/ a and (K'{a}«)
Is a group, it follows that X =v.

(b) Let x£ KAfa}. Suppose that x +a/ a. Then
Xx+ta=(xtae =xe +a@ =x+tk=x+d

(s) The proof of (s) s similar to the proof of (v).

Proposition 3«"I13« If Kis a seminear-field of order greater than
2 with a category VI special element then K contains no additive
1810,

Proof. .Let a be a category VI special element of Kand let e be
the identity of (K\{a},0. By Theorem 3*12 and Proposition 1.19,
K\{a} contains no additive zero. It follows that for any Xf K™ia},
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X is not an additive zero of K Suppose that a is an additive
zero of K Thena+x=x+a=a forall X £K Since ais

a category VI special element, there exists a unique element d in
K\such that ax = dx and xa = xd for X£ K Claim

that x +e = e+ x =¢ for all X e K>{a}. Let X £ K\{a} . Then

a txd=xd+a=a Thus e=dd "= ad *= (atxd)d "= ad ~+ X =
dd ~+ X=1¢ +X Similarly, e =X+e Hence x+te=e+x=¢
for all X£ K\{a}. By Corollary 1.20, |K\{a}|= 1. Thus IK =2,
a contradiction. Hence K contains no additive zero.

Proposition 3»16. If Kis a seminear-field of order greater than

2 with a category VI special element then K contains no additive
identity.

Proof. Let a be category VI special element of Kand let e be

the identity of (K>{a},0. By Theorem 3.12 and Proposition 1.21,
KMa} contains no additive identity. It follows that for any

X£ Ks{a}, X is not an additive identity of K Suppose that a is

an additive identity of K Thena+x=x+a=x for all X £K
Since a is a category VI special element, by Theorem 3.11 there
exists a unique element d in KMa} such that ax = dx and xa = xd for all
X £K Claim that x +e =e+ x= e for all Xf KMa}. Let X e K\{a},
a +x~1d = x""d +a =x""d. Thus e = (x Ad)(d "x) = (atx 1d)d "x

= a(d""™*x) +e =d(d~*x) +e =X+e. Similarly, e = ¢ + X Hence
xte=e+x=e forall X£ K\{a}. By Corollary 1.20,

|IK\{a}| = 1. Thus |K| =2, a contradiction. Therefore K contains
no additive identity.

Theorem 3.17. Let Kbe a seminear-field with a as a category VI
Special element. Then the following statements hold
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() If Kis LAC. then X+y =yfor all x,y£ K'{a}.
(2) 1f K is RAC. then X+y =yfor all x,yeK'{a).
(3) If at a =a then the following statements hold
(3»1) Kis LAC. if and onlyif X+y = yfor all
x,y £ K
(3.2) Kis RAC. if and only if X +y = X for all
x,y K
(3*3) K cannot be A.c.

Proof. Let e be the identity of (K'-ta},*) and let d be the
unique element in Kv{a} such that ax = dx and xa = xd for all X£ K

(1) Assume that Kis L.A.C. Claim that . +a =a for all
z £ K'ia} . Let z£ K\{a}. If z +a/ a then by Theorem 3*1* (*0,
z+a=z+dandsoa=d acontradiction. Hence z +a =a
for all z £ KMa}. Let x,y £ K>{a}. Then xy "d +a =a, 50
y = d{d%y) =a(d~"y) = (xy "d +a)d"y=X+ad"y =X+ dd"y)
= X+Yy. Hence X+y =y forall x,y £K>{a}.

The proof of (2) is similar to the proof of (1).

(3) Assume that a +a = a.

(3*1) Assume that Kis L.A.C. Let x,y £K

Case 1. X=y=a Thenxty=ata=a=y,
Case 2. X/ a, y =a. |In the proof of (1), we showed that
z +a=a for all 7£K\{a}. Thus x +y=x+a=a=y,
Case 3» X=a, yla By () d+y=y. [Ifa+y=a then
aty=at+a Thusy=a, acontradiction. Hence a +y =d +y
=y. Therefore x+y=a+y=d+y=y.
Case ». X™a, yla By() X+y-=y.
Hence X +y =y for ail x,y £ K
The converse is obvious.
The proof of (s.2) is similar to the proof of (3*'I)*
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(3*3) Suppose that Kis A.c. Thus Kis LA.C. In
the proof of (1), we showed that z +a =a for all z £ K'{a}.
Nwd+a=a a+a=a=d+a. Since Kis RAC,, a=4d,
a contradiction. Hence Kis not A.c.

Note that Example 3.2 () is L.A.C. and Example 3.2 (2)
is RA.C

Theorem s*1s. Let Khe a seminear-field with a as a category VI
special element and let e be the identity of (KN{a},*). Then K
is A.C. if and only if K= {ae} with the structure

e a + e a
e e @ and e € a
a e ¢ a a e

Proof. Let d be the unique element in K\{a} such that ax = dx
and xa = xd for all X £K

Assume that Kis A.c. Claim that a+x=x+a=a for all
X £ K\{a}. Let X£f K\{a}., Ifa+X =d+ Xthena=d a
contradiction. Thus a + X = a. Similarly we can show that
X+a=a Claimthat y+e=e+y=¢ for all y £K>{a}. Let
y£ K>{a}. Thena +yd =yd +a =a. Multiply this equation on
the right by d-* we get that e+y =y +e =e. By Theorem 3* 2
and Corollary .20, we obtain jK\{a}] = . Hence IK =2.
Consequently d = e. By Theorem 3* 7 (3)t at+a=d+d=¢e+e=¢.
Therefore we have the above structure.

Conversely, it is straightforward to check that the above
seminear-field is A.c.
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Definition 3«19» Let Khe a (generalized) seminear-field with

a as a special element. Let D= K™a}. Then {x £ d!X+a=a}
({x EDJ|a+X=a}) is called the left (right) fundamental set
of ain K The set {x e d|x +a=a+X=ajis called the
fundamental set of a in K If ais a category VI special element
of Kthen we shall always denote the left (right) fundamental set
of ain Kby ~ ( R). The fundamental set of a in Kis denoted

by

Proposition 3»20. Let Kbe a seminear-field with a as a category
VI special element and D = K>(a}.
() Iy £ goop then y is not LAC.
(2) If y ¢ dnsr then y is not RA.C.
(Therefore if y £ DNS then y is not A.c.)

Proof. Let d e K>{a} be such that ax = dx and xa = xd for all

X £K

() Ify£DS theny+a=y+d Since a0 d, yisnot LAC.

(2) Ify¢E Df‘Sp.Rthen aty=d+y Sinceal d, yisnot RA.LC. #

Proposition s.21. Let Kbe a seminear-field with a as a category
VI special element, D = K>{a} and let d £ D be such that nx=dxandxa= xd
for all X E K, Then the following statements hold
() £ Llp(d) and Rc RIR(d). (Therefore 1D(d).)
(2) A =0o0r “is a filter in (D,+). (Hence DSSR =0
or LsSp is a completely prime ideal of (D,+).)

(3) =0 or Ris a filter in (D,+). (Hence D\SR =0
or LxSr is a completely prime ideal of (D,+).)
(") =0 or is a filter in (D,+). (Hence D" =0 or

D- is a completely prime ideal of (D,+).)
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(5) If d£ L then . LI (d),
(6) If de Rthen =H (d).
(Therefore if d £ then =1p(d).)

Proof. Let e be the identity of (D,0.

(1) To show that "~ Llp(d), let X £ . Then X +a = a.
Multiply on the right by e, we obtain that X + d = d. Thus
X e Llp(d). Hence ~C Llp(d). Similarly, we can show that
8 RldU).

(2) Suppose that ~00. To show that "is a filter I
(D,+), let x,y ED. Assume that x,y £ ~ Thenx+ta=yt+ta=a,
SO (xty) +a =X+ (yta) = X+a=a Thus X+y£ ~ Conversely,
assume that X +y £ ~ Then (xty) +a=a Ify+a/l athen
X+ (y+a) £ D which is an additive semigroup. This is a
contradiction. Thus y +a =a. Consequently X +a = a. Hence
Ais a filter in (D,+).

The proofs of (3) and (*0 are similar to the proof of (2).

(5) Assume that d £ . Thend +a=a. By (1), it
suffices to show that Llp(d) @ ~ Let ye Llp(d). Theny +d =d,
SOy +a=y+(d+ta) = (y+d) +a=d+a=a. Henceyf "
Therefore Llp(d) ¢~

The proof of (6) is similar to the proof of (5)*

Proposition 3»22. Let Kbe a seminear-field with a as a category
VI special element, D = KN{a} and d £ D such that ax = dx and
xa = xd for all Xz K

() If =0 and , is a filter in (D,+) then de p iff
ata-a,

(2) If =0and is a filter in (D,+) then d£ i ff
ata-a,
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(3) Ifo0 Rc. Dand “¢ Rthendf £ iff a +a
(") 1£00§ Dand ~c ~thendf ~iff a+a
(5) If A< Rand R Lthena+a=4d+d

11 11
fab] {<b]

Proof. (1) Assume that L :0 and Ris a filter in (D, +).
Suppose that d£ ., Thend=d +dand a +d=a. Since
gL=¢- d*ta= d+d=d Thusa+a-=(atd) +a =a + (d+a)
=a+d=a Hencea+a-=a

Conversely, assume that a +a=a. Ifs =Dthen df R
Suppose that ~c¢ D. To show that d£ R, suppose that d £ DN R.
Thena +d/a, soa +d=d+d Let X£ . Thena +X=a and
Xt+a=x+d. Thusa=a+a=(atx) +a=at+ (xta) =a + (x+d)
= (atx) +d=a+d=d+d, acontradiction. Hence d £ R.

The proof of (2) is similar to the proof of ().

(s) Assume that 0 0 Rc Dand “c. R. Suppose that
df R Thena+d=a Let X£S5"" Thena+ X=aand
X+a=x+d. Thus a +a=(atx) +a=a+ (x+ta) = a + (x+d) =
(atx) +d=a+d=a.

Conversly, assume that d £DNS . Thena+d=d+d. To
show that a +a0 a, lety £ WA Thenat+ty aandy+a-=
y +d. Thus a +a = (aty) +a=a+ (yra) =a + (y+d) = (aty) +d
—a+d=d+d0a Henceif a+a=athendf R

The proof of (4) is similar to the proof of (3).

(s) Assume that k Sg and Sp To show that
at+ta=d+d Claimthat a +d=d+d Since » R, there
is an element X in £nSr.Thus X + a=a and a+ X=4d + X
Since ¢ LI (d), X+d=4d Thus a +d =a +(x+td) = (atx) +d
= (d+x) +d=d + (xtd) =d +d. Since R™ §., there is an
element y in . Then a +y =a andy +a =y +d. Since
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£¢ Rlp(d), d+y :d Soa+a=(aty) +a=a+ (yta) =
at+ (y+d) = (aty) +d=a+d=d+d.

Theorem 3»23. Let D be a ratio seminear-ring. Let a be a symbol
not representing any element of Dand let d e D. Let FRC Llp(d)
be either 0 or a filter in (D,+) and let FRc RI*(d) be either 0
or a filter in (D,t). Then the binary operations on D can be
extended to K : Du {a} in such a way that the following properties
hold :

() Kis aseminear-field containing a as a category Vi
special element.

(2) F~is the left fundamental set of a in Kand FRis
the right fundamental set of a in K

(3) If (D,+) is not a band then a +a =d + d.

(b) If (D,+) is a band then

Maoordif FL=FR=0,

a if FA =0, FR=D (in this case (D,+) is a
right zero semigroup.),

a if F1 =0,00 Frcd, dEFr,

d if FL=0,00 FRCD, de D'FR,

aordif F*=FR=D (inthiscase D : {e}) ¢

a+a= a4 if FA =D, FR=0 (in this case (D,+) is a left

Zero semigroup.),

a if 00 FLCD, dEFI, Fr =0,

d if 00 FLC D, de D\Fl, Fr=01

aordif 00F CD, FI =Fr,

a if 00 FIc D 00Frc D, (either FLc FR, d e FR

or RC A dE V»

d if 00FI CD 00Fr .D (either FAc FR, < e D'Fg

or Frc FI, de D'FI)

d i f h iV V



Furthermore , any extension of addition on D to Ksuch that ()
and (2) hold must be as given above.

Proof. Suppose that  =F, = 0. Extend + and « from D to Kby
() xa =xd and ax = dx for all X £ D, a2 = d2,
(2) x+a=x+d anda+X d+ Xfor all X£ Dand
raor dif (D,+) is a band ,
IId +d if (D,+) is not a band.
To show that Kis a seminear-field, ve must show that (a%)
x(yz) = (xy)z for all x,y,z£ K, (b%) X+ (y+z) = (xt+y) +z
for all x,y,z E Kand (¢c”) (xty)z = xz +yz for all x,y,z ¢ K
To prove (a"), let X\y,z EK

(3) ata-=

Case . X=y=~72=a

x(yz) = a(a2) = ad2 = dd2 = d2d = d2a = a"a = (xy)z.
Case 2. X=y Fa, 1
x(yz) = a(az) = a(dz) =d(dz) = d2z = a2z = (xy)z.
¢35G3 X=1=a, y/ a

x(yz) =a(ya) = a(yd) = d(yd) = (dy)d = (dy)a = (ay)a = (xy)
Case 4. X/ a, y =1

x(yz) =x(a2) = xd2 = (xd)d = (xd)a = (xa)a = (xy)z.
CuesG5e X/ a, y/ a1 =a.

X(yz) =x(ya) =x(yd) = (xy)d = (xy)a

Case 6. X/ a, y=a>3 3

~< = = X(az) = x(dz) = (xd)z = (xa)z = (xy)z.

Case 7. X=1a, y0a>j0a

<= = a(yz) =d(yz) = (dy)z = (ay)z = (xy)z.

Case 8. X0 a yoO0ayj/ a

x(yz) = (xy)zo

To prove (b”), let x,y,z £ K Consider the following cases
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Case . X=y=22=a

Subcase .. a+a-=a.

X+ (y+z) =a + (a+ta) =a +a = (ata) +a = (x+y) + 7.
Subcase .2. a ta=d.

X+ (y+z) =a+(ata) =a+d=d+d=d+a=(ata) +a-=

(xty) + 7.
Subcase 3. a+a=d+d
X+ (y+z) =a + (ata) =a + (d+d) = d + (d+d) = (d+d) + a =
(d+d) + a = (ata) + a = (xty) + z°
Case 2. X=y=a, 7/ a
Subcase 2. . a +ta=a Then (D,+) is a band.

X+ (ytz) =a + (atz) =a + (d+z) =d + (d+z) = (d+d) +z =d + ¢z,
(xty) +z=1(ata) +z=a+z2=0d+z

Subcase 2.2. a ta=d. Then (D,+) is a band.
X+ (ytz) = a + (atz) = a + (dtz) = d + (d+z) = (d+d) + z

d +z,

(xty) +z = (ata) +z=d + 7
Subcase 2.3, at+ta=4d+d
X+ (ytz) =a + (atz) Z a + (d+z) =d + (d+z) = (d+d) + z =

(ata)t Z = (xty) +Z

Case 3» X=Z7Z=1a, yI a

X+ (ytz) =a + (yta) =a + (ytd) =d + (y+d) = (dty) +d
(d+y) +a = (aty) +a = (xty) +Z

Case v. X/ a, y=1=a.

This proof is similar to the proof of Case 2

Case 5. X/ a, y/ a, z =a.

X+ (ytz) = X+ (y+a) = X+ (y+d) = (xty) +d = (xty) +a
(xty) +z.

Case 6. X/ a, y=a z/ a



X+ (ytz) = X + (atz) = X + (d+z) = (x+d) +z = (xta) +Z
(xty) +z.
Case 7. X=1a, y/ a, 7/ a
X+ (ytz) =a + (y+z) =d + (ytz) = (d+ty) + 1z = (aty) +z
(xty) + 2.
Case 8. X™a, yea Z"a.
X+ (y+z) = (xty) + .
To prove (c,|), let x,y,z £ K

Case 1. X=y=7=a
Subcase 1.1. a +a=a. Then (D,+) is a band.
(x+y)z = (ata)a = a= d* = d™ d" = a™ & = xz + yL.
Subcase 1.2. a +a=d. Then (D,4) is a band.
(x+y)z = (ata)a = da = d*= d™ d* = a™ a" = xz +yL
Subcase 1.3» a +a =4d +d.
(x+y)z = (ata)a = (d+d)a = (d+d)d = d™ " = a™ a = xz + yz.
Case 2. X=y=a, 7:¢ a
Subcase 2.1. a+a=a  Then (D,+) isa band.
(x+y)z = (a+a)z = az =dz =dz + dz = az + az =xz + 1.
Subcase 2.2. a +a=d.Then (D,+) is.a band.
(x+y)z = (ata)z =dz =dz +dz = az +az = xz +yz
Subcase 2.3» a +a=4d +d.
(x+y)z = (ata)z = (d+d)z = dz +dz = az + az = xz +yz.
Case 3« X=z=a, y/ a
(x+y)z = (a+y)a = (d+y)a = (d+y)d = d™ yd = a™* ya = xz + yz.
Case X/ a y=1-=a.
This proof is similar to Case 3*
Case 3» X/ a, yr a, z = a.
(x+y)z = (xty)a = (x+y)d = xd + yd = xa +ya = xz +yz.

18
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Case 6. X/ a, y=a, 2/ a

(xty)z = (xta)z = (x+d)z =xz +dz =xz taz = xz +yL
Case 7» X=1a, y/ a, Z/ a

This proof is similar to Case s.

Case 8. X"a, y/l a z/ a

(x+y)z = xz +yz.

Hence Kis a seminear-field and we obtain (1) - (4).

Suppose that FA =0 and Fp = D. Since d £ FR= RIp(d),
d +d=d. Therefore (D,4) Is a band. Extend . and + from D to
K by

(1) xa = xd and ax = dx for all X£ D, a* = d*

(2) x+a=x+d anda + X=a for all X£ D and

(3) a+a-=a
To show that Kis a seminear-field. '\e shall show that (a")
x(yz) = (xy)z for all x,y,z £ K (b-j) x + (y+tz) = (xty) +z
for all x,y,z £ Kand (x+y)z =xz +yz for all x,y,z £ K The
proof of (a") is the same as the proof of (a®). To prove (b"),
let x,y,z £ K Note that a +t =a for all t£ K
Case . X :@a.
X+ (ytz) =a + (ytz) =a, (xty) +z =(aty) +z=at+tz=1a.
Case 2. X+ a.

Subcase 2. . y=17=a
X+ (y+z) =X+ (a+ta) =x+a=x+d, (xty) +z = (x+ta) +a =
(xtd) +d =X+ (d+d) = X + d.

Subcase 2.2. y=a, z/ a. Since z £Rlp(d), d +z =d.
X+ (y+tz) = X+ (atz) =x+a=x+d, (xty) +z=(x+ta) +z =
(xtd) +z =X+ (d+z) = X + d.

Subcase 2.3. y/ a, Z=a.
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X+ (yta) = X+ (y+d) = (xty) +d, (xty) +2z =
(x+y) +d.

X+ (ytz)
(x+y) +a

Subcase 2»0. y /[ a, z/ a
X+ (ytz) = (x+y) + .
To prove (c”), let x,y,z EK
Case . X=y=1z=4a
(x+y)z = (ata)a = a2 = d2 = @+ = a2 =x o+ yz.
CosQ 2* X=y =a, z0 a
= ==—(ata)z =az =dz =dz +dz =az +az = xz +YyL
Case 3 X=z=a yO0a Sincey£fRlp(d)ld+y=d.
(x+y)z = (aty)a = a2 = d2 = (d+y)d = d2+ yd = a2+ ya = xz + yz.
Case «. X0 a, y=1z=a
(x+y)z = (x+a)a = (x+d)a = (x+d)d = xd + d2 = xa + a2 = xz +yz
Case 5* X0 a, y0a z-=a

(x+y)z = (xty)a = (xty)d =xd +yd = xa +ya = xz +yz.
Case 6. X0 a, y=a, z0a.
(x+y)z = (xta)z = (x+d)z = xz +dz =xz +az = xz + Yz

Case 7« X=1a, y/ a, z/a. Sincey eRIp(d), d +y =d.
(x+y)z= (aty)z = az =dz = (d+y)z =dz +yz =z +yz =xz +YyL
Case 8. X/ a, y/ a 20 a
(x+y)z = xz +yz.
Hence Kis a seminear-field and we obtain (1),(2) and (")
Suppose that FA =0 and FRis a proper filter in (D,+).
Then D\Fp is an ideal of (D,+). Extend + and * from D to Kby
(1) xa =xd and ax = dx for all X £D, a2 = d2,
(2) X+a= X+dfor all X£ Dt
a+X=aforall X£ F a +X =d+ Xfor all
X£ DI\FR and



fa. if (D,+) is a band and d £FR,
(3) a+a=*%d if (D,+) is a band and d £DVF 1
w +d if (D,+) is not a band .
To show that Kis a seminear-field, we shall show that (a")
x(yz) = (xy)z for all x,y,z £ K (b") X+ (y+tz) = (xty) + z for all
x,y,z £ Kand (¢*) (x+y)z = xz +yz for all x,y,z £ K The proof
of (ag) is the same as the proof of (aj)." Noge that D'¥nis an
ideal of (D,+).
To prove (b)o.{), let x,y,z £ K Consider the following cases

Case 1. X=y=1=a4a

Subcase 1,1» (D,+) Is a band, df FR. Then a +a = a.
X+ (ytz) = a + (ata) a +a = (ata) +a = (xty) + Z

Subcase 1.2» (D,+) is a band, d e D\FR. Then a + a = d.
X+ (ytz) =a+ (ata) =a+d=d+d=d+a= (ata) +a =
(xty) + 7.

Subcase 1.3» (D,+) is not a band, Thena +a =d + d and
d £ D\FR.
X+ (y+tz) =a + (ata) =a + (d+d) = d + (d+d) = (d+d) +d =
(dtd) +a (x+y) +1z.
Case 2. X=y=a, z/ a

Subcase 2.1»a +a =a Then (D,4) isa  band.
|f z£ Fr then a + z= a.Thus X t(ytz) =a+ (atz) =at+a=a
—atz=(ata) +z=(xty) +z. If z£ D\FRthen d +z £
Thus X + (y+z) = a + (atz) =a + (d+z) =d + (d+z) = (d+d) + a =
d+z=a+z= (ata) + a = (xty)+ z.

Subcase 2.2. a t+a =d Then (D,¥) isa  band
If z £Fr then d + z = d since FR¢ Rlp(d).
X+ (ytz) =a+ (atz) =a+a=d=d+z= (ata) +1z = (xty) +z

ata) +a
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If Ze D™p then d +z £ D"p. Thus X + (y+z) = a + (atz) =
at (d+z)=d + (d+z) = (d+d) #z =d+z = (ata)+t z= (xty) + L
Subcase 2.3» a+a=4d +d.
If z£ Fp then d +z =d since Fpo. Rlp(d). ThusX +(y+z) =
at+ (atz)=at+ta=d+d=d+ (d+z) = (d+d) +z = (ata) + z=
(xty) + 2.
If z£ DFp then d + z £ DNFp which is an ideal of (D,+). Thus
X+ (y+z) =a + (atz) =a + (d+z) = d + (d+z) = (d+d) +z =
t1z

(ata) + 7 = (xty) + 7.
Case 3» X=1z=a, y/ a
Subcase (D,+) is a band, de Fp. Then a +a = a.

Subcase 3»Tv * y +d £ Fp. Since Fp is a filter
in (D,+), y Fp.
X+ (ytz) =a+ (yra) =a+ (yrd) =a=a+a=(aty) +a=
(xty) + 7.

Subcase 3»T»2. y +d £ D*Fp. Since df Fp
y £ dnfr*
X+ (ytz) =a + (yta) =a + (ytd) d+ (ytd) = (dty) +d =
(dty) +a : (aty) +a = (xty) +z.

Subcase 3«2. (D,+) is a band, d£ D" . Thena +a =d

and y +d £ D\Fp.
If y£ Fp then d +y=d. Thus X+ (y+z) = a + (y+a) = a + (y+d)
=d+ (y+d) = (d+y) +d=d+d=d, (xty) +z=(aty) +a=a+a
= d.
|f y E D\Fp then X + (y+z) = a + (y+ta) = a + (ytd) = d + (y+d) =
(dty) +d =(d+y) +a = (aty) +a = (xty) + 7.
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Subcase 3»3« (D,+) is not a band. Then a +a =d +d
arid d £ DVFR.  Thus y + d e DM\
If y £ Frthen d +y=d Thus X + (y+z) = a + (y+a) = a + (y+d)
=d+ (ytd) = (d+y) +d=d+d=a+a= (aty) +a = (xty) + 1.
If y e DNFR then X + (y+z) =a + (yta) = a + (y+d) =d + (y+d) =
(dty) +d = (dty) +a = (aty) +a = (xty) + 7.
Case *. X/ a, y=1-=a,

Subcase ». . a+a=a. Then (D,+) is a band.
X+ (ytz) =X+ (ata) =x+a=x+d=x+ (dtd) = (x+d) +d =
(x+d) +a = (xta) +a = (xty) + Z

Subcase k2. a+a = d. Then (D,+)is aband.
Xt (y+z) = X+ (a+ta) =X +d,(xty) +zHx+a) + a = (x+d) +a
= (xtd)+ d = X+ (d+d) = X + d.

Subcase «,3. ata=d +d
X+ (ytz) = X+ (a+a) = X + (d+d) = (x+d) + d = (x+d) + a
(x+a) +a = (xty) +z. *
Case 3» X+~ a, y/ a, z=a.
X+ (ytz) = X+ (y+a) =X+ (yrd) = (xty) +d = (x+y) +a
(xty) + 1z,
Case 6. X/ a, y=a, z/ a
If z £ FR then d = d + z since FRC RIR(d).
X+ (ytz) = X+ (atz) =x+a=x+d=x+ (d+z) = (x+d) +z =
(xta) +z = (xty) + .
If z£ DNF then X + (y+z) = X+ (atz) = X + (d+z) = (x+d) +z =
(xta) + 2z = (xty) + .
Case 7. X=1a, y/l a 2/ a

Subcase 7.1. y +z £FR Since FRis a filter in (D,t),

y'z eV
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X+ (ytz) =a + (ytz) =a =a+z = (aty) + . = (xty) + 1.
Subcase 7.2. y + 1z £ DFR
If y £ F* then z D\Fjj. Since FR¢: Elp(d), d +vy = d.
X+ (ytz) =a+ (ytz) =d+ (ytz) = (dty) +z=d+z=a+1+
(aty) +z = (xty) + 1.
If y £ DR then X + (y+z) = a + (y+tz) = d + (y+z) = (d+y) +z =
(aty) +z = (xty) + 1z,
Case 8. X/ a, yr a, 21 a
x t(ytz) = (xty) + Z.
To prove (c”), let x,y,z £ K Consider the following cases
Case 1. X=y=7-=a.
This proof is the same as the proof of case in (c?)
Case 2. X=y=4a 2/ a
This proof is the same as the proof of case 2 in (c,|).
Case 3» X=1z=a, Yy a
If y£ Fp then d +y =d since FRE RIjj(d).
(x+y)z = (aty)a : a2 = d2 = (d+y)d = d2+ yd a2+ ya = xz +yz.
If y £ D then (x+y)z = (aty)a = (d+y)a = (d+$i = d2+ yd =
a2+ ya = Xz +yz.
Case . X/ a, y=1-=a.
(x+y)z = (xta)a = (xtd)a = (x+d)d = xd + d2 :xa + a2 = xz +yz.
Case 5. X~ a, y/ a, z =4

(x+y)z = (xty)a = (xty)d :xd +yd = xa +ya = xz +yz,
Case 6. X/ a, y=a, z/ a
(x+y)z = (xta)z = (xtd)z = xz +dz = xz +az = xz Y1z,

Case 7» X=1a, y/ a, 21 a.
If y£ Fp then d =d +y since FR CRIp(d).
(x+y)z = (aty)z = az = dz = (d+y)z = dz +yz

az +yz =az +yz
X2 + 1
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If y e D" then (x+y)z = (aty)z = (d+y)z =dz +yz = az +yz =
Xz +yz.
Case 8. x/ a, yo0a z/ a
(x+y)z = xz +yz.
Hence Kis a seminear-field and we obtain () - (4).
Suppose that F* = Fp =D. ThenD = I|-)(d) Hx £Dx +d
=d + x=d). Claim that D= {e}. Letx £D. Then xd +d =
d +xd =d. Multiply this equation on the right by d_1, we obtain
that x +e=e+x=e. Hencex+te=e+x=e forall xf D
By Corollary .20, D = {e}. Consequently, d = e. Note that
(D,+) is a band. Extend +and . from Dto Kby () ea =ae=a"= ¢,
(2)e +a= at+te=aand (s) a+a= aore So K ={ae}has
one of the following two structures.

e | a +| e| a
e| el| e and el e | a or
al ef| e at al a

e | a +| e | a
e| e| e and e| e | a
al el e al a|e

It is easy to check that Kis a seminear-field. And we
obtain () - (4).

For the cases (F = D and Fp= 0) and (F* is a proper filter
in (D,+) and Fp =0)1 the proofs are similar to proofs of cases
(F =0 and Fp = ) and (Fp =0 and Fp is a proper filter in
( ,+)), respectively.

Suppose that F.=D and FHis a proper filter in ( ,+).
Now we have Llp(d) = and Fpis a filter in ( ,+). By Proposition
.24 (4.5), Fp =D ={e} 1 a contradiction. Hence this case cannot
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occur. Similarly, we can show that the case (F" is a proper filter
in (D,+) and Fp = D) cannot occur.
Suppose that F* and Fp are proper filters in (D,+).

Case I F*=F .

Extend + and ¢ from D to Kby

(1) xa =xdand ax = dx for all X £D, a* =d",

(2) x +a=a+ x =a for all X£f].,

X+a=X+ danda+X=d+ Xfor all X£ D" and
a or dif (D,+) is a band 1
d +d if (DI+) is not a band.

To show that Kis a seminear-field, we shall show that

(@%)  x(yz) =(xy)z forall x,y,z eK

(b)) X + (y+z) = (x+y) + z forall x,y,z£ Kand

(¢c”) (x+y)z =xz +yz for all x,y,z £ K

The proof of (a”) is the same as the proof of (a").
To prove (b?), let x,y,z£€ K Consider the following cases.
Case . X=y=~7Z=a

Subcase 1.1. a +a=a,
X+ (ytz) =a+ (ata)=a+ a=(ata) + a=(xty) +

Subcase .2. a ta=d
If d £F" then X + (y+z) =a + (ata) =a +d=d +a= (ata) +a
= (xty) *z.
If d £ D\F* then X + (y+z) =a + (ata) =a+d=d+d=d+a-=
(ata) +a = (xty) + z.

Subcase .3« at+ta=d+d
If d £ F* then d + d £ F* which is an additive semigroup.
X+ (yt ) =a+ (ata) = a + (d+d) = (d+d) +a = (a+a) +a = (xty) + Z
If d £ D'F then d + dE D which is an ideal of (D,+).

(3) a+a-=
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Case 2. x=y=4a z/ a
Subcase 2. . a +a=a Then (D,¥) is a band.
If z ¢ F then x + (ytz) = a + (atz) = a + a
(ata) +z = (xty) + z.
If z £ D"F* then d + z £ D"F" which is an ideal of (D,+).
x t+ (ytz) =a + (atz) = a + (d+z) =d + (d+z) = (d+d) +z: d + z,
(xty) + 2= (ata) tz=a+z=d+z.
Subcase 2.2. a +a =d. Then (D,+) is a band.
If z £ F" then d =d + 2z since F* = Fp Q RI (d).

= d =4 + 7 =

x + (ytz) a+ (atz) =a+a=4d, (xty) +z =(ata) +z=d+z=d,

If z £ DNF* then d + z £ D*F* which is an ideal of (D,+).
X + (y+z) =a + (atz) =a + (d+z) = d + (d+z) = (d+d) +z: d + z,
(xty) +z = (ata) +z =d +
Subcase 2.3» a +a =4d +d.
If z£ F* then d =d + z since F* = Fp QRIp(d).
x + (ytz) =a + (atz) =a+a=d+d, (xty) +z = (ata) +1Z =
(d+d) +z =d + (d+z) =d +d.
If z £ DnF* then d + z£ D\F which is an ideal of (D, +).
X + (ytz) = a + (atz) =a + (d+z) = d + (d+z) = (d+d) + z
(ata) +z = (xty) + z
Case 3» x =z =4a, y/ a

If y £F then x + (y+tz) =a + (y+a) = a +a = (aty) +a = (xty) + 1.

If y £ DNFA then d +y, y + d. D\F* which is an ideal of (D.+).
X +(ytz) =a + (y+a) = a + (y+d) = d + (y+d) = (d+y) +d

(dty) +a = (aty) +d = (xty) +Z.

Caseff« x /7 a, y =17 =4,

This proof is similar to Case 2.
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Case 5. x#a, y#a,z-=a. ey
Subcase 5»1» x +y £ FA Since F* is a filter in (D,+)
X.y.e Fl.
x + (ytz) = x +(yta)=x +a =a, (xty) +z = (xty) +a = a,
Subcase 5*2»x +y 0 D'FA
If y £ Fk then x £ and y +d =d. Thus x + (y+z) = x + (y+a) =
x ta=x+d, (xty) +z = (xty) +a = (xty) +d = x + (y+d) = x + d.
If y £ DnF™ then x + (y+z) = x + (y+a) = x + (y+d)  (x+y) +d =
(xty) +a = (xty) +1z
Case 6. x/ a, y=a 2/ a

X

Subcase 6.1. x,z £ FN' Then x +a=a =2+
x + (ytz) = x t(atz)=x+a=a=a+z= (x+a) + 2= (x+y)+ Z,
Subcase 6.2. x £ F* z £ DNF» Since F* <€ Llpfd), x+ d = d.
x + (y+tz) = x +(atz)=x + (d+z) = (x+d) +z=d +z=a+ 1=
(xta) +z = (xty) + z.
Subcase ¢.5. x £ DALz £
This proof is similar to Subcase 6.2.
Subcase &.*f. x,z o D-F\
X + (ytz) = x + (atz) = x + (d+z) = (x+d) +z = (x+a) +z = (xty) + 2
Case 7. x=a, y/ a, z/ a This proof is similar to Case 5-
Case s. x i a, y/ a z/[ a x+ (y+tz) = (xty) +
To prove (c), let x,y,z £ K. Consider the following cases.

Case 1. x=y=1:=4

This proof is the same as the proof of Case 1 in (c-|)

Case 2. x=y=a, z/ a.

This proof is the same as the proof of Case 2 in (c").

Case 3« x=17=a, y/ a

If y£ FA then d =d +y since F* = F* ¢. RIMNd). Thus (xty)z =
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(a+y)a = e d2 = (d+y)d = a4 yd = 2y ya = Xz + yz

|f y £ D"F* then (xty)z = (at+ )a : (d+y)a = (d+y)d : d2+ yd =
a2+ ya = Xz + Yz
Case k. x/ a, y=1-=a
This proof is similar to Case 3»
Case 3. x"a, y~a, z-=a
(x+y)z = (xty)a = (x+y)d = xd +yd =xa +ya = xz +yz
Case 6. x/ a, y=a, 2/ a
If xe then x +d =d since FA£ Llp(d). Thus (x+y)z =(x+a)z
=az = 0z = (xtd)z = xz +dz =xz +az :xz+yz
If x £ DVR. then (xty)z . (x+a)z = (x+d)z = xz + dz = xz taz .
X7 +yz.
Case 7. x :a, y/a 1/ a.
This proof is similar to Case s.
Case s. x/a, y/a z/ a
(x+y)z  xz + Yz
Hence Kis a seminear-field and we obtain (1) - (*0.

Case Il Either FA ¢ FR or FRc FA.  We may assume that F*c FR.

Extend + and « from D to Kby
2 2

(1) xa = xd and ax = dx for all xe D, a“ = 47,
(2) x+a=aforall xe Fr, x +a=x+4d for all
X £ D/F.
a + x = a for all x € FR, a+ x=4d + x for all
X e DnFr,
a if (D,+) is a band and d £ F |
(3) a+a={d if (D,+) is a band and d £ D\FR,
a +dif (D,+) is not a hand.
)

We shall first show that x + (y+a) = (x+y) +a for all x,y E D



Case i. x +y £ F Since FMis a filter in (D, +), x,y £ FA
x+t(yr) = x  taEaE (MW

Case ii. x t y D'T.

If ye F* then x £D'Fj* and d=1y + dsince F* ¢LI*Cd).  Thus

x t(yta) = x  tazxt daiyrd) = (xty)d(xty) o+

If y £ DNFA then x + (y+a) = x + (y+d) = (xty) + d = (xty) +a.
Claim that df D"F" since d F* there is

an element t in Fj*F . Thus a +t =ard+t =dand t +a=1t +d.
Sod+a= (d+t) +a =d+ (t+a) =d + (t+d) = (d+t) +d=d+d/a.
Hence d £ DN/,

To show that Kis a seminear-field, we shall show that (a")
x(yz) = (xy)zfor allx,y,z £K (b)) x+ (y+z) =(x+y) + z for all
x,y, 2z £ Kand(c,-) (xty)z =xz + yz forall x,y,z£ K The proof
of (") Is the same as the proof of (a%).

To prove (b ), let x,y,z £ K Consider the following cases.
Case 1. x=y=17=a.

Subcase 1.1. a +a =a.

x + (y+z) =a + (ata)=a +ta= (ata) + a = (Xxty) + Z

Subcase .2. a + a=d.Then d £ IAFjj. Since d  DSFN
d+a=4d+d.

x + (ytz) =a + (ata) =a+d=d+d=d+a= (ata) +a = (xty) + L

Subcase 1.3» a+a=d+d. Since (D,+) Is not a band,
df D'F .

x +(ytz) =a + (ata) = a + (d+d) = d + (d+d) = (d+d) + d-
(d+d) +a = (a+a) +a = (x,y) + ¢z
Case 2. x=y=4a, z"a.

Subcase 2.1. a +a =a. Then (D,4) is a band.

If z £Fjj then x + (y+z) =a + (atz) =a+a=a=a+z
(ata) +z = (xty) + z.
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If z¢ D\F* then d + z ¢ DNFp. Thus x + (y+z) = a + (atz) -
at (dtz) =d + (dtz) = (d+d) +z=d+z=a+z= (ata) +17 =
(xty) + 1z,
Subcase 2.2. a +a=d. Then (D,+) is a band.
If z £ FE then d = d + z since F ¢ Rlp(d). Thus x + (ytz) =
a t+(atz) ata=d, (xty) +z=1(ata) +z=4d+1z=1d.
If z £ D\ep, then d + z £ D'H" which is an ideal of (D,+). Thus
x t (ytz) =a + (atz) =a + (d+z) = d + (d+z) = (d+d) +z =d + z
= (ata) +z = (xty) +z
Subcase 2.3» a +a =4d +d.
If z £F" then d =d + z since FRC Rlp(d). Thus x + (y+z) =
at+(atz) =ata=d+d, (xty) +z=(ata) +z = (d+d) +z =
d + (d+z) d +d.
If z £DSFR then d + z £ D*Fg. Thus x + (y+z) = a + (a+z) =
a t+ (d+z) = d + (d+z) = (d+d) + z = (ata) +z = (xty) +
Case 3» x z :a, y/ a
Subcase 3. . y£ F. Then yfEFRsoat+ty=y+a=a.
x + (ytz) = a +(yta) =a ta= (aty) +a= (xty) +1z
Subcase 3»2» y £ Fj*FA. nce Fjj —RIjj(d) 1 d +y : d.
Subcase 3»2.1. (D,+) is a band, df F* Then
a+a:aandy+d£FR
Xt (ytz) =a + (y+ta) =a + (y+d) =a =a +a = (aty) +a =
(xty) + 2.
Subcase 3»2.2. (D,+) is a band, d £ D\Fg. Then
at+ta=dandy+dfDF.
x +(ytz) =a +(yta) ta +(ytd) = d+(y+d) = (d+y) + d = d +d
d :a+a= (aty) +a =(xty) +
Subcase 3«2.3« (D,+) is not a hand. Then
a+ta=d+dand d£ D"¥g. Thusy +d£D'Fg, so X+ (y+z) =
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a + (yta) =a+ (ytd) =d + (y+d) = (d+y) +d=d+d=a+a-=
(aty) +a  (xty) + 7.
Subcase 3»3« y e D'Fp. Since DvFpc. DNFp, y £ DFM
Thus y + d £ DSFp and d +-y £DSFA) so X + (y+z) =a + (y+a) =
a t(ytd) =d + (ytd) = (dty) +d = (dty) +a = (aty) +a = (xty) + 7.
Case k. X/ a, y=a, z=a.
This proof is similar to Case 2.
Case 5« X/ a, y/a, 7-=a.
By the first proof, we showed that X + (y+a) = (xty) + a.
Case 6. X/ a, y=2a 2/ a.
Subcase 6.1. XE£ F* z £ Fp.
X+ (ytz) =X+ (atz) =x+a=a=a+z= (xta) +z = (xty) t+z
Subcase 6.2. X £ FA z £ DvFp. Since F* = Llp(d),
d = X +d.
X+ (y+2)

X+ (atz) = X+ (dtz) = (x+d) +z=d+z=a+z =
(xta) +z = (xty) + 2.

Subcase 6.3» X £ DAFA, z £ Fp. Since Fp G RlpCd),
d=4d+z
X+ (y+2)

X+ (atz) = X+a=X+d=X+(dtz) = (x+d) +z =
(xta) + 7 = (xty) +
Subcase 6,*t. X £ D*F", z £ D"Fp.
X+ (y+z) = X + (a+z) = X + (d+z) = (x+d) +z = (x+a) + 2z = (xty) + Z
Case 7» X=1a, y/a, 7/ a
Subcase 7»1» y +z€ Fp. Since F. is a filter in (D,+),
y,z£ F»
X+ (ytz) =a+ (ytz) =a=a+z=(aty) +17=(xty) +2,
Subcase 7«2. y + z£ DNFp.
If y£ F then z£ DVFp. Since Fpc. Rlp(d), d +y =d. Thus
X+ (ytz) =a+ (ytz) =d + (ytz) = (dty) +tz=d+z=a+7+
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(aty) +z = (xty) +Z
If y £ DnFr then X + (y+z) =a + (y+z) = d + (y+z) = (d+y) + Z =
(aty) + 2= (x+y) + Z
Case s. X£a, y~a, 2/ a
X+ (ytz) = (xty) + Z
To prove (c,-), let x,y,z £ K Consider the following cases
Case . X=y=~7Z=a.
This proof is the same as the proof of Case 1 in (c*).
Case 2. X=y=a, z/ a
This proof is the same as the proof of Case 2 in (¢ ).
Case 3» X=1z7=4a, y/ a
If y£ Fr then d =d +y since FRC Rlp(d). Thus (x+y)z = (aty)a
= a2 = (02 = (d+y)d = d2+ yd = a2+ ya = xz + yz.
If y D'Fr then (x+y)z = (aty)a = (d+y)a = (d+y)d = d2+ yd =
atya =Xty
Case x| a, y=1=a
This proof is similar to Case 3»
Case 3» x/ a, y/ a z:=a
(x+y)z = (x+y)a = (x+y)d = xd +yd = xa + ya = xz +yz.
Case 6. x/ a, y=a, 2/ a
If XE£ F* then X +d =d. Thus (xty)z = (x+a)z = az = dz =
(x+d)z = xz +dz =xz +az =Xz +Yy1L
If Xe D'FI then (xty)z = (xta)z = (x+d)z = xz + dz = xz + az =
Xz +yi.
Case 7. X=4a, y£a, 2/ a
This proof is similar to Case 7*
Case s. X£a, y/a, 2/ a
(x+y)z xz +yL.



casediy FI£ Fe and FRE
Extend + and + from D to Kby
(1) xa =xd and ax = dx for all X £ D, a2 = d2,
(2) X+a=aforall XEFR, x+a=x+d for all

X £ DMFI,
a+X=-aforall xEFR, a+x=d+x for all

X £ D\Fr and
(3) a+a=d+d.
We shall first show that X + (y+a) = (xty) + a for all
x,y £D. Let x,y £D
Case i X +y £FR Since FRis a filter in (D,+), x,y£ FR.
X+ (yta) = X+a=a-=(xty) +a
Case ii X +y £ D\FR.
If y£F , then Xf£ D'FRand y +d =d. Thus X + (yta) = X + a =
X+d=X+(ytd) = (xty) +d = (xty) +a.
If y £ D\FR then X + (y+a) = X + (y+d) = (x+y) +d = (xty) + a.
Similarly, we can show that a + (y+z) = (aty) + z for ail
y,Z ¢ D
Claim that d£ (D'FL) (D'FR). Since FLi FR and
¢n 4 pL there are elements XQand y0 in D such that X, & FAF &
and y, £ FAFE. Thus xgta=a, xgd= d, a+X =d+Xp,
a+y0:a, d+yo=dand yO+a =yo+ d» Soa +d=a+ (xqt d
=(a+txQ) +d=(d+x)+d=d+ (xqrd) =d+d/ a Hence
d £D\FR. And d +a=(d +yo) +a=d+ (yQt a) =d + (yot+ d) =
(d+y)+d=d+d/a. Hence d £D'R. Therefore
d £ (DvFr) (DNFR). Note that D"FR and D\FR are ideals of (D,+).
To show that Kis a seminear-field, we shall show that
(ag) x(yz) = (xy)z for all x,y,z £ K (bg) x + (y+z) = (xty) + z -
for all x,y,z £ Kand (c*) (xty)z = xz +yz for all x,y,z £ K
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The proof of (a") is the same as the proof of (a").
1To prove (b*), let x,y,z £ K Consider the=following cases.
Case X=y=z=a Since d £(DXF )n (D\Fr)J

d+d£( FI)  (D\F ).

t(ytz) =a + (ata ) =at (d+d) =d + (d+d) = (d+d) +d =
(d+d) a = (ata) +a = (xty) +
Case 2. X y-a,an
If z £ F* then d =d +z. Thus X + (y+z)= a + (atz) =a +a =
d+d, (xty) +z =(a+a) +z = (d+d) +z =d + (d+ ):d+d.
If z £ D\Fp then d+ z £ DAFA, ThusX+(y+z) =t (atz) =

+ (d+z) = d + (d+z) = (d+d) +z = (ata) +z = (x+y) t1
Case 5» X=1z =4, y 0 a.
Subcase 3»1« F"n FA =0,
Subcase 3.1.1. y£ F . Theny £DsFR»
d+y £D\F" and d =y +d.
tytz) =a+(yta) =ata=d+td=d+ (yrd) = (dty) +d =
(d+y) +a = (aty) +a = (xty) +
Subcase 5.1.2. y£ D¥" Then y +d £ D\FR and
d +y £ DI
If y £Fthen d +y=4d. Thus X + (ytz) =a + (yta) = a + (y+d)
=d+ (ytd) = (d+y) +d=d+d=a+a= (aty) +a = (xty) +
If y £ D\FR then X + (y+z) =a + (y+a) = a + (y+d) =d + (y+d) =
(dty) +d = (dty) +a = (aty) +a = (xty) +
Subcase 5«2. FMfl Fp 0 0.
Subcase 3.2.1» y£ F.n FR.
t(ytz) =a+ (yta) =a +a (aty) +a= (xty) ¢
Subcase 3»2.2. y£ FAn (DNF),
This proof is the same as the proof of Subcase 3.1,1.
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Subcase 3.2.3» y E(DMFjJ ™ FR. Theny +d £ DnFrl
d+y£f D"V and d =d +y.
X+ (ytz) =a +(yta) =a + (ytd) = d + (ytd) = (dty) +d =d +d
—a+a =(aty)+ a=(xty) +z.
Subcase 3»2«, 'y £ (D'Fl)n (DFp). Then
y +d£f D" and d +y £ DNF
X+ (ytz) =a + (yta) = a + (ytd) =d + (ytd) = (dty) +d =
(dty) + a= (aty) +a= (xty) +z.
Case ¥X/ a, y =1=4a
This proof is similar to Case 2.
Case 3» X/ a, y/ a, z=a.
By the first proof, we showed that X + (y+a) = (x+y)+a.
Case 6. X/ a, y=4a, 7/ a
Subcase 6.1. xE Fr, ZE ¢
X+ (W2) =x+(at) =xta=a=atz=(x+a) + 2= (xty) +Z
Subcase 6.2. x£F\ z £DFY Thend=x+d
X+ (J42) =x +(@+2) = x +(dH2) = (x¢d) +z=d+z=-a+1-
() + 2= (xy) +Z
Subcase 6.3* x £ DIPY z £ Fp. Thend=d+
X+ (42) = x + @) =X+a=Xx+d=Xx+ () = (xH0) + 2=
(XH) + 7= (XHy) +Z
Subcase 6.+t x £ D'F\ . £ DN,
X+ (y42) [ x+ (at2) = x + (0H2) = () + 2= (x+a) + 2= (XHY) + Z
Case 7« x=a, yla, z/a.
We showed that a + (y+z) = (aty) + z.
Case s. X/ a, y™a 7/ a.
X+ (ytz) = (xty) +z.
To prove (eq), let x,y,z£ K Consider the following cases.

11
>
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Case . X=y=1Z7r=a,
(xty)z = (ata)a »(d+d)a = (d+d)d @ dM dh = M oA~ = xz oty
Case 2. X=y=a, z/ a
(x+y)z : (ata)z : (d+d)z =dz +dz = az +az :xz + YL
Case 3» X=12=4a, y£a.
If y F thend=d+y Thus (x+y)z = (aty)a = a"=; d* =
(d+y)d = d™ yd ah+vya = xz + Yz
[T y £ DFj, then (x+y)z = (aty)a = (d+y)a = (d+y)d = d*+ yd =
aM ya = xz +yi.
Case k. X/ a, y=1-=a
This proof is similar to Case 3*
Case 3» X/ a, y/l a, z-=a.
(x+y)z = (x+y)a = (xty)d = xd +yd = xa +ya = xz +yz
Case 6. X/ a, y=a, z/ a
If X e thend :X+d Thus (xty)z = (x+ta)z = az = dz =
(x+d)z =xz +dz = X2 +az = x2 +Yyz,
If Xe D'FM then (xty)z : (xta)z = (x+d)z =xz +dz = xz + az =
Xz - yz.
Case 7» X=1a, y/ a, 2/ a
This proof is similar to Cases .
Case s. X/ a, y/l a z/ a
(x+y)z = xz +yz.
Hence Kis a seminear-field and we obtain (1) - (*0.
By Theorem 3*1" and Proposition 3*22, if there exist
extensions such that () and (2) hold then these are the only
possible extensions of the binary operations on D to K

We shall give an example where (D,+) is a band and Fp c. F".
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Example J),2k. 7 with the usual multiplication is a group.

Define +on " by X +y =max{x,y} for all x,y £ '/ Then

( +,+1%) is a ratio seminear-ring. Let d£ ", Thus LI (d) =
+

(XE AXEd) =R (). LetF =Ll (d)andF o= {0 Yx<g

Then FR c FR and d £ FR. It is easy to show that FR and FR are
filters in ( +1+).

Let a be a symbol not representing any element of +.
Extend + and « from 'fto + {a} by

(1) xa =xd and ax = dx for all X £ +1 a" = dr1

(2) X+a=aforall X£ Fra X +a =X +d for all
Xt +nFIl
a+X=aforall XE£F 6 a+X=d+Xfor all
X £ XFR and
(3) a+a-=a

By Theorem 3.23, ( +u {ay:+1*) is a seminear-field with a as a
category VI special element.

We shall give an example where (Di1t) is a band and FR FR
axid FR™ Fl .

Example s.23. Let ** * be the ratio seminear-ring given in
Example 2.1, Let d = (d 1d) £ x + Then LI (d) =

{(x,y) £ *X +#Ix >diy £ dR} =Rl . .(d)e
AmX"M

LetFR = {(x,y) £ X "IXE dl, y£  }and
Fr={(x,y) e "X X" 211 y£ dR}.
Then FRgji FR and FR™ FR. It is easy to show that FR and FR are
Filters in ( * X *+).



99

Let a be a symbol not representing any element of """
Extend +and « from + x " to ("'x 7) 1L {a} by
(1) za =zd and az = dz for all z £ "X +, a" =d"

(2) z+a=aforall Zz£FR, z+a=7z+dfor all
z £("" X VYFL
atz=aforall zE£FR, a+z=d+z for all
z £("" X '1)\FR and
(s) a+a=d

By Theorem 3*23, (( * X ") -a},+1') is a seminear-field
with a as a category VI special element. #

We shall give an example where (D,+) is not a band.

Example s*26. From Example 2.16, ( "X2,0,®) is a ratio
seminear-ring. Let d = (xq, 0)£ + Xz be such that 0 > 1.

Ths LI (@) = {(x, )£ #x2n> ) =R (d)

Let FR= {(x, )£ ™Xz[n> 2 } and
Fr = {(x, )£ ""X3 > 0}
It is easy to show that FR and FR are filters in(QxzI10) .
Let a be a symbol not representing any element of +X2,

Extend © and  from +X2 to ( +x2) {a} by
() z a=z danda©z =d z forall z£ '"Xz2,

(2) z©a=aforall zEF,z a z0O©d for all
2 £ (" xZ)nFr,
a©z=aforall z £FR, a©z=4d0 z for all
z £ (" XZ)XFR and
(s) a©a=d d

By Theorem 3*23, (( *x2) {a},®0) is a seminear-field with a
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as a category VI special element.

Corollary 3»27« Let Dbe a ratio seminear-ring. Let a be a
symbol not representing any element of Dand d £ D. Let F* and
Fij have the properties given in Theorem 3»23. Then K = DU {a}
Is a distributive seminear-field v/ith a as a category VI special
element if and only if Dis a distributive ratio seminear-ring.

Proof. By Theorem 3.23, we can construct Kso that Kis a
seminear-field with a as a category VI special element, F* is the
left fundamental of a in Kand F* is the right fundamental of a
in K. It is clear that if Kis a distributive seminear-field with
a as a category VI special element then D is a left ratio
seminear-ring.

Conversely, assume that Dis a left ratio seminear-ring.
It is sufficient to show that x(y+z) = xy + xz for all x,y,z £ K
Let x,y,z £ K Note that a+a=aora+a=d+d.
Case 1. X=y=17=a

Subcase 1.1. a +a =a. Then (K,+) is a bhand.
x(ytz) = a(ata) = az = d2 = d2+ d2 = a2+ a2 = xy + Xz,

Subcase 1.2. a+a=4d+d.
x(y+z) = a(ata) = a(d+d) = d(d+d) = d2+ d2 = a2+ a2 = xy + Xxz.
Case 2. X=y=4a, 7/ a
If z £ FRthen d +z =d. Thus x(y+z) = a(atz) = az =dz2 =
d(d+z) = d2+ dz = a2+ az = xy + Xz
If z £ D\F" then x(y+z) = a(atz) = a(d+z) = d(d+z) = d2+ dz =
a2+ az Xy +yz
Case 3, X=1z7=4a, y/ a
This proof is similar to Case 2



Case *. X/ a, y=12=a. \
Subcase A.1. a +a =a Then (K+) is a band >

x(y+z) =x(ata) =xa =xd =xd +xd = xa +xa = xy + xz.
Subcase 4.2. a+a=d +d

x(y+z) = x(ata) = x(d+d) =xd + xd = xa + xa = xy + Xz,

Case 5. X/ a, y/l a z-=a

If y£  theny +d=d Thus x(y+z) = x(y+a) = xa 3 xd =

x(y+d) = xy + xd = xy +xa = xy +xz

If y £ D\F* then x(y+z) = x(y+a) = x(y+d) =xy +xd = xy +xa =

Xy + Xz,

Case 6. X/ a, y a Z/ a

This proof is similar to Case 5.

Case 7« X=1a, y"a, z/ a

x(y+z) = a(ytz) =d(y+z) = dy +dz = ay +az = xy + xz.

Case 8. X/ a, y/la z/ a

x(ytz) = xy +xz.

Hence K is a distributive seminear-field. ¥
Theorem 3.28. Let K and K' be seminear-fields with a and a' as
category VI special elements, respectively. Let D = KN(a) and
D = KN(a) v/ith e and e as their multiplicative identities
respectively. Let deDand d £D be such that xa = xd and
ax = dx for all X £Kand xa =xd and a X=d X for all X£ K.
Let and £ Dbe the left and right fundamental sets of a in K,
respectively. Let ~ and R be the left and right fundamental
sets of a in K 1respectively. Suppose that there exists an

isomorphism 1 K=K . Let f= tip = | 1y =0 an
SL D' SL SR

Y = nID\ . Then the following statements hold i
s
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(e) =e ,rt(d) =n@ )and (a) =a .
A=0if and only if A =0 and

if A~00 then "= " as additive semigroups.

D\S* =0 if and only if D\ ~ =10 and

| f 0 0 then DNA = DN * as additive semigroups.
£=0if and only if R=0 and

if SRO O then R= £ as additive semigroups.

DASR = 0 if and only if D'SR =0 and

if DNSRO 0 tnen D'SR - DSSR as additive semigroups.
If a+a=athena+a =a.

|fat+ta=d+d thenat+ta =d+d.

If x £ L~ Rthen y(x) = 'f(x).
If x £ L (D" R) then Y(x) = y'(x).

If X £(D"SI) a R then Ip(x) = ip'(x).

If X £(D\SI)  (DVSr) then ™ (x) : Ip(x).

If X £ Land y £DvsL then px+y) =y(X) +n(y).
If X£ and y £ L then <Kx+y) ~(x) +'f(y)*
If x,y £ and xy £ L then tcxy) ="p(x)'f(y).

1f x£ L, y£ D.Land xy£ L then Y(xy) =f(
If X£ DVSI» y£ Stand xye L thenf(xy) =i
Ifx,y £D\V 2 and xy £ ~ then 't(xy) =1 (X)]i y)
If x,y £ Land xy £D\ Prthen ioxy) = f(X)>f(y )
If XE ,y £D\Stand xy£ D\SL then ij(xy) =
If X eDV31 y£ Land xy £ D-Sk then™(xy) = ip(x)t(y)
If X,y,xy £ D\SL then rpixy) = vpx)p(y).

Since e is the only multiplicative idempotent of K
= (e), rl/(e) = ¢ . To show that r(a) = a 1 suppose
a'. Thenn(a) =e'- ()= (&) + (a) =n(e-a)
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(e*d) = (d). Since is 1-1, a =d, a contradiction. Hence
H(@) =a . Nowr(d = rie*d) = (e*a) =r](e) * n(a) =e «a =
e'e d' =d".

(2) Assume that ~ =0. Suppose that ~ 0 0. Let
y £ . Since is onto, there exists an element X in D such that

(X) =y. Nwx+a=x+d > =y+a = (x) + ri@d = (xt+a)
= (xtd) = (x) + (d) y+ d £ D, acontradiction. Hence =0.
Assume that ~ 0 0. Claim that + . §&—= " Let X £

Then X + a = a, s0 ta = (x) + (a) = (xta) = (a) = a .
Thus If(x) £ . Hence ~ 0 0. It is clear-that f is a monomorphism.
To show T is onto, let y £ ~ Theny +a =a . Since is onto,
there exists an elements an element X in Ksuch that (x) =vy.
Now X0 a so X £D. Claim that X£ . Suppose that X£ DnSjj*
Then X +a0a, soN(xta) £D, a =y +a = (x) + 1| =
n(xta) £ D, a contradiction. Hence X£ ~. So we get that
If(x) = n(x) =y. Thus {fis onto. Hence " = " as additive
semigroups. Therefore we obtain (2).
(s) Assume that DV =0. Then L =D. To show that

D, let y £D. Since is onto, there exists an element X
in such that n(x) =y. Nowx +a= asoy +a = (x) + (a)
:p(xita‘)‘ 8 (a) =a'. Hence yE ~  Therefore D\. 1=0.

Assume that DnS" 0 o. Claim that p D"S|—DV 7 Let

x£ DnSl» Then i>(x) +a =n(x) + (a) = (xta) = (x+d) =
ip(x) + n(d) =ifj(x) +d soil(x) £D » Thus DN "o 0. It is
clear that iiis a monomorphism. To show that Y is onto, let
y £DN A Theny+a =y +d. Since is onto, there exists
an element x in Ksuch that (x) =y. Nowx o a If x £ 7 then
x+a=a Soy +d =y+a = (x) + (a =n(xta) = (a) =a ,
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a contradiction. Hence x ¢ D"s™» Therefore » is onto and so
DAsh = D\SM as additive semigroups. I obtain (s).

The proofs of (k) and (5) are similar to the proof of (2)
and (3)1 respectively.

The proofs of (6) —(21) are straightforward and we will

omit them. #

Theorem 3»29. Let Dand D be ratio seminear-rings and let d and
d elements in D and D respectively. Let a and a Dbe symbols not
representing any element of D and D respectively. Let F* ¢ Llp(d)
be either 0 ora filter in (D,+) and let FR  RI*(d) beeither 0
or a filter in (D,+). Let E C LE) 1(d ) be either 0 ora filter in

(D 1t). Suppose that there are bijections <: F[-F" and
p D-Fj—if*"F such that 4>(xty) = M(x) + >f(y) for all x,y £F"1
f(d) =d if dEF 1 7(x+y) = ty(x) HKy) for all x,y e D*FL and
o> =d If dfDnFjj* Suppose thatthere are bijections
f  Fp=2FRand y : D\Fg—DnFr such that VY (x+y) =~ (x) + " (y)
for all x,y £ FRLA(d) =d if d £FRLl p(xty) = p(x) +§ (y)
for all x,y £ D\FR and A (d) =d if d£ D"F"

Suppose that the following conditions are satisfied

(1) Fr =0 iff f1 =0.

(2) FL=DIiff pL=p 1

3) 0/ Frc Diff 0/ f'¢c D

(01 Fr=0iff g g

(5

(6
(
(

/
8

Fr =Diff Fg. p 1

a then a + a
d +d then a +

)

) 0/ fra Diff 0/ FRc D
) Ifa+a

)

—
<t
-+
<]
11
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(9) If xe FL FR then f(x) = 'f'(x).

(10) Ifxe FL (D\Fr) then f(x) =1p'(x).

(11) 1fX e (D\Fl') a FR then Ip(x) =ip'(x).

(12) If X £ (D\Fr) a (D\FR) then “(x) = Ip(x).

(13) If X £ FR and y e D\F® then [Kx+y) =f(x) + *(y).

(10 If X£ D" and y £ FR then ijXxty) =1lp(x) + If(y).

(15) If x,y £rr and xy e rL then w(xy) = P(x)'PCy).

(1) If X £Fr, y £ DaF” and xy e F then'f(xy) =f;(x)<f(y).
(17) Ifx £D\Fl, y £F1 and xy £ F* then <f(xy) = Kx)f(y).
(18) 1fx,y e DnF* and xy £ F* then f(xy) = 1p)Ip(y).

(19) 1fx,y £ F1and xy e DnFr then p(xy) = <f(x)v(y).

(20) If XE£ Fray £ DvFI and xy e D\FL then p(xy) ="f(x)"(y).
(21) If X£ DvF®, y £FI and xy £ D\FL then p(xy) = iKx)ip(y).
(22) If x,y,xy £ DnF" then Ipxy) =b(X)iKy).

Then n k=K defined by

P(x) if x € F

n(x) = { W(x) if x € DNF
a if x=a,

Is an isomorphism between Kand K where K=D {a} and K =D (a}

are seminear-fields with a and a as category VI special elements,

respectively.
Proof. By Theorem 3*23, we can construct Kand K so that Kand

K are seminear-fields and a and a are category VI special elements
of Kand K1 respectively.

Case | F_=35. Then F =gf Define K— by

[P(X) if x € D,
n(x) ={ '

a if x = a.

It is clear that is a bisection. We need only show that
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(1) (xy) = () (y) forall x,y £Kand (1) n(xty) = (x) + r(y)

for all x,y £ K Note that, by(22), Ip(xy) = iKx)*(y) for all x,y£ D.
To prove (a,), let x,y EK )

Case 1. X3y=a Thena =d anda =d

(xy) = riaz) = (d2) = <Kd2) = <Kd)iKd) =d" =a' = (a)n(a) =

(x) (y).
Case 2. X=a, y/ a Then ay = dy
(xy) = Na y) (dy) = 4Xdy) =w (npty) = d iKy) = aw(y) =

(a)n(y) = (x)n(y).
Case 3» X/ a, y = a.
This proof is similar to Case 2.
Case bv. X/ a, y a Then xyf D
(xy) = 40y = Ip(x) ikyy = n(x)r(y).
To prove (b"), let x,y £K
Case 1. X=y =a
Subcase 1y . a+a =. Thenata =a.
(xty) = f(ata)= (a) = a=at+ta = (a + ()= (x)+(y)
Subcase 1.2. a+a=d+ dThenat+ta =d+d.
ri(xty) = (+ )= (d+d) = A(d+d)= <Kd) + 4@) =d+d =a+a
= ()t ()= () + (y).
Case 2. X= ,y/ a
If y £ Fg then by (11 ) i) = f(y). Thus a =a+ ip(y) =
a o+ 4(Y).
(xty) = (aty)= (a) = a =a +ply) = r(a) + (y)
If y e D\F3then by (12)Jp(y) = ™ (y)* Thus a +y

»

and a'+ (y) =a’t Bly) = 0 ).

((xty) = (aty) = (dty) =« (d+y) = <Kd) +4(y) =d +ij(y) =a+ 4(y)

= ()t ()= )+ (y).

Case 3» X/ a,y =a Then X+ a=X+d. (xty) = r(x+a)= (x+d)

= f(x+d) = <K+ (d) = ifjx) +d=ijjx) + a =n(x)+r@) = (x) + (y).

Case Xl a yl a
n(x+y) = ijXxty) = «X) + P) = (x) +n(y).

Hence . is an isomorphism,

(x) + (y).
d+y
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Case 11 =D. Then F* =D . Define : K=K by
(x) = 'fgx) ?f x £D,
v a If x = a.

It is clear that is a bijection. We need only show that
(aR) (xy) = (x) (y) for all Xy £ Kand (bR) r(xty) = (x) + (y)
for all x,y £ K Note that, by(I5)i ~(xy) = f(x)K(y) for all x,y £ D.
The proof of (aR) is the same as the proof of (a%).
To prove (bR)» let x,y EK
Case 1. x -y - a
This proof is the same as the proof of Case in (b%).
Case 2. X=a, yo a.
If y £ Fr then, by (9), fCy) = ~(y). Thus a = a + 4>(y) = a +'f(y).
A

(x+y) = (a+y) (a) a =atYly) =D@  +(y) = (x

If y £ D\FR then, by (10), My) = ( ). Thus a +y =d +y and
a't f(y) = aw ijiy) =d+ p(y), (xty) = (aty) = n(d+y) =
(dty) = f(d) +f(y) PR ,(y) = a'+iCy) = (a) + (y) =
Case 3» Xo a,y = a Then X+a=a and (x)ta=a.

Tiixty) = (ffp) = [l®) =a =% +a = (x) +ri(a) = (x) + (y).
Case J+. « @ y @
(xty) = Ptxty) =Hx) +#0) = (x) + (y).

Hem is an isomormﬁC
Case 11 ¢ D. Then D. Define K—t* by

o If(x) if X £Fl,

(Xx) =< 1p) if X £ DVFL,

| a if X=a,

It is clear that is a bijection. We need only show
that (a®) (xy) = (x) (y) for all x,y £ Kand (bj) (xty) =
(x) + (y) for all x,y £K

To prove (a"), let x,y £ K
Case . X=y=a

Subcase 1.1. d, d2£ FA By ( 5),4 2) =4(d)Y(d).
(xy) = 2) : (d2) =v2d2) =4>(d)Y(d) =d" = &' =



Subcase 1.2. d £Fl, d2£ D\Fl. By ( 9), <Md2) = {(d)"P(d),
(xy) = (a2) = (d2) = Ip(d2) =f(d)r(d) =d" =a =n(a)2 =

H{x>1(y). \
Subcase 1.3, d £ DXFL, d2 £ FI. By (18), <f(d2) = d),

(xy) = n(az) = d2) =v(d2) = pdlp(d) d =a = (3)2 =
(x) ().

Subcase 1A. d, d2 £ QEL. By (22), iKd2) = Ip(d)ip(d).
"(xy) =\(a2) = (d2) = <K®) Tp(d)ip(d) =d =a = (a)2 =
(x) (y)- /
Case 2. X=4a, yI a

Subcase 2.1. d,y,dy £ Fl. By d5),¥(dy) = W
n(xy) =n(ay) = (dy) = <f(dy) = Y(d)<p(y) = de ayd@
(a) (y) = (x) (y).

Subcase 2.2. d,y £ FL,dy £ D"FA By (19), = (y).
(xy) = f(ay) = (dy) = *Kdy) =+(d)f(y) =d'f(y) = f(y) -
n@)(y) = (x) (y).

Subcase 2.3, d,dy £ FLy £ DXFM. By (1s), Y(dy) = Y(dty (y),
B-(xy) = (ay) = ltdy) = Y(dy) =v(ayipty) =d wly) =a o =
n(@n(y) = (x) (y).

Subcase 2A. d £ DNFL,y,dy £ F*. By, fy), 'f(dy) = \p(d)y>(y)
(xy) = (ay) = (dy) =H(dy) =1p(d)y(y) d}@ a*f(y) =

(xy) = (ay) = (dy) ="(ay) = ) =d5(y) =ae) =
n_(@) (y) = (x)riy).

Subcase 2.6. d,dy £DELY £F . By (21), Ip(dy) = y(d)<f(y),
(xy) = _(ay) = (dy) = "(dy) Tw(d)tfy) = dtf(y) = aip(y) =
i@riy) = (x) (y).

(a) (y) = (x) (y). m
Subcase 2.5. dy £ D\me By (), H>(dy) =y(dfy(y)
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Subcase 2.7. d £ FL,y,dy e D" By (20), ty(dy) “yi(d)ip(y)
(xy) = "(ay) = (dy) = >Kdy) ="f(d)iKy) =d ‘fy] =a’fy) =

nfa)n_(y) = nEx)ri(y).

Subcase 2.8, d,y,dyf D& (22) - m
City) = (ay) = (dy) = Mdy) fmwp) 3 D) :
() ()= (x) (y)

Case 3. x 0 a, y=a

This proof is similar to Case 2. ( \
Case . X0 a yo0a, A\ G

. N s
By (9)- (16), we can show that .(xy) = (x) (y). R4

To prove (bv), let x,y& K Note that a +a = a or
ata=d+d
Case , x =y = a.
Subcase .. a+a=a Thenat+ta =a.
(xty) = (ata) = (3 =a a ¥a = (a) +p(@) =n(x) + (y).
Subcase 2. ata=d+d. Thena+a =d+d,.
If d£ F* then d +d £F* Thus Ti(xty) n(a+ta) =ip(d+d) = Y(d+d)
=Y(d) +'f(d) =d+d=ata = ()¢ X))+ (y).

(a) =
If d£ D'Fk thengdf df - ™ Thus (xty) = (ata) = (d+d) =
iKd+d) = ij(d) {@:dw =ata = () + (= (x)+ 1y
Case 2. X=1a, yO0 a

Subcase 2. . F*n Fp =0,

d

Subcase 2. .. y £FR. Then y £ D'FL and

l(y) - IKy)

n_(xty) = n(aty) =il(a) =a =a+'f(y) =.() +"(y) =.(x) +ri(y).
Subcase 2. .2. y £ D-FR, y £ FL« Then Y(y) = p (y)

If deF thend+y E£FN S n_(xty) =n_(aty) = TI(d+y) =
T(d+y) =f(d) +f(y) = d’+ ﬁ) =2t p(y) =nfe) +fy) =
(x) + )
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If d£ DSFM then d + yEDNFA Thus n_(xty) = n(aty) ="' (d+y) =
Mdty)  M%(d) t<ply)= d§ (y) catt ow(y) = (a) +v>(y) =
ti(x) + n(y).
Subcase 2.1,3. y ¢ DNFR1y £ D'FX* Then
i) = (Y],
If df FMthend +y £ DN?L* Ahus  (x+y)= n(aty) : r)(d+y) =
4(d+y) Ta%d) + tfy)= dltp (y)=a+ w(y) = () +ipcy -
tix) + (y).
If d£ D\FI then u(xty) =n(aty) : (d+y) = Ad+y) : Td + 1y
=d+n(y) ratw(y) =n@) )= (x) +ny).
Subcase 2.2. F 0 FRO 0.
Subcase 2.2.1. y £ FLa F . Then(y) =y (y)
and a :a+ Y(y)e
ri(ty) = Tlaty) @ n(a) ca ca+ Y(y) :n(a) +<f(y) =n(x) + (y).
Subcase 2.2.2. y<t F* O (D"Fp).
This proof is the same as the proof of Subcase 2.1.2.
Subcase 2.2.3. y£ (D'F) F.
This proof is the same as the proof of Subcase 2.1.1.
Subcase 2.2.b. y £ (D'F ) (D'Fjj).
This proof is the same as the proof of Subcase 2.1.3.
Case 3» X0 a, y =a.
Subcase 3.1. X £FN Thena ="(x) +a .
a (xty) = (x+a) :n(a) =a :f(x) +a p(x) +p(a) =n(x) + Ky
Subcase 3.2. XE£ DA Thus X + d £ D\F" and Ip(x) + al:

p(x) +d . If dE D' then r)(x+y) ; (x+a) (x+d) 4(x+d) =

4(x) +4(d) =bp(x)+ d'=bp(x) +a" :n(x) +a" = (x) + (a) :

(x) + (y). [If df Fi1then I|x+y) = (x+a ) = (x+d) : T|Ox+d) =li+
40x) + VRd) =4(x)+ d=r00 tat = (x) + (a) = (x) + (y).

Case b. X0 a, yo0 a
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Subcase *f,1. X+y £ F . Since F*is a filter in (D,4),
X,y £ Fl.

(x+y) 71 (x+y) k?) FYy) =0+ (y).
Subcase X +y e DSFM
Subcase 2.1, XE£ FT. Then y£ DSF- which is
an ideal of (D,+)/\
(xty) = p(xty) M)+ IKy) = (x) + ().
Subcase *t.2.2. Xe DFA
If y £FI then (x+y) =1lp(xty) bzp%(x) J;W)

11
—
>
~

-+
—_~~
<<
~—

If y £ D-FI then (xty) = <Kxty) = Mx) )
Hence is an isomorphism.

Remark » K=K may be defined hy

¢ (x) iIf x £ FY,
(x) :{w'(x) if XE F}R,
a if X=a
The proof is straighforward but very long.

11
—
>
~

-+
—
<<
~—

We shall now give an example where F* F* as additive
semigroups and D>F" - DM as additive semigroups but K” K.

Example 3.30. ( +1+*) is a ratio seminear-ring where + isdefined
by X +y =min {x,y} and « is the usual multiplication. Let d,

d £'7 Thend=rd whererf + Let 0= - =L (d)=

{x£ ''X kd} =HI +(d). Let F' = F' = LI +(d")={Xf 44X >2d"}

=(x £ IX> 2} =RI +(d1). It is clear that FL  and FL are

filters in ( ',min). : A

Define 'f  FE-2FM by M) = for all XE FA Then

is clearly a bisection. To.show that 'f is homomorphism, let
x,y £F . Wemay assume X >y, so X+y =y, Thus (x+y) = (y)
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= 2 2;( =T(x) +<f(y). Hence F =F as additive semigroups.
QMFA = {x £ "IX <d} and NFT ={ X£ X <"},

Thus 'hF* an™ g1 are  eals of +).
Define "NFj N EA by =" for all XE "

Using the same proof as was used for '+ we can show that
QmFA = ™FM as additive semigroups.
Let a and a be symbols not representing any element of

Sto ' {a} and + and + from + to

" Extend + and ¢ from
A | B )
(1) xa =xd and ax = dx for all x £ "" a* = d"
(2) x +a=a+x= afor all X£ F, X+a=X+d and
a+X d+Xforall X£ *F
(3) a+a=a and
a') yat=yd and a'y =d'y forall y£ T, " =
(2) yta =a+y=a forall yEFT, y+a =y+d
and a +y =d*+y for all y £ NF°,
(3 ) ata =a. .
By Theorem s.23, (' {a} ,+1’) and ('} {a'} 1+,7) are seminear-fields

and a and a are category VI special elements of '" {a} and

" (a }Lrespectively. We shall show that ' {a} » + (a}.
Suppose that '’ {a} = 7 (a}. Let ]be an isomorphism

from ' {a} to 7 {a} . By Theorem  3*28(1), () =a and

u(d) =d. Since d £F* d+a=a Thusa = (a) = (d+a) =
11(d) + Ti@ =d +a =d+d,a contradiction. Hence
v {are o {a}. ;
Now we shall compute all finite seminear-fields with
a category VI special element e
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At first, we shall compute all finite seminear-fields of
order 2. Let K= {a,e }be a seminear-field with a as a category VI
special element. Since {e} is a ratio seminear-ring, e +¢ = ¢e.
Nwat+ta=eora+a=a, ate=eorat+te=a ande+a-=e
or e +a=a So we have 8 cases to consider. They are

+ € d + ¢ d + ¢ a t+ € d

e e e e e e e e e e e d

d e e a e d d d e da ¢ e
(1) ) 8) (0

+ e d + 8 d S d + € a

e e d e e d e e e e e d

d d e d e d d d d da d d
(5 (6) (7 )

Kwith tables(3) and (*0 are not additive semigroups since
+ (ata) ¢ (ata) +a. And we can verify that Kwith tables (1),
2),(5),(6),(7) and (8) are additive semigroups. By defining
() =aand f(a) =e, we have that semigroup with table (2) is

isomorphic to semigroup with table (8). Therefore up to isomorphism

there are 5 seminear-field with a as a category VI special element.
Finally we shall compute all seminear-field of order

a
(
f(e

greater than 2.

Theorem 3»31. Let Kbe a finite seminear-field of order greater
than 2 and let a be category VI special element of K Let
D = Kv{a}, let e be the identity of (D,0 and let d be an element
of Dsuch that ax = dx and xa = xd for all X K Then

(1) X+a=X+d, a+X=d+Xforall XEDand a +a
or (2) X+a=X+d 3+X d+Xforall XEDand a +a
or 3) X+ta=a a+X=d+Xforall XE£Dand a +a =a or

11 11
o QD
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(") x+a=x+d, a+x=a forall Xt Danda +a = a.

Proof. By Theorem3*12, D is a ratio seminear-ring. By Theorem 1.15,
={xE£DX+e=x} and = {x £ d|x +e=e} are the unique ratio
subseminear-rings of  such that (1) X +y = X for all x,y £ DL, (2)
x + y=yforallxy £ 32, (3)(D,+) = ( 1+ x ( 21+)and (if)
2+ Da=1le}* [Itis clear that j» = LIpCe) and so 2* d = Llp(e) * d
= LIp(d) by Proposition 1.26 (if.1). Claim that y» = Rlp(e). Let
Xeo . Then X1+e =X . Multiply on the right by X we obtain
that e + x e. Hence X £ Rlp(e). Therefore Diq: Rlp(e). Let
y£ Rl (e). Thene +y =e, soy 1 ey 1 = (ety)y 1 = ey +yyl
=y e Thus y”g j2. Since (DA,) is a group, y£ . Hence
Plp(e) D . Therefore 1 =RIp(e). By Proposition 1.26 (if.2),
HID(d) = RID(e) + d = DI1. d.
Llet = (x£f [X+a=aad 2=(x Dla+X=a. By
Proposition s.21 (1), ~ C LI (d) and RGC Rlp(d).
Claim that (1) if “is nonempty then ~

R d,
(2) if Sgis nonempty then 2 = DI« d.

To prove claim (1), assume that * is nonempty. To show
that ) dc. Lllet XE£ )y d. Then xd 2. Since L0 O,
there exists an element y in A Thus y +a=a, so e =dd = 3d
= (y+a)d *=vyd M+ ad A =yd*+dd *=yd "™ e Hence yd £ ).
Now xd-,1+ yd-'1 =yd-’1. Multiply this equation by d, we obtain that
X+y=ye . Since Lis a filter inw. +), x£ " Hence
2+ d £ A Therefore k= )y d

The proof of claim (2) is similar to the proof of claim (1).

Consider 1 and .
Case 1. D 0 (e), » 0 (e). Claim that L= R=0.

Suppose that ~ is a filter in (D,+). Then, by Claim (1),

v d. Let dlf D1 {e}, d2£ D2N{e}. Then (dld +d2d) +d
=dM + (d*d +d) = dMd + (d2+ e)d =dMd +ed = (d"+ e)d = dd  0d



115

(since if d™ = d then d* =e, a contradiction). Hence
dd + dpd ¢ Llp(d) = Dp* d. Nov/ dp* d £ Dp* d. dpd + (d*d + dpd)
= (dpd + d™d) + dpd = (dp+ d™)d + dpd = ed + dpd = (¢ + dp)d =
dpd £ Dp* d = ™ Since Sp is a filter in (D,+), d*d + dpdf " =
Dp* d contradicting the fact that d*d + dpd« Dp* d. Hence Sp = 0.

Similarly, if Sp is a filter in (D,+) then we get a
contradiction. Hence Sp =0. Therefore x+a=x+d, a+x=d+X
for all x£ D. ByTheorem 3*1* (2), vle obtain the a+a=a or
at+a= d+ d=d Hence we get (1) and (2).
Case 2. D" = {e},Dp 0 {e}. Claim that (s) Sp =0,(*0 Sp =10 or
L - D

To prove claim (s)1 suppose that Sp is a filter in (D,+).
By Claim (1), Sp = DM d ={e} «d={d}. Let dp £ ON{e} Then
dpt e = e, so dpd +d=d£DA*d= 2 Since Sp is a filter in
(D,+), dpd =d. It follows that dp = e, a contradiction. Hence
SR =

To prove claim (*+), suppose that Sp 0 0. Then Sp is a
filter in (p,+). To shov/ that Sp =D, let Xe D. Then xd £ D
Since (D,+) = (DM +) X (Dp,t), there exists an element dp in Dp
such that xd »~ = e +dp. Thus xd ~= e + dp = dpe Dp, so
x = dpd £ Dp* d. Let y£ Sp.  Since Spo Llp(d) = Dp* d, y = dp* d

for some dp £ Dp. Thus x +y = dpd + dpd= (dp+dp)d = dpd =

y £ . Since Spis a filter in (D, +), x£ Sp. Hence D = Sp.
Therefore Sp =0 or Sp =D. If Sp =Sp = 0then we obtain ( )or
(2). If Sp=Dand Sp =0 then x +a=aanda+x =d+x for all
x £ D. By Proposition 3*22 (2), we get that a +a =a. Hence we
obtain (s3)*

Case 3. DL 0 {e}, Dp = (e).



Using a proof similar to the one in Case 2, we can show
that ~ =9 and ( =0 or Sg = D).

If A= £ =0 then we obtain (1) or (2). If ~ =0 and
AN=Dthen Xta=X+dand a+X=afor all x £D. By
Proposition 3»p2 ( ), we get that a +a =a. Hence we obtain (4).
Case v. Dl= ={e}. Since (D,+) = (DMN+) ( 2>t), D= {e}.
Hence Ik| =2. This is a contradiction. Therefore this case
cannot occur.
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