CHAPTER III

GENERALIZED SEMINEAR-FIELDS

In this chapter we shall generalize the concept of a seminear-field by giving a new definition which contains

J. Hattakosol's definition as a special case.

<u>Definition 3.1.</u> A seminear-ring $(K,+,\cdot)$ is said to be a generalized seminear-field iff there exists an element a in K such that $(K\setminus\{a\},\cdot)$ is a group. Such an element a is called a special element of K.

Clearly a seminear-field is a generalized seminear-field therefore every example of a seminear-field given in chapter I and II is an example of generalized seminear-fields.

Example 3.2. Let (G, \cdot) be a group and let $d \in G$. Let a be a symbol not representing any element of G. Let $K = G \cup \{a\}$. Define + on K and extend \cdot to K by $a \cdot x = d \cdot x$ and $x \cdot a = x \cdot d$ for all $x \in G$, $a^2 = d$ and either

- (1) x + y = y for all $x, y \in K$ or
- (2) x + y = x for all $x, y \in K$.

It is easy to show that (K,+,.) is a seminear-field.

Example 3.3. Let $K = \{a,e\}$. Define + and • on K by

	•	е	а		+	е	а
_	е	е	а	and	е	е	а
	a	а	е	_	а	е	а

Then (K,+,.) is a generalized seminear-field.

Example 3.4. Let D be a ratio seminear-ring. Let a be a symbol not representing any element of D and d ϵ D. Extend + and • from D to D U {a} by

- (1) ax = dx and xa = xd for all $x \in D$, $a^2 = d^2$,
- (2) a + x = d + x and x + a = x + d for all $x \in D$ and
- (3) a + a = d + d.

It is easy to check that D $\bigcup \{a\}$ is a generalized seminear-field.

From now on the word "seminear-field" will mean a generalized seminear-field.

Theorem 3.5. Let K be a seminear-field with a as a special element. Then exactly one of the following statements hold:

- (1) ax = xa = a for all $x \in K$.
- (2) ax = xa = x for all $x \in K$.
- (3) ax = a and xa = x for all $x \in K$.
- (4) ax = x and xa = a for all $x \in K$.
- (5) $a^2 \neq a$ and ae = ea = a.
- (6) $a^2 \neq a$ and $ae = ea \neq a$ where e is the identity of $(K \setminus \{a\}, \cdot)$.

Proof. Consider a².

Case 1. $a^2 = a$. By Theorem 1.29, we obtain (1) - (4).

Case 2. $a^2 \neq a$. Consider $a \in and ea$.

Subcase 2.1. ae = ea = a. Then we obtain (5).

Subcase 2.2. ae = a and $ea \neq a$. Claim that ax = a for all $x \in K \setminus \{a\}$ and ea = e. Let $x \in K \setminus \{a\}$. Then $a = ae = a(xx^{-1}) = (ax)x^{-1}$. If $ax \neq a$ then $(ax)x^{-1} \in K \setminus \{a\}$ which is a group. This is a contradiction. Hence ax = a for all $x \in K \setminus \{a\}$.

Since ea \neq a, there is a y \in K\{a\} such that (ea)y = e. So e = e(ay) = ea. Now a² = (ae)a = a(ea) = ae = a. Contradicting the fact that a² \neq a. Hence this case cannot occur.

Subcase 2.3. ae \neq a and ea = a. Using a proof similar to the proof of Subcase 2.2, we can show that this case cannot occur.

Subcase 2.4. ae \neq a and ea \neq a. Then ae = e(ae) = (ea)e = ea. Hence we obtain (6).

From Theorem 3.5 we see that there are 6 types of special elements in a seminear-field and we call a special element satisfying (1),(2),(3),(4),(5) or (6) a category I,II,III,IV,V or VI special element respectively.

Note that Example 3.3 is a seminear-field with a category V special element and Example 3.2 and 3.4 are seminear-fields with a as a category VI special element.

In this chapter we shall only study seminear-fields with category V and VI special elements because seminear-fields with category I,II,III and IV special elements were studied already in [1] and Chapter 2.

Theorem 3.6. If K is a seminear-field with a category V special element then |K| = 2.

<u>Proof.</u> Let K be a seminear-field with a as a category V special element and let e be the identity of $(K \setminus \{a\}, \cdot)$. Claim that ax = a for all $x \in K \setminus \{a\}$. Let $x \in K \setminus \{a\}$. Then $a = a = ae = a(xx^{-1})$ = $(ax)x^{-1}$. If $ax \neq a$ then $(ax)x^{-1} \in K \setminus \{a\}$ which is a group. This is a contradiction. Hence ax = a for all $x \in K \setminus \{a\}$. Since $a^2 \neq a$, there is a $y \in K \setminus \{a\}$ such that $a^2y = e$. So $e = a^2y = a^2$

 $a(ay) = a^2$. Hence $a^2 = e$. Suppose that |K| > 2. Let $z \in K \setminus \{a,e\}$. Then $z = ez = a^2z = a(az) = a^2 = e$, a contradiction. Hence |K| = 2.

Remark: A seminear-field with a category V special element is a ratio seminear-ring. Now we shall find, up to isomorphism, all seminear-fields K with a category V special elementa. By Theorem 3.6, $K = \{a,e\}$. Claim that e + e = a or a + a = a. If $e + e \neq a$ then e + e = e. Thus a + a = ea + ea = (e+e)a = ea = a.

Case 1. e + e = a. Then $a + a = ea + ea = (e+e)a = a^2 = e$ since $a^2 \neq a$. e + a = e + (e+e) = (e+e) + e = a + e. Hence e + a = a or e + a = e. So we have 2 tables.

Case 2. a + a = a. Then a = a + a = ea + ea = (e+e)a. If e + e = a then $a = (e+e)a = a^2 = e$, a contradiction. Hence e + e = e. If e + a = a then $a + e = ea + a^2 = (e+a)a = a^2 = e$. If e + a = e then $a + e = ea + a^2 = (e+a)a = ea = a$. So we have 2 tables.

It is easy to verify that (1),(2),(3) and (4) are tables of semigroups under addition. By defining f(e) = a and f(a) = e, we have that semigroups defined by (1) and (2) are isomorphic. Therefore, up to isomorphism, there are 3 seminear-fields containing a category special element.

Remark 3.7. Let $K = \{a,e\}$ with stucture

	10	е	a		+	е	а
_	е	е	а	and	е	е	a
	а	а	а		а	е	a

Then $(K,+,\cdot)$ is a seminear-field with a as a category I special element. And note that $(K,+,\cdot)$ is a seminear-field with e as a category II special element. In this case we see that there does not exist a unique special element of K. However, if |K| > 2, we do get uniqueness as the following theorem shows.

Theorem 3.8. If K is a seminear-field of order greater than 2 then there exists a unique special element of K.

<u>Proof.</u> Assume that K is a seminear-field with |K| > 2 and let a and a be special elements of K. We must show that a = a. Suppose that $a \neq a$. Let e be the identity of $(K \setminus \{a\}, \cdot)$ and e the identity of $(K \setminus \{a\}, \cdot)$

Case 1. $a^2 = a$. Since $a^2 = a \in K \setminus \{a'\}$, a = e'. Let $x \in K \setminus \{a,a'\}$. Then there is a $y \in K \setminus \{a'\}$ such that xy = e' = a. If y = a then x = xe' = xa = xy = e' = a, a contradiction. Hence $y \neq a$, so we have $x \neq a$, $y \neq a$ and xy = a. This contradicts the fact that $(K \setminus \{a\}, \cdot)$ is a group.

Case 2. $a^2 \neq a$. Since $a^2 \neq a$ and $(K \setminus \{a\}, \cdot)$ is a group, e is the only multiplicative idempotent of K. Since $e^2 = e^2$, $e^2 = e^2$. Thus $a = ae^2 = ae$ and $a = e^2 = ea$. Hence K is a seminear-field with a as a category V seminear-field. By Theorem 3.6, |K| = 2, a contradiction. Therefore $a = a^2$.

Remark 3.9. Let K be a seminear-field. Then the following statements hold:

- (1) If there are elements a and b in K such that a and b are category V special elements of K then a = b.
- (2) If there are elements a and b in K such that a and b are category VI special elements of K then a = b.

<u>Proof.</u> (1) By Theorem 3.6, |K| = 2. Let $K = \{a,b\}$. Since $a^2 \neq a$ and $b^2 \neq b$, $(K \setminus \{a\}, \cdot)$ is not a group, a contradiction.

(2) If |K| > 2 then, by Theorem 3.8, we obtain (4). If |K| = 2 then use the same proof as in (1).

Remark 3.10. Let $K = \{a,e\}$ with structure :

	•	е	а		+	е	а	
(1)	е	е	а	and	е	е	a	or
-	а	е	a		а	е	а	•
_	•	е	а		+	e	а	
(2)	е	е	е	and	е	е	е	
	а	а	а	•	а	a	a	•

Then K with structure (1) is a seminear-field with a and e as category III special elements. K with structure(2) is a seminear-field with a and e as category IV special elements. Hence category III and IV special elements are never unique.

We shall now study seminear-fields with a category VI special element.

Theorem 3.11. Let K be a seminear-field with a as a special element. Then a is a category VI special element of K if and only if there exists a unique element d in K\{a} such that ax = dx and xa = xd for all $x \in K$.

Proof. Let e be the identity of (K\{a},.). Assume that a is

a category VI special element of K. Let d = ae = ea. Let x be any element of K. If x = a then $ax = a^2 = ea^2 = (ea)a = da$. If $x \neq a$ then ax = a(ex) = (ae)x = dx. Hence ax = dx. Similarly, we can show that xa = xd. Therefore ax = dx and xa = xd for all $x \in K$. To show uniqueness, let $d \in K \setminus \{a\}$ be such that $ax = d \in A$ and ax = xd for all $ax \in A$. Then ax = ax

Conversely, assume that there exists a unique element d in K $\{a\}$ such that ax = dx and xa = xd for all $x \in K$. Then $a^2 = ad = d^2 \neq a$, ae = de = d and ea = ed = d, so a is a category VI special element of K.

#

Theorem 3.12. Let $(K,+,\cdot)$ be a seminear-field with a as a category VI special element. Then $(K\setminus\{a\},+,\cdot)$ is a ratio seminear-ring.

<u>Proof.</u> Let e denote the identity of $(K\setminus\{a\}, \cdot)$. Then $ae = ea \neq a$. To show that $(K\setminus\{a\}, +, \cdot)$ is a ratio seminear-ring, it is sufficient to show that $x + y \in K\setminus\{a\}$ for all $x,y \in K\setminus\{a\}$. Let $x,y \in K\setminus\{a\}$. Suppose x + y = a. Then a = x + y = xe + ye = (x+y)e = ae, a contradiction. Hence $x + y \in K\setminus\{a\}$.

Theorem 3.12 indicates that every seminear-field with a category VI special element comes from a ratio seminear-ring by adding an element.

Remark 3.13. Let K be a seminear-field with a as a category VI special element. Then $xy \neq a$ for all $x,y \in K$.

<u>Proof.</u> Let e denote the identity of $(K \setminus \{a\}, \cdot)$. By assumption, $a^2 \neq a$, $ae = ea \neq a$. Let $x, y \in K$. If $x \neq a$ and y = a then $xy = xa = (xe)a = x(ea) \neq a$ since x, $ea \in K \setminus \{a\}$ which is a group. Similarly, if x = a and $y \neq a$ then $xy \neq a$.

Theorem 3.14. Let K be a seminear-field with a as a category VI special element and let $d \in K \setminus \{a\}$ be such that ax = dx and xa = xd for all $x \in K$. Then the following statements hold:

- (1) If a + a = a then (K, +) is a band.
- (2) If $a + a \neq a$ then a + a = d + d.
- (3) For all $x,y \in K \setminus \{a\}$, x + x = y + y if and only if x = y.
 - (4) For all $x \in K \setminus \{a\}$, x + a = a or x + a = x + d.
 - (5) For all $x \in K \setminus \{a\}$, a + x = a or a + x = d + x.
- <u>Proof.</u> (1) Assume that a + a = a. Let $x \in K \setminus \{a\}$. Then $x + x = ex + ex = d(d^{-1}x) + d(d^{-1}x) = a(d^{-1}x) + a(d^{-1}x) = (a+a)d^{-1}x = ad^{-1}x = d(d^{-1}x) = x$. Hence (K,+) is a band.
- (2) Assume that $a + a \neq a$. Then a + a = (a+a)e = ae + ae = de + de = d + d.
- (3) Let $x,y \in K\setminus\{a\}$ be such that x + x = y + y. By Theorem 3.12, $(K\setminus\{a\},+)$ is a semigroup. So $x + x \in K\setminus\{a\}$. Thus (e+e)x = x + x = y + y = (e+e)y. Since $e + e \neq a$ and $(K\setminus\{a\},\cdot)$ is a group, it follows that x = y.
- (4) Let $x \in K \setminus \{a\}$. Suppose that $x + a \neq a$. Then x + a = (x+a)e = xe + ae = x + de = x + d.
 - (5) The proof of (5) is similar to the proof of (4).

Proposition 3.15. If K is a seminear-field of order greater than 2 with a category VI special element then K contains no additive zero.

<u>Proof.</u> Let a be a category VI special element of K and let e be the identity of $(K\setminus\{a\},\cdot)$. By Theorem 3.12 and Proposition 1.19, $K\setminus\{a\}$ contains no additive zero. It follows that for any $x\in K\setminus\{a\}$,

x is not an additive zero of K. Suppose that a is an additive zero of K. Then a + x = x + a = a for all $x \in K$. Since a is a category VI special element, there exists a unique element d in $K \setminus \{a\}$ such that ax = dx and xa = xd for $x \notin K$. Claim that x + e = e + x = e for all $x \in K \setminus \{a\}$. Let $x \in K \setminus \{a\}$. Then a + xd = xd + a = a. Thus $e = dd^{-1} = ad^{-1} = (a+xd)d^{-1} = ad^{-1} + x = dd^{-1} + x = e + x$. Similarly, e = x + e. Hence x + e = e + x = e for all $x \in K \setminus \{a\}$. By Corollary 1.20, $|K \setminus \{a\}| = 1$. Thus |K| = 2, a contradiction. Hence K contains no additive zero.

Proposition 3.16. If K is a seminear-field of order greater than 2 with a category VI special element then K contains no additive identity.

Theorem 3.17. Let K be a seminear-field with a as a category VI Special element. Then the following statements hold:

- (1) If K is L.A.C. then x + y = y for all $x, y \in K\setminus\{a\}$.
- (2) If K is R.A.C. then x + y = y for all $x, y \in K \setminus \{a\}$.
- (3) If a + a = a then the following statements hold: (3.1) K is L.A.C. if and only if x + y = y for all $x,y \in K$.
- (3.2) K is R.A.C. if and only if x + y = x for all $x,y \in K$.
 - (3.3) K cannot be A.C.

<u>Proof.</u> Let e be the identity of $(K\setminus\{a\}, \cdot)$ and let d be the unique element in $K\setminus\{a\}$ such that ax = dx and xa = xd for all $x \in K$.

(1) Assume that K is L.A.C. Claim that z + a = a for all $z \in K\setminus\{a\}$. Let $z \in K\setminus\{a\}$. If $z + a \neq a$ then by Theorem 3.14 (4), z + a = z + d and so a = d, a contradiction. Hence z + a = a for all $z \in K\setminus\{a\}$. Let $x,y \in K\setminus\{a\}$. Then $xy^{-1}d + a = a$, so $y = d(d^{-1}y) = a(d^{-1}y) = (xy^{-1}d + a)d^{-1}y = x + ad^{-1}y = x + d(d^{-1}y)$ = x + y. Hence x + y = y for all $x,y \in K\setminus\{a\}$.

The proof of (2) is similar to the proof of (1).

(3) Assume that a + a = a.

(3.1) Assume that K is L.A.C. Let $x,y \in K$.

Case 1. x = y = a. Then x + y = a + a = a = y.

Case 2. $x \neq a$, y = a. In the proof of (1), we showed that z + a = a for all $z \in K \setminus \{a\}$. Thus x + y = x + a = a = y.

Case 3. x = a, $y \neq a$. By (1), d + y = y. If a + y = a then a + y = a + a. Thus y = a, a contradiction. Hence a + y = d + y = y. Therefore x + y = a + y = d + y = y.

Case 4. $x \neq a, y \neq a$. By (1), x + y = y.

Hence x + y = y for all $x, y \in K$.

The converse is obvious.

The proof of (3.2) is similar to the proof of (3.1).

(3.3) Suppose that K is A.C. Thus K is L.A.C. In the proof of (1), we showed that z + a = a for all $z \in K \setminus \{a\}$. Now d + a = a. a + a = a = d + a. Since K is R.A.C., a = d, a contradiction. Hence K is not A.C.

#

Note that Example 3.2 (1) is L.A.C. and Example 3.2 (2) is R.A.C.

Theorem 3.18. Let K be a seminear-field with a as a category VI special element and let e be the identity of $(K\setminus\{a\}, \cdot)$. Then K is A.C. if and only if $K = \{a,e\}$ with the structure

•	е	a		+	е	а	_
е	е	е	and	е	е	а	4
a	е	е		а	a	е	

<u>Proof.</u> Let d be the unique element in $K\setminus\{a\}$ such that ax = dx and xa = xd for all $x \in K$.

Assume that K is A.C. Claim that a + x = x + a = a for all $x \in K \setminus \{a\}$. Let $x \in K \setminus \{a\}$. If a + x = d + x then a = d. a contradiction. Thus a + x = a. Similarly we can show that x + a = a. Claim that y + e = e + y = e for all $y \in K \setminus \{a\}$. Let $y \in K \setminus \{a\}$. Then a + yd = yd + a = a. Multiply this equation on the right by d^{-1} we get that e + y = y + e = e. By Theorem 3.12 and Corollary 1.20, we obtain $|K \setminus \{a\}| = 1$. Hence |K| = 2. Consequently d = e. By Theorem 3.17 (3), a + a = d + d = e + e = e. Therefore we have the above structure.

Conversely, it is straightforward to check that the above seminear-field is A.C.

Definition 3.19. Let K be a (generalized) seminear-field with a as a special element. Let $D = K \setminus \{a\}$. Then $\{x \in D \mid x + a = a\}$ ($\{x \in D \mid a + x = a\}$) is called the <u>left (right) fundamental set</u> of a in K. The set $\{x \in D \mid x + a = a + x = a\}$ is called the <u>fundamental set of a in K</u>. If a is a category VI special element of K then we shall always denote the left (right) fundamental set of a in K by S_L (S_R). The fundamental set of a in K is denoted by S.

<u>Proposition 3.20</u>. Let K be a seminear-field with a as a category VI special element and $D = K \setminus \{a\}$.

- (1) If $y \in D^{S_1}$ then y is not L.A.C.
- (2) If $y \in D \setminus S_R$ then y is not R.A.C.

 (Therefore if $y \in D \setminus S$ then y is not A.C.)

<u>Proof.</u> Let $d \in K \setminus \{a\}$ be such that ax = dx and xa = xd for all $x \in K$.

- (1) If $y \in D^S_T$ then y + a = y + d. Since $a \neq d$, y is not L.A.C.
- (2) If $y \in D \setminus S_R$ then a + y = d + y. Since $a \neq d$, y is not R.A.C.

<u>Proposition 3.21.</u> Let K be a seminear-field with a as a category

VI special element, $D = K \setminus \{a\}$ and let $d \in D$ be such that ax = dx and xa = xdfor all $x \notin K$. Then the following statements hold:

- (1) $S_{\underline{I}} \subseteq LI_{\underline{D}}(d)$ and $S_{\underline{R}} \subseteq RI_{\underline{D}}(d)$. (Therefore $S \subseteq I_{\underline{D}}(d)$.)
- (2) $S_L = \emptyset$ or S_L is a filter in (D,+). (Hence D\S_L = \emptyset or D\S_1 is a completely prime ideal of (D,+).)
- (3) $S_R = \emptyset$ or S_R is a filter in (D,+). (Hence D\S_R = \emptyset or D\S_p is a completely prime ideal of (D,+).)
- (4) $S = \emptyset$ or S is a filter in (D,+). (Hence D\S = \emptyset or D\S is a completely prime ideal of (D,+).)

- (5) If $d \in S_L$ then $S_L = LI_D(d)$.
- (6) If $d \in S_R$ then $S_R = RI_D(d)$.

 (Therefore if $d \in S$ then $S = I_D(d)$.)

Proof. Let e be the identity of (D,.).

- (1) To show that $S_L \subseteq LI_D(d)$, let $x \in S_L$. Then x + a = a. Multiply on the right by e, we obtain that x + d = d. Thus $x \in LI_D(d)$. Hence $S_L \subseteq LI_D(d)$. Similarly, we can show that $S_p \subseteq RI_D(d)$.
- (2) Suppose that $S_L \neq \emptyset$. To show that S_L is a filter in (D,+), let $x,y \in D$. Assume that $x,y \in S_L$. Then x+a=y+a=a, so (x+y)+a=x+(y+a)=x+a=a. Thus $x+y \in S_L$. Conversely, assume that $x+y \in S_L$. Then (x+y)+a=a. If $y+a \neq a$ then $x+(y+a) \in D$ which is an additive semigroup. This is a contradiction. Thus y+a=a. Consequently x+a=a. Hence S_L is a filter in (D,+).

The proofs of (3) and (4) are similar to the proof of (2).

(5) Assume that $d \in S_L$. Then d + a = a. By (1), it suffices to show that $LI_D(d) \subseteq S_L$. Let $y \in LI_D(d)$. Then y + d = d, so y + a = y + (d+a) = (y+d) + a = d + a = a. Hence $y \in S_L$. Therefore $LI_D(d) \subseteq S_L$.

The proof of (6) is similar to the proof of (5).

<u>Proposition 3.22</u>. Let K be a seminear-field with a as a category VI special element, $D = K \setminus \{a\}$ and $d \in D$ such that ax = dx and xa = xd for all $x \in K$.

- (1) If $S_L = \emptyset$ and S_R is a filter in (D,+) then d \in S_R iff a+a=a.
- (2) If $\mathbf{S_R} = \emptyset$ and $\mathbf{S_L}$ is a filter in (D,+) then d ϵ $\mathbf{S_L}$ iff a + a = a.

- (3) If $\emptyset \neq S_R \subset D$ and $S_L \subset S_R$ then $d \in S_R$ iff a + a = a.
- (4) If $\emptyset \neq S_L \subset D$ and $S_R \subset S_L$ then $d \in S_L$ iff a + a = a.
- (5) If $S_L \not \in S_R$ and $S_R \not \in S_L$ then a + a = d + d.

<u>Proof.</u> (1) Assume that $S_L = \emptyset$ and S_R is a filter in (D,+). Suppose that $d \in S_R$. Then d = d + d and a + d = a. Since $S_L = \emptyset$, d + a = d + d = d. Thus a + a = (a+d) + a = a + (d+a) = a + d = a. Hence a + a = a.

Conversely, assume that a+a=a. If $S_R=D$ then $d \in S_R$. Suppose that $S_R \subset D$. To show that $d \in S_R$, suppose that $d \in D \setminus S_R$. Then $a+d \neq a$, so a+d=d+d. Let $x \in S_R$. Then a+x=a and x+a=x+d. Thus a=a+a=(a+x)+a=a+(x+a)=a+(x+d)=(a+x)+d=a+d=d+d, a contradiction. Hence $d \in S_R$.

(3) Assume that $\emptyset \neq S_R \subset D$ and $S_L \subset S_R$. Suppose that $d \in S_R$. Then a + d = a. Let $x \in S_R \setminus S_L$. Then a + x = a and

The proof of (2) is similar to the proof of (1).

x + a = x + d. Thus a + a = (a+x) + a = a + (x+a) = a + (x+d) =

(a+x) + d = a + d = a.

Conversly, assume that $d \in D \setminus S_R$. Then a+d=d+d. To show that $a+a \neq a$, let $y \in S_R \setminus S_L$. Then a+y=a and y+a=y+d. Thus a+a=(a+y)+a=a+(y+a)=a+(y+d)=(a+y)+d = $a+d=d+d\neq a$. Hence if a+a=a then $d \in S_R$.

The proof of (4) is similar to the proof of (3).

(5) Assume that $S_L \not \in S_R$ and $S_R \not \in S_L$. To show that a+a=d+d. Claim that a+d=d+d. Since $S_L \not \in S_R$, there is an element x in $S_L S_R$. Thus x+a=a and a+x=d+x. Since $S_L \subseteq LI_D(d)$, x+d=d. Thus a+d=a+(x+d)=(a+x)+d=(d+x)+d=d+(x+d)=d+d. Since $S_R \not \in S_L$, there is an element y in $S_R S_L$. Then a+y=a and y+a=y+d. Since

 $S_R \subseteq RI_D(d)$, d + y = d. So a + a = (a+y) + a = a + (y+a) = aa + (y+d) = (a+y) + d = a + d = d + d.

Theorem 3.23. Let D be a ratio seminear-ring. Let a be a symbol not representing any element of D and let d ϵ D. Let $F_{T_i} \subseteq LI_D(d)$ be either \emptyset or a filter in (D,+) and let $F_R \subseteq RI_D(d)$ be either \emptyset or a filter in (D,+). Then the binary operations on D can be extended to $K = D \cup \{a\}$ in such a way that the following properties hold:

- (1) K is a seminear-field containing a as a category VI special element.
- (2) F_{I} is the left fundamental set of a in K and F_{R} is the right fundamental set of a in K.
 - (3) If (D,+) is not a band then a + a = d + d.

(4) If (D,+) is a band then or d if $F_L = F_R = \emptyset$, $\begin{cases} a \text{ or d if } F_L = F_R = \emptyset, \\ a & \text{ if } F_L = \emptyset, \ F_R = D \text{ (in this case } (D,+) \text{ is a} \\ & \text{ right zero semigroup.)}, \\ a & \text{ if } F_L = \emptyset, \ \emptyset \neq F_R \subset D, \ d \in F_R, \\ d & \text{ if } F_L = \emptyset, \ \emptyset \neq F_R \subset D, \ d \in D \cap F_R, \\ a \text{ or d if } F_L = F_R = D \text{ (in this case } D = \{e\}), \\ a & \text{ if } F_L = D, \ F_R = \emptyset \text{ (in this case } (D,+) \text{ is a left } \\ & \text{ zero semigroup.)}, \\ a & \text{ if } \emptyset \neq F_L \subset D, \ d \in F_L, \ F_R = \emptyset, \\ d & \text{ if } \emptyset \neq F_L \subset D, \ d \in D \cap F_T, \ F_D = \emptyset, \end{cases}$ d if $\emptyset \neq F_L \subset D$, de $D \setminus F_L$, $F_R = \emptyset$, a or d if $\emptyset \neq F_L \subset D$, $F_L = F_R$, a if $\emptyset \neq F_L \subset D$, $\emptyset \neq F_R \subset D$, (either $F_L \subset F_R$, $d \in F_R$ or $F_R \subset F_L$, $d \in F_L$),
d if $\emptyset \neq F_L \subset D$, $\emptyset \neq F_R \subset D$, (either $F_L \subset F_R$, $d \in D \cap F_R$ or $F_R \subset F_L$, $d \in D \cap F_L$),

if $F_L \not = F_R$, $F_R \not = F_T$.

Furthermore, any extension of addition on D to K such that (1) and (2) hold must be as given above.

<u>Proof.</u> Suppose that $F_L = F_R = \emptyset$. Extend + and • from D to K by

(1)
$$xa = xd$$
 and $ax = dx$ for all $x \in D$, $a^2 = d^2$,

(2)
$$x + a = x + d$$
 and $a + x = d + x$ for all $x \in D$ and

(3)
$$a + a = \begin{cases} a \text{ or d if } (D,+) \text{ is a band,} \\ d + d \text{ if } (D,+) \text{ is not a band.} \end{cases}$$

To show that K is a seminear-field, we must show that (a_1) x(yz) = (xy)z for all $x,y,z \in K$, $(b_1) x + (y+z) = (x+y) + z$ for all $x,y,z \in K$ and $(c_3) (x+y)z = xz + yz$ for all $x,y,z \in K$. To prove (a_1) , let $x,y,z \in K$.

Case 1. x = y = z = a.

$$x(yz) = a(a^2) = ad^2 = dd^2 = d^2d = d^2a = a^2a = (xy)z.$$

Case 2.
$$x = y = a, z \neq a$$
.

$$x(yz) = a(az) = a(dz) = d(dz) = d^2z = a^2z = (xy)z$$
.

Case 3.
$$x = z = a$$
, $y \neq a$.

$$x(yz) = a(ya) = a(yd) = d(yd) = (dy)d = (dy)a = (ay)a = (xy)z$$

Case 4.
$$x \neq a$$
, $y = z = a$.

$$x(yz) = x(a^2) = xd^2 = (xd)d = (xd)a = (xa)a = (xy)z.$$

Case 5.
$$x \neq a, y \neq a, z = a$$
.

$$x(yz) = x(ya) = x(yd) = (xy)d = (xy)a = (xy)z.$$

Case 6.
$$x \neq a$$
, $y = a$, $z \neq a$.

$$x(yz) = x(az) = x(dz) = (xd)z = (xa)z = (xy)z.$$

Case 7.
$$x = a, y \neq a, z \neq a$$
.

$$x(yz) = a(yz) = d(yz) = (dy)z = (ay)z = (xy)z.$$

Case 8.
$$x \neq a, y \neq a, z \neq a$$
.

$$x(yz) = (xy)z$$

To prove (b_1) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a

Subcase 1.1. a + a = a.

x + (y+z) = a + (a+a) = a + a = (a+a) + a = (x+y) + z.

Subcase 1.2. a + a = d.

x + (y+z) = a + (a+a) = a + d = d + d = d + a = (a+a) + a = (x+y) + z.

Subcase 1.3. a + a = d + d.

x + (y+z) = a + (a+a) = a + (d+d) = d + (d+d) = (d+d) + a =

(d+d) + a = (a+a) + a = (x+y) + z.

Case 2. x = y = a, $z \neq a$.

Subcase 2.1. a + a = a. Then (D,+) is a band.

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z,

(x+y) + z = (a+a) + z = a + z = d + z.

Subcase 2.2. a + a = d. Then (D,+) is a band.

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z

(x+y) + z = (a+a) + z = d + z.

Subcase 2.3. a + a = d + d.

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z =

(a+a) + z = (x+y) + z.

Case 3. x = z = a, $y \neq a$.

x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d =

(d+y) + a = (a+y) + a = (x+y) + z.

Case 4. $x \neq a$, y = z = a.

This proof is similar to the proof of Case 2.

Case 5. $x \neq a, y \neq a, z = a$.

x + (y+z) = x + (y+a) = x + (y+d) = (x+y) + d = (x+y) + a =

(x+y) + z.

Case 6. $x \neq a$, y = a, $z \neq a$.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

Case 7. $x = a, y \neq a, z \neq a$.

x + (y+z) = a + (y+z) = d + (y+z) = (d+y) + z = (a+y) + z = (x+y) + z.

Case 8. $x \neq a, y \neq a, z \neq a$.

x + (y+z) = (x+y) + z.

To prove (c_1), let $x,y,z \in K$.

Case 1. x = y = z = a.

Subcase 1.1. a + a = a. Then (D,+) is a band.

 $(x+y)z = (a+a)a = a^2 = d^2 = d^2 + d^2 = a^2 + a^2 = xz + yz$.

Subcase 1.2. a + a = d. Then (D,+) is a band.

 $(x+y)z = (a+a)a = da = d^2 = d^2 + d^2 = a^2 + a^2 = xz + yz.$

Subcase 1.3. a + a = d + d.

 $(x+y)z = (a+a)a = (d+d)a = (d+d)d = d^2 + d^2 = a^2 + a^2 = xz + yz$

Case 2. x = y = a, $z \neq a$.

Subcase 2.1. a + a = a. Then (D,+) is a band.

 $(x+y)_z = (a+a)_z = az = dz = dz + dz = az + az = xz + yz$.

Subcase 2.2. a + a = d. Then (D,+) is a band.

(x+y)z = (a+a)z = dz = dz + dz = az + az = xz + yz.

Subcase 2.3. a + a = d + d.

(x+y)z = (a+a)z = (d+d)z = dz + dz = az + az = xz + yz.

Case 3. x = z = a, $y \neq a$.

 $(x+y)z = (a+y)a = (d+y)a = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

Case 4. $x \neq a$, y = z = a.

This proof is similar to Case 3.

Case 5. $x \neq a, y \neq a, z = a$.

(x+y)z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz.

Case 6. $x \neq a$, y = a, $z \neq a$.

(x+y)z = (x+a)z = (x+d)z = xz + dz = xz + az = xz + yz.

Case 7. $x = a, y \neq a, z \neq a$.

This proof is similar to Case 6.

Case 8. $x \neq a, y \neq a, z \neq a$.

(x+y)z = xz + yz.

Hence K is a seminear-field and we obtain (1) - (4).

Suppose that $F_L = \emptyset$ and $F_R = D$. Since $d \in F_R = RI_D(d)$, d+d=d. Therefore (D,+) is a band. Extend • and + from D to K by

- (1) xa = xd and ax = dx for all $x \in D$, $a^2 = d^2$,
- (2) x + a = x + d and a + x = a for all $x \in D$ and
- (3) a + a = a.

To show that K is a seminear-field. We shall show that (a_2) x(yz) = (xy)z for all $x,y,z \in K$, $(b_2) x + (y+z) = (x+y) + z$ for all $x,y,z \in K$ and (x+y)z = xz + yz for all $x,y,z \in K$. The proof of (a_2) is the same as the proof of (a_1) . To prove (b_2) , let $x,y,z \in K$. Note that a+t=a for all $t \in K$.

Case 1. x = a.

x + (y+z) = a + (y+z) = a, (x+y) + z = (a+y) + z = a + z = a. Case 2. $x \neq a$.

Subcase 2.1. y = z = a.

x + (y+z) = x + (a+a) = x + a = x + d, (x+y) + z = (x+a) + a = (x+d) + d = x + (d+d) = x + d.

Subcase 2.2. y = a, $z \neq a$. Since $z \in RI_D(d)$, d + z = d. x + (y+z) = x + (a+z) = x + a = x + d, (x+y) + z = (x+a) + z = (x+d) + z = x + d.

Subcase 2.3. $y \neq a$, z = a.

x + (y+z) = x + (y+a) = x + (y+d) = (x+y) + d, (x+y) + z = (x+y) + a = (x+y) + d.

Subcase 2.4. $y \neq a, z \neq a$.

x + (y+z) = (x+y) + z.

To prove (c_3) , let $x,y,z \in K$.

Case 1. x = y = z = a.

 $(x+y)z = (a+a)a = a^2 = d^2 = d^2 + d^2 = a^2 + a^2 = xz + yz.$

Case 2. $x = y = a, z \neq a$.

(x+y)z = (a+a)z = az = dz = dz + dz = az + az = xz + yz.

Case 3. x = z = a, $y \neq a$. Since $y \in RI_D(d)$, d + y = d.

 $(x+y)z = (a+y)a = a^2 = d^2 = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

Case 4. $x \neq a$, y = z = a.

 $(x+y)z = (x+a)a = (x+d)a = (x+d)d = xd + d^2 = xa + a^2 = xz + yz$

Case 5. $x \neq a, y \neq a, z = a$.

(x+y)z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz.

Case 6. $x \neq a$, y = a, $z \neq a$.

 $(x+y)_z = (x+a)_z = (x+d)_z = xz + dz = xz + az = xz + yz$.

Case 7. $x = a, y \neq a, z \neq a$. Since $y \in RI_D(d), d + y = d$.

(x+y)z = (a+y)z = az = dz = (d+y)z = dz + yz = az + yz = xz + yz.

Case 8. $x \neq a$, $y \neq a$, $z \neq a$.

(x+y)z = xz + yz.

Hence K is a seminear-field and we obtain (1),(2) and (4)

Suppose that $F_{T} = \emptyset$ and F_{R} is a proper filter in (D,+).

Then $D\setminus F_R$ is an ideal of (D,+). Extend + and • from D to K by

(1) xa = xd and ax = dx for all $x \in D$, $a^2 = d^2$,

(2) x + a = x + d for all $x \in D$,

a + x = a for all $x \in F_{R}$, a + x = d + x for all

 $\mathbf{x} \in D \backslash F_{R}$ and

(3)
$$a + a = \begin{cases} a & \text{if } (D,+) \text{ is a band and } d \in F_R, \\ d & \text{if } (D,+) \text{ is a band and } d \in D \setminus F_R, \\ d + d & \text{if } (D,+) \text{ is not a band}. \end{cases}$$

To show that K is a seminear-field, we shall show that (a_3) x(yz) = (xy)z for all $x,y,z \in K$, $(b_3) x + (y+z) = (x+y) + z$ for all $x,y,z \in K$ and $(c_3) (x+y)z = xz + yz$ for all $x,y,z \in K$. The proof of (a_3) is the same as the proof of (a_1) . Note that $D \setminus F_R$ is an ideal of (D,+).

To prove (b_3) , let $x,y,z \in K$. Consider the following cases:

Case 1. x = y = z = a.

Subcase 1.1. (D,+) is a band, $d \in F_R$. Then a + a = a. x + (y+z) = a + (a+a) = a + a = (a+a) + a = (x+y) + z.

Subcase 1.2. (D,+) is a band, $d \in D \setminus F_R$. Then a + a = d. x + (y+z) = a + (a+a) = a + d = d + d = d + a = (a+a) + a = (x+y) + z.

Subcase 1.3. (D,+) is not a band. Then a + a = d + d and d ϵ D\F_R.

x + (y+z) = a + (a+a) = a + (d+d) = d + (d+d) = (d+d) + d = (d+d) + a = (a+a) + a = (x+y) + z.

Case 2. $x = y = a, z \neq a$.

Subcase 2.1. a + a = a. Then (D,+) is a band.

If $z \in F_R$ then a + z = a. Thus x + (y+z) = a + (a+z) = a + a = a = a + z = (a+a) + z = (x+y) + z. If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$.

Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + a = d + z = a + z = (a+a) + a = (x+y) + z.

Subcase 2.2. a + a = d. Then (D,+) is a band. If $z \in F_R$ then d + z = d since $F_R \subseteq RI_D(d)$. x + (y+z) = a + (a+z) = a + a = d = d + z = (a+a) + z = (x+y) + z.

If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$. Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z = (a+a) + z = (x+y) + z.

Subcase 2.3. a + a = d + d.

If $z \in F_R$ then d + z = d since $F_R \subseteq RI_D(d)$. Thus x + (y+z) = a + (a+z) = a + a = d + d = d + (d+z) = (d+d) + z = (a+a) + z = (x+y) + z.

If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$ which is an ideal of (D,+). Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = (a+a) + z = (x+y) + z.

Case 3. x = z = a, $y \neq a$.

Subcase 3.1. (D,+) is a band, $d \in F_R$. Then a + a = a.

Subcase 3.1.1. $y + d \in F_R$. Since F_R is a filter in (D,+), $y \in F_R$. x + (y+z) = a + (y+a) = a + (y+d) = a = a + a = (a+y) + a = (x+y) + z.

Subcase 3.2. (D,+) is a band, $d \in D \setminus F_R$. Then a + a = d and $y + d \in D \setminus F_R$.

If $y \in F_R$ then d + y = d. Thus x + (y+z) = a + (y+a) = a + (y+d)= d + (y+d) = (d+y) + d = d + d = d, (x+y) + z = (a+y) + a = a + a= d.

If $y \in D \setminus F_R$ then x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = (d+y) + a = (a+y) + a = (x+y) + z.

Subcase 3.3. (D,+) is not a band. Then a + a = d + d and $d \in D \setminus F_p$. Thus $y + d \in D \setminus F_p$.

If $y \in F_R$ then d + y = d. Thus x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = d + d = a + a = (a+y) + a = (x+y) + z.If $y \in D F_R$ then x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = (d+y) + a = (a+y) + a = (x+y) + z.

Case 4. $x \neq a$, y = z = a.

Subcase 4.1. a + a = a. Then (D,+) is a band. x + (y+z) = x + (a+a) = x + a = x + d = x + (d+d) = (x+d) + d = (x+d) + a = (x+a) + a = (x+y) + z.

Subcase 4.2. a + a = d. Then (D,+) is a band. x + (y+z) = x + (a+a) = x + d, (x+y) + z = (x+a) + a = (x+d) + a= (x+d) + d = x + (d+d) = x + d.

Subcase 4.3. a + a = d + d.

x + (y+z) = x + (a+a) = x + (d+d) = (x+d) + d = (x+d) + a = (x+a) + a = (x+y) + z.

Case 5. $x \neq a, y \neq a, z = a$.

x + (y+z) = x + (y+a) = x + (y+d) = (x+y) + d = (x+y) + a = (x+y) + z.

Case 6. $x \neq a$, y = a, $z \neq a$.

If $z \in F_R$ then d = d + z since $F_R \subseteq RI_D(d)$.

x + (y+z) = x + (a+z) = x + a = x + d = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

If $z \in D \setminus F_R$ then x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

Case 7. $x = a, y \neq a, z \neq a$.

Subcase 7.1. $y + z \in F_R$. Since F_R is a filter in (D,+), $y,z \in F_R$.

x + (y+z) = a + (y+z) = a = a + z = (a+y) + z = (x+y) + z.

Subcase 7.2. $y + z \in D \setminus F_R$.

If $y \in F_R$ then $z \in D \setminus F_R$. Since $F_R \subseteq RI_D(d)$, d + y = d.

x + (y+z) = a + (y+z) = d + (y+z) = (d+y) + z = d + z = a + z =

(a+y) + z = (x+y) + z.

If $y \in D \setminus F_p$ then x + (y+z) = a + (y+z) = d + (y+z) = (d+y) + z =

(a+y) + z = (x+y) + z.

Case 8. $x \neq a, y \neq a, z \neq a$.

x + (y+z) = (x+y) + z.

To prove (c_3) , let $x,y,z \in K$. Consider the following cases:

Case 1. x = y = z = a.

This proof is the same as the proof of case 1 in (c_1) .

Case 2. x = y = a, $z \neq a$.

This proof is the same as the proof of case 2 in (c_1) .

Case 3. x = z = a, $y \neq a$.

If $y \in F_R$ then d + y = d since $F_R \subseteq RI_D(d)$.

 $(x+y)z = (a+y)a = a^2 = d^2 = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

If $y \in D \setminus F_R$ then $(x+y)z = (a+y)a = (d+y)a = (d+y)d = d^2 + yd =$

 $a^2 + ya = xz + yz$.

Case 4. $x \neq a$, y = z = a.

 $(x+y)z = (x+a)a = (x+d)a = (x+d)d = xd + d^2 = xa + a^2 = xz + yz$

Case 5. $x \neq a, y \neq a, z = a$.

(x+y)z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz.

Case 6. $x \neq a$, y = a, $z \neq a$.

 $(x+y)_z = (x+a)_z = (x+d)_z = xz + dz = xz + az = xz + yz$.

Case 7. $x = a, y \neq a, z \neq a$.

If $y \in F_R$ then d = d + y since $F_R \subseteq RI_D(d)$.

 $(x+y)_z = (a+y)_z = az = dz = (d+y)_z = dz + yz = az + yz = az + yz$

= xz + yz

If $y \in D \setminus F_R$ then (x+y)z = (a+y)z = (d+y)z = dz + yz = az + yz = xz + yz.

Case 8. $x \neq a, y \neq a, z \neq a$.

(x+y)z = xz + yz.

Hence K is a seminear-field and we obtain (1) - (4).

Suppose that $F_L = F_R = D$. Then $D = I_D(d) = \{x \in D \mid x + d = d + x = d\}$. Claim that $D = \{e\}$. Let $x \in D$. Then xd + d = d + xd = d. Multiply this equation on the right by d^{-1} , we obtain that x + e = e + x = e. Hence x + e = e + x = e for all $x \in D$. By Corollary 1.20, $D = \{e\}$. Consequently, d = e. Note that (D,+) is a band. Extend + and + from + to + to + by + be + and + core of the following two structures.

	e	а		+	e	а	
е	е	е	and	е	е	а	or
a	е	е		a	а	а	
	e	а		+	e	a	
е	е	е	and	е	е	а	
a	е	е		а	a	е	

It is easy to check that K is a seminear-field. And we obtain (1) - (4).

For the cases (F_L = D and F_R = \emptyset) and (F_L is a proper filter in (D,+) and F_R = \emptyset), the proofs are similar to proofs of cases (F_L = \emptyset and F_R = D) and (F_L = \emptyset and F_R is a proper filter in (D,+)), respectively.

Suppose that F_L = D and F_R is a proper filter in (D,+). Now we have $LI_D(d)$ = D and F_R is a filter in (D,+). By Proposition 1.24 (4.5), F_R = D = {e}, a contradiction. Hence this case cannot occur. Similarly, we can show that the case (F $_{\rm L}$ is a proper filter in (D,+) and F $_{\rm R}$ = D) cannot occur.

Suppose that F_L and F_R are proper filters in (D,+).

 $\underline{\text{Case I}} \quad \mathbf{F}_{\mathbf{L}} = \mathbf{F}_{\mathbf{R}}.$

Extend + and • from D to K by

- (1) xa = xd and ax = dx for all $x \in D$, $a^2 = d^2$,
- (2) x + a = a + x = a for all $x \in F_L$, x + a = x + d and a + x = d + x for all $x \in D \setminus F_L$ and
- (3) $a + a = \begin{cases} a \text{ or d if } (D,+) \text{ is a band,} \\ d + d \text{ if } (D,+) \text{ is not a band.} \end{cases}$

To show that K is a seminear-field, we shall show that

 (a_{μ}) x(yz) = (xy)z for all $x,y,z \in K$,

 (b_4) x + (y+z) = (x+y) + z for all $x,y,z \in K$ and

 (c_h) (x+y)z = xz + yz for all $x,y,z \in K$.

The proof of (a_L) is the same as the proof of (a_1) .

To prove (b_4) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a.

Subcase 1.1. a + a = a.

x + (y+z) = a + (a+a) = a + a = (a+a) + a = (x+y) + z

Subcase 1.2. a + a = d.

If $d \in F_L$ then x + (y+z) = a + (a+a) = a + d = d + a = (a+a) + a= (x+y) + z.

If $d \in D \setminus F_L$ then x + (y+z) = a + (a+a) = a + d = d + d = d + a = (a+a) + a = (x+y) + z.

: Subcase 1.3. a + a = d + d.

If d ϵ $F^{}_L$ then d + d ϵ $F^{}_L$ which is an additive semigroup.

x + (y+z) = a + (a+a) = a + (d+d) = (d+d) + a = (a+a) + a = (x+y) + z.

If d ϵ D\F_L then d + d ϵ D\F_L which is an ideal of (D,+).

x + (y+z) = a + (a+a) = a + (d+d) = d + (d+d) = (d+d) + d = (d+d) + a = (a+a) + a = (x+y) + z.

Case 2. x = y = a, $z \neq a$.

Subcase 2.1. a + a = a. Then (D,+) is a band.

If $z \in F_L$ then x + (y+z) = a + (a+z) = a + a = a = a + z = (a+a) + z = (x+y) + z.

If $z \in D \setminus F_{T}$ then $d + z \in D \setminus F_{T}$ which is an ideal of (D,+).

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z,

(x+y) + z = (a+a) + z = a + z = d + z.

Subcase 2.2. a + a = d. Then (D,+) is a band.

If $z \in F_{T}$ then d = d + z since $F_{T} = F_{R} \subseteq RI_{D}(d)$.

x + (y+z) = a + (a+z) = a + a = d, (x+y) + z = (a+a) + z = d + z = d.

If $z \in D \setminus F_T$ then $d + z \in D \setminus F_T$ which is an ideal of (D,+).

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z,

(x+y) + z = (a+a) + z = d + z.

Subcase 2.3. a + a = d + d.

If $z \in F_L$ then d = d + z since $F_L = F_R \subseteq RI_D(d)$.

x + (y+z) = a + (a+z) = a + a = d + d, (x+y) + z = (a+a) + z =

(d+d) + z = d + (d+z) = d + d.

If $z \in D \setminus F_L$ then $d + z \in D \setminus F_L$ which is an ideal of (D,+).

x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z =

(a+a) + z = (x+y) + z.

Case 3. x = z = a, $y \neq a$.

If $y \in F_1$ then x + (y+z) = a + (y+a) = a + a = (a+y) + a = (x+y) + z.

If $y \in D \setminus F_L$ then d + y, $y + d \in D \setminus F_L$ which is an ideal of (D,+).

x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d =

(d+y) + a = (a+y) + d = (x+y) + z.

Case 4 • $x \neq a$, y = z = a.

This proof is similar to Case 2.

Case 5. $x \neq a, y \neq a, z = a$.

Subcase 5.1. $x + y \in F_L$. Since F_L is a filter in (D,+), $x,y \in F_L$.

x + (y+z) = x + (y+a) = x + a = a, (x+y) + z = (x+y) + a = a.

Subcase 5.2. $x + y \in D \setminus F_{\tau}$.

If $y \in F_L$ then $x \in D \setminus F_L$ and y + d = d. Thus x + (y+z) = x + (y+a) = x + a = x + d, (x+y) + z = (x+y) + a = (x+y) + d = x + (y+d) = x + d.

If $y \in D \setminus F_L$ then x + (y+z) = x + (y+a) = x + (y+d) = (x+y) + d = (x+y) + a = (x+y) + z.

Case 6. $x \neq a$, y = a, $z \neq a$.

Subcase 6.1. $x,z \in F_L$. Then x + a = a = a + z.

x + (y+z) = x + (a+z) = x + a = a = a + z = (x+a) + z = (x+y) + z

Subcase 6.2. $x \in F_L$, $z \in D \setminus F_L$. Since $F_L \subseteq LI_D(d)$, x + d = d. x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = d + z = a + z = (x+a) + z = (x+y) + z.

Subcase 6.3. $x \in D \setminus F_L$, $z \in F_L$.

This proof is similar to Subcase 6.2.

Subcase 6.4. x,z & D\F_L.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z

Case 7. x = a, $y \neq a$, $z \neq a$. This proof is similar to Case 5.

Case 8. $x \neq a, y \neq a, z \neq a. x + (y+z) = (x+y) + z.$

To prove (c_L) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a.

This proof is the same as the proof of Case 1 in (c_1)

Case 2. $x = y = a, z \neq a$.

This proof is the same as the proof of Case 2 in (c₁).

Case 3. x = z = a, $y \neq a$.

If $y \in F_L$ then d = d + y since $F_L = F_R \subseteq RI_D(d)$. Thus (x+y)z = C

 $(a+y)a = a^2 = d^2 = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$. If $y \in D \setminus F_L$ then $(x+y)z = (a+)a = (d+y)a = (d+y)d = d^2 + yd =$

 $a^2 + ya = xz + yz$.

Case 4. $x \neq a$, y = z = a.

This proof is similar to Case 3.

Case 5. $x \neq a, y \neq a, z = a$.

(x+y)z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz.

Case 6. $x \neq a$, y = a, $z \neq a$.

If $x \in F_L$ then x + d = d since $F_L \subseteq LI_D(d)$. Thus (x+y)z = (x+a)z = az = dz = (x+d)z = xz + dz = xz + az = xz + yz.

If $x \in D \setminus F$ then (x+y)z = (x+a)z = (x+d)z = xz + dz = xz + az = xz + yz.

Case 7. $x = a, y \neq a, z \neq a$.

This proof is similar to Case 6.

Case 8. $x \neq a, y \neq a, z \neq a$.

(x+y)z = xz + yz.

Hence K is a seminear-field and we obtain (1) - (4).

Case II Either $F_L \subset F_R$ or $F_R \subset F_L$. We may assume that $F_L \subset F_R$. Extend + and · from D to K by

- (1) xa = xd and ax = dx for all $x \in D$, $a^2 = d^2$,
- (2) x + a = a for all $x \in F_L$, x + a = x + d for all $x \in D \setminus F_L$,

 $a + x = a \text{ for all } x \in F_R, \ a + x = d + x \text{ for all }$ $x \in D \backslash F_D,$

(3)
$$a + a = \begin{cases} a & \text{if } (D,+) \text{ is a band and } d \in F_R, \\ d & \text{if } (D,+) \text{ is a band and } d \in D \setminus F_R, \\ d + d & \text{if } (D,+) \text{ is not a band.} \end{cases}$$

We shall first show that x + (y+a) = (x+y) + a for all $x, y \in D$.

Case i. $x + y \in F_L$. Since F_L is a filter in (D,+), $x,y \in F_L$. x + (y+a) = x + a = a = (x+y) + a.

Case ii. $x + y \in D \setminus F_T$.

If $y \in F_L$ then $x \in D \setminus F_L$ and d = y + d since $F_L \subseteq LI_D(d)$. Thus x + (y+a) = x + a = x + d = x + (y+d) = (x+y) + d = (x+y) + a.

If $y \in D F_L$ then x + (y+a) = x + (y+d) = (x+y) + d = (x+y) + a.

Claim that d ϵ D \vdash_L . Since $\vdash_L \subset \vdash_R$, there is an element t in $\vdash_R \vdash_L$. Thus a + t = a, d + t = d and t + a = t + d. So d + a = (d+t) + a = d + (t+a) = d + (t+d) = (d+t) + d = d + d \neq a. Hence d ϵ D \vdash_T .

To show that K is a seminear-field, we shall show that (a_5) x(yz) = (xy)z for all $x,y,z \in K$, $(b_5) x + (y+z) = (x+y) + z$ for all $x,y,z \in K$ and $(c_5) (x+y)z = xz + yz$ for all $x,y,z \in K$. The proof of (a_5) is the same as the proof of (a_1) .

To prove (b_5) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a.

Subcase 1.1. a + a = a.

x + (y+z) = a + (a+a) = a + a = (a+a) + a = (x+y) + z

Subcase 1.2. a + a = d. Then $d \in D \setminus F_R$. Since $d \in D \setminus F_L$, d + a = d + d.

x + (y+z) = a + (a+a) = a + d = d + d = d + a = (a+a) + a = (x+y) + z.

Subcase 1.3. a + a = d + d. Since (D,+) is not a band,

dε D'Fp.

x + (y+z) = a + (a+a) = a + (d+d) = d + (d+d) = (d+d) + d = (d+d) + a = (a+a) + a = (x,y) + z.

Case 2. x = y = a, $z \neq a$.

Subcase 2.1. a + a = a. Then (D,+) is a band. If $z \in F_R$ then x + (y+z) = a + (a+z) = a + a = a = a + z = (a+a) + z = (x+y) + z. If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$. Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z = a + z = (a+a) + z = (x+y) + z.

Subcase 2.2. a + a = d. Then (D,+) is a band. If $z \in F_R$ then d = d + z since $F_R \subseteq RI_D(d)$. Thus x + (y+z) = a + (a+z) = a + a = d, (x+y) + z = (a+a) + z = d + z = d. If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$ which is an ideal of (D,+). Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = d + z = (a+a) + z = (x+y) + z.

Subcase 2.3. a + a = d + d.

If $z \in F_R$ then d = d + z since $F_R \subseteq RI_D(d)$. Thus x + (y+z) = a + (a+z) = a + a = d + d, (x+y) + z = (a+a) + z = (d+d) + z = d + (d+z) = d + d.

If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$. Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = (a+a) + z = (x+y) + z.

Case 3. x = z = a, $y \neq a$.

Subcase 3.1. $y \in F_L$. Then $y \in F_R$, so a + y = y + a = a. x + (y+z) = a + (y+a) = a + a = (a+y) + a = (x+y) + z.

Subcase 3.2. $y \in F_R F_L$. Since $F_R \subseteq RI_D(d)$, d + y = d.

Subcase 3.2.1. (D,+) is a band, $d \in F_R$. Then a + a = a and $y + d \in F_R$. x + (y+z) = a + (y+a) = a + (y+d) = a = a + a = (a+y) + a = (x+y) + z.

Subcase 3.2.2. (D,+) is a band, $d \in D \setminus F_R$. Then a + a = d and $y + d \in D \setminus F_R$. x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = d + d = d = a + a = (a+y) + a = (x+y) + z.

Subcase 3.2.3. (D,+) is not a band. Then a + a = d + d and $d \in D \setminus F_R$. Thus $y + d \in D \setminus F_R$, so x + (y+z) = 0

a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = d + d = a + a = (a+y) + a = (x+y) + z.

Subcase 3.3. $y \in D \setminus F_R$. Since $D \setminus F_R \subset D \setminus F_L$, $y \in D \setminus F_L$. Thus $y + d \in D \setminus F_R$ and $d + y \in D \setminus F_L$, so x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = (d+y) + a = (a+y) + a = (x+y) + z. Case 4. $x \neq a$, y = a, z = a.

This proof is similar to Case 2.

Case 5. $x \neq a, y \neq a, z = a$.

By the first proof, we showed that x + (y+a) = (x+y) + a.

Case 6. $x \neq a$, y = a, $z \neq a$.

Subcase 6.1. $x \in F_L$, $z \in F_R$.

x + (y+z) = x + (a+z) = x + a = a = a + z = (x+a) + z = (x+y) + z.

Subcase 6.2. $x \in F_L$, $z \in D \setminus F_R$. Since $F_L \subseteq LI_D(d)$,

d = x + d.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = d + z = a + z = (x+a) + z = (x+y) + z.

Subcase 6.3. $x \in D \setminus F_L$, $z \in F_R$. Since $F_R \subseteq RI_D(d)$, d = d + z.

x + (y+z) = x + (a+z) = x + a = x + d = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

Subcase 6.4. $x \in D \setminus F_{L}$, $z \in D \setminus F_{R}$.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

Case 7. $x = a, y \neq a, z \neq a$.

Subcase 7.1. $y + z \in F_R$. Since F_R is a filter in (D,+), $y,z \in F_R$.

x + (y+z) = a + (y+z) = a = a + z = (a+y) + z = (x+y) + z

Subcase 7.2. $y + z \in D^F_R$.

If $y \in F_R$ then $z \in D \setminus F_R$. Since $F_R \subseteq RI_D(d)$, d + y = d. Thus x + (y+z) = a + (y+z) = d + (y+z) = (d+y) + z = d + z = a + z = d

(a+y) + z = (x+y) + z.

If $y \in D \setminus F_R$ then x + (y+z) = a + (y+z) = d + (y+z) = (d+y) + z =

(a+y) + z = (x+y) + z.

Case 8. $x \neq a, y \neq a, z \neq a$.

x + (y+z) = (x+y) + z.

To prove (c_5) , let x,y,z ϵ K. Consider the following cases :

Case 1. x = y = z = a.

This proof is the same as the proof of Case 1 in (c_1) .

Case 2. x = y = a, $z \neq a$.

This proof is the same as the proof of Case 2 in (c1).

Case 3. x = z = a, $y \neq a$.

If $y \in F_R$ then d = d + y since $F_R \subseteq RI_D(d)$. Thus (x+y)z = (a+y)a= $a^2 = d^2 = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

If $y \in D \setminus F_R$ then $(x+y)z = (a+y)a = (d+y)a = (d+y)d = d^2 + yd = a^2 + ya = xz + yz.$

Case 4. $x \neq a$, y = z = a.

This proof is similar to Case 3.

Case 5. $x \neq a, y \neq a, z = a$.

 $(x+y)_z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz$.

Case 6. $x \neq a$, y = a, $z \neq a$.

If $x \in F_L$ then x + d = d. Thus (x+y)z = (x+a)z = az = dz =

 $(x+d)_z = xz + dz = xz + az = xz + yz.$

If $x \in D \setminus F_L$ then (x+y)z = (x+a)z = (x+d)z = xz + dz = xz + az = xz + yz.

Case 7. $x = a, y \neq a, z \neq a$.

This proof is similar to Case 7.

Case 8. $x \neq a$, $y \neq a$, $z \neq a$.

(x+y)z = xz + yz.

Case III $F_L \not = F_R$ and $F_R \not = F_L$.

Extend + and · from D to K by

- (1) xa = xd and ax = dx for all $x \in D$, $a^2 = d^2$,
- (2) x + a = a for all $x \in F_L$, x + a = x + d for all $x \in D \setminus F_L$,

a + x = .a for all x \in F_R, a + x = d + x for all x \in D\F_R and

(3) a + a = d + d.

We shall first show that x + (y+a) = (x+y) + a for all $x,y \in D$. Let $x,y \in D$.

Case i $x + y \in F_L$. Since F_L is a filter in (D,+), $x,y \in F_L$. x + (y+a) = x + a = a = (x+y) + a.

Case ii $x + y \in D \setminus F_L$.

If $y \in F_L$, then $x \in D \setminus F_L$ and y + d = d. Thus x + (y+a) = x + a = x + d = x + (y+d) = (x+y) + d = (x+y) + a.

If $y \in D \setminus F_L$ then x + (y+a) = x + (y+d) = (x+y) + d = (x+y) + a.

Similarly, we can show that a + (y+z) = (a+y) + z for all $y,z \in D$.

Claim that $d \in (D \setminus F_L) \cap (D \setminus F_R)$. Since $F_L \not = F_R$ and $F_R \not = F_L$, there are elements x_0 and y_0 in D such that $x_0 \in F_L \setminus F_R$ and $y_0 \in F_R \setminus F_L$. Thus $x_0 + a = a$, $x_0 + d = d$, $a + x_0 = d + x_0$, $a + y_0 = a$, $d + y_0 = d$ and $y_0 + a = y_0 + d$. So $a + d = a + (x_0 + d)$ $= (a + x_0) + d = (d + x_0) + d = d + (x_0 + d) = d + d \neq a$. Hence $d \in D \setminus F_R$. And $d + a = (d + y_0) + a = d + (y_0 + a) = d + (y_0 + d) = (d + y_0) + d = d + d \neq a$. Hence $d \in D \setminus F_L$. Therefore $d \in (D \setminus F_L) \cap (D \setminus F_R)$. Note that $D \setminus F_L$ and $D \setminus F_R$ are ideals of (D, +).

To show that K is a seminear-field, we shall show that $(a_6) x(yz) = (xy)z$ for all $x,y,z \in K$, $(b_6) x + (y+z) = (x+y) + z$ for all $x,y,z \in K$ and $(c_6) (x+y)z = xz + yz$ for all $x,y,z \in K$.

The proof of (a_6) is the same as the proof of (a_1) .

To prove (b_6) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a. Since $d \in (D \setminus F_L) \cap (D \setminus F_R)$,

 $d + d \epsilon (D \setminus F_L) \cap (D \setminus F_R).$

x + (y+z) = a + (a+a) = a + (d+d) = d + (d+d) = (d+d) + d = (d+d) + a = (a+a) + a = (x+y) + z.

Case 2. x = y = a, $z \neq a$.

If $z \in F_R$ then d = d + z. Thus x + (y+z) = a + (a+z) = a + a = d + d, (x+y) + z = (a+a) + z = (d+d) + z = d + (d+z) = d + d.

If $z \in D \setminus F_R$ then $d + z \in D \setminus F_R$. Thus x + (y+z) = a + (a+z) = a + (d+z) = d + (d+z) = (d+d) + z = (a+a) + z = (x+y) + z.

Case 3. $x = z = a, y \neq a$.

Subcase 3.1. $F_{I,\Omega} F_{R} = \emptyset$.

Subcase 3.1.1. $y \in F_L$. Then $y \in D \setminus F_R$,

 $d + y \in D \setminus F_T$ and d = y + d.

x + (y+z) = a + (y+a) = a + a = d + d = d + (y+d) = (d+y) + d = (d+y) + a = (a+y) + a = (x+y) + z.

 $\underline{\text{Subcase 3.1.2.}} \quad \text{y} \; \epsilon \; \text{DNF}_L. \quad \text{Then y + d} \; \epsilon \; \text{DNF}_R \; \text{and}$ d + y $\epsilon \; \text{DNF}_L.$

If $y \in F_R$ then d + y = d. Thus x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = d + d = a + a = (a+y) + a = (x+y) + z.If $y \in D \setminus F_R$ then x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = (d+y) + a = (a+y) + a = (x+y) + z.

Subcase 3.2. $F_L \cap F_R \neq \emptyset$.

Subcase 3.2.1. $y \in F_L \cap F_R$.

x + (y+z) = a + (y+a) = a + a = (a+y) + a = (x+y) + z.

Subcase 3.2.2. $y \in F_{T_i} \cap (D \setminus F_{R_i})$.

This proof is the same as the proof of Subcase 3.1.1.

Subcase 3.2.3. $y \in (D \setminus F_L) \cap F_R$. Then $y + d \in D \setminus F_R$,

 $d + y \in D \setminus F_L$ and d = d + y.

x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = d + d= a + a = (a+y) + a = (x+y) + z.

Subcase 3.2.4. $y \in (D \setminus F_L) \cap (D \setminus F_R)$. Then

 $y + d \in D \setminus F_R$ and $d + y \in D \setminus F_L$.

x + (y+z) = a + (y+a) = a + (y+d) = d + (y+d) = (d+y) + d = (d+y) + a = (x+y) + z.

Case 4. $x \neq a$, y = z = a.

This proof is similar to Case 2.

Case 5. $x \neq a, y \neq a, z = a$.

By the first proof, we showed that x + (y+a) = (x+y)+a.

Case 6. $x \neq a$, y = a, $z \neq a$.

Subcase 6.1. $x \in F_L$, $z \in F_R$.

x + (y+z) = x + (a+z) = x + a = a = a + z = (x+a) + z = (x+y) + z

Subcase 6.2. $x \in F_L$, $z \in D \setminus F_R$. Then d = x + d.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = d + z = a + z = (x+a) + z = (x+y) + z.

Subcase 6.3. $x \in D \setminus F_L$, $z \in F_R$. Then d = d + z.

x + (y+z) = x + (a+z) = x + a = x + d = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z.

Subcase 6.4. $x \in D^{r}_{L}$, $z \in D^{r}_{R}$.

x + (y+z) = x + (a+z) = x + (d+z) = (x+d) + z = (x+a) + z = (x+y) + z

Case 7. $x = a, y \neq a, z \neq a$.

We showed that a + (y+z) = (a+y) + z.

Case 8. $x \neq a, y \neq a, z \neq a$.

x + (y+z) = (x+y) + z.

To prove (c_6) , let $x,y,z \in K$. Consider the following cases.

Case 1. x = y = z = a.

 $(x+y)z = (a+a)a = (d+d)a = (d+d)d = d^2 + d^2 = a^2 + a^2 = xz + yz$

Case 2. $x = y = a, z \neq a$.

(x+y)z = (a+a)z = (d+d)z = dz + dz = az + az = xz + yz.

Case 3. x = z = a, $y \neq a$.

If $y \in F_R$ then d = d + y. Thus $(x+y)z = (a+y)a = a^2 = d^2 = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

If $y \in D \setminus F_R$ then $(x+y)z = (a+y)a = (d+y)a = (d+y)d = d^2 + yd = a^2 + ya = xz + yz$.

Case 4. $x \neq a$, y = z = a.

This proof is similar to Case 3.

Case 5. $x \neq a, y \neq a, z = a$.

(x+y)z = (x+y)a = (x+y)d = xd + yd = xa + ya = xz + yz.

Case 6. $x \neq a$, y = a, $z \neq a$.

If $x \in F_L$ then d = x + d. Thus (x+y)z = (x+a)z = az = dz = (x+d)z = xz + dz = xz + az = xz + yz.

If $x \in D \setminus F_L$ then (x+y)z = (x+a)z = (x+d)z = xz + dz = xz + az = xz + yz.

Case 7. $x = a, y \neq a, z \neq a$.

This proof is similar to Case 6.

Case 8. $x \neq a$, $y \neq a$, $z \neq a$.

(x+y)z = xz + yz.

Hence K is a seminear-field and we obtain (1) - (4).

By Theorem 3.14 and Proposition 3.22, if there exist extensions such that (1) and (2) hold then these are the only possible extensions of the binary operations on D to K.

We shall give an example where (D,+) is a band and $F_R \subset F_L$.

Example 3.24. \mathbb{Q}^+ with the usual multiplication is a group. Define + on \mathbb{Q}^+ by x + y = max $\{x,y\}$ for all x,y $\in \mathbb{Q}^+$. Then $(\mathbb{Q}^+,+,\cdot)$ is a ratio seminear-ring. Let $d\in \mathbb{Q}^+$. Thus LI $(d)=\mathbb{Q}^+$ $\{x\in \mathbb{Q}^+|x\leq d\}=\mathrm{RI}_{\mathbb{Q}^+}(d)$. Let $F_L=\mathrm{LI}_{\mathbb{Q}^+}(d)$ and $F_R=\{x\in \mathbb{Q}^+|x<\frac{d}{2}\}$. Then $F_R\subset F_L$ and $d\in F_L$. It is easy to show that F_L and F_R are filters in $(\mathbb{Q}^+,+)$.

Let a be a symbol not representing any element of Q^+ . Extend + and • from Q^+ to Q^+ U {a} by

- (1) xa = xd and ax = dx for all $x \in \mathbb{Q}^+$, $a^2 = d^2$,
- (2) x + a = a for all $x \in F_L$, x + a = x + d for all $x \in \mathbb{Q}^+ \backslash F_L$,

 $a + x = a \text{ for all } x \in F_R^-, \ a + x = d + x \text{ for all}$ $x \in \mathbb{Q}^+ \backslash F_R^-$ and

(3) a + a = a.

By Theorem 3.23, $(Q^+ \cup \{a\},+,\cdot)$ is a seminear-field with a as a category VI special element.

We shall give an example where (D,+) is a band and $F_L \not = F_R$ and $F_R \not = F_L$

Example 3.25. Let $Q_{M}^{+} \times Q_{M}^{+}$ be the ratio seminear-ring given in Example 2.14. Let $d = (d_{1}, d_{2}) \in Q^{+} \times Q^{+}$. Then LI $Q_{M}^{+} \times Q_{M}^{+}$

$$\{(x,y) \in \mathbb{Q}^+ \times \mathbb{Q}^+ | x \ge d_1, y \le d_2\} = RI_{\mathbb{Q}_{m}^+ \times \mathbb{Q}_{M}^+}(d).$$

Let
$$F_L = \{(x,y) \in \mathbb{Q}^+ \times \mathbb{Q}^+ | x \ge d_1, y \le \frac{d_2}{2}\}$$
 and $F_R = \{(x,y) \in \mathbb{Q}^+ \times \mathbb{Q}^+ | x > 2d_1, y < d_2\}$.

Then $F_L \not = F_R$ and $F_R \not = F_L$. It is easy to show that F_L and F_R are Filters in $(Q_m^+ \times Q_M^+, +)$.

Let a be a symbol not representing any element of $\mathbb{Q}^+ \times \mathbb{Q}^+$. Extend + and · from $\mathbb{Q}^+ \times \mathbb{Q}^+$ to $(\mathbb{Q}^+ \times \mathbb{Q}^+) \cup \{a\}$ by

- (1) za = zd and az = dz for all $z \in \mathbb{Q}^+ \times \mathbb{Q}^+$, $a^2 = d^2$,
- (2) z + a = a for all z ϵ F_L , z + a = z + d for all z ϵ (Q⁺ × Q⁺) F_L ,

 $a + z = a \text{ for all } z \in F_R, \ a + z = d + z \text{ for all}$ $z \in (\mathbb{Q}^+ \times \mathbb{Q}^+) \backslash F_R \text{ and}$

(3) a + a = d.

By Theorem 3.23, $((Q_m^+ \times Q_M^+) \cup \{a\},+,\cdot)$ is a seminear-field with a as a category VI special element.

#

We shall give an example where (D,+) is not a band.

Example 3.26. From Example 2.16, $(\mathbb{Q}^+ \times \mathbb{Z}, \oplus, \odot)$ is a ratio seminear-ring. Let $d = (x_0, n_0) \in \mathbb{Q}^+ \times \mathbb{Z}$ be such that $n_0 > 1$. Thus LI $(d) = \{(x,n) \in \mathbb{Q}^+ \times \mathbb{Z} | n > n_0\} = RI$ (d). Let $F_L = \{(x,n) \in \mathbb{Q}^+ \times \mathbb{Z} | n > 2n_0\}$ and $F_R = \{(x,n) \in \mathbb{Q}^+ \times \mathbb{Z} | n > n_0\}$.

It is easy to show that F_L and F_R are filters in ($\mathbb{Q}_{\mathsf{Z}}\mathbf{Z},\oplus$).

Let a be a symbol not representing any element of $\mathbb{Q}^+ \times \mathbb{Z}$. Extend \oplus and \odot from $\mathbb{Q}^+ \times \mathbb{Z}$ to $(\mathbb{Q}^+ \times \mathbb{Z}) \cup \{a\}$ by

- (1) $z \odot a = z \odot d$ and $a \odot z = d \odot z$ for all $z \in \mathbb{Q}^+ \times 2$, $a^2 = d^2$,
- (2) $z \oplus a = a$ for all $z \in F_L$, $z \oplus a = z \oplus d$ for all $z \in (Q^+ \times Z) \setminus F_L$,

 $a \oplus z = a \text{ for all } z \in F_R, a \oplus z = d \oplus z \text{ for all}$ $z \in (Q^+ \times Z) \setminus F_R \text{ and }$

(3) $a \oplus a = d \oplus d$.

By Theorem 3.23, $((Q^{+} \times 2) \cup \{a\}, \oplus, \odot)$ is a seminear-field with a

as a category VI special element.

Corollary 3.27. Let D be a ratio seminear-ring. Let a be a symbol not representing any element of D and d ϵ D. Let F_L and F_R have the properties given in Theorem 3.23. Then $K = DU\{a\}$ is a distributive seminear-field with a as a category VI special element if and only if D is a distributive ratio seminear-ring.

<u>Proof.</u> By Theorem 3.23, we can construct K so that K is a seminear-field with a as a category VI special element, F_L is the left fundamental of a in K and F_R is the right fundamental of a in K. It is clear that if K is a distributive seminear-field with a as a category VI special element then D is a left ratio seminear-ring.

Conversely, assume that D is a left ratio seminear-ring. It is sufficient to show that x(y+z)=xy+xz for all $x,y,z\in K$. Let $x,y,z\in K$. Note that a+a=a or a+a=d+d.

Case 1. x = y = z = a.

Subcase 1.1. a + a = a. Then (K,+) is a band.

 $x(y+z) = a(a+a) = a^2 = d^2 = d^2 + d^2 = a^2 + a^2 = xy + xz$

Subcase 1.2. a + a = d + d.

 $x(y+z) = a(a+a) = a(d+d) = d(d+d) = d^2 + d^2 = a^2 + a^2 = xy + xz$

Case 2. x = y = a, $z \neq a$.

If $z \in F_R$ then d + z = d. Thus $x(y+z) = a(a+z) = a^2 = d^2 = d(d+z) = d^2 + dz = a^2 + az = xy + xz$.

If $z \in D \setminus F_R$ then $x(y+z) = a(a+z) = a(d+z) = d(d+z) = d^2 + dz = a^2 + az = xy + yz$.

Case 3. $x = z = a, y \neq a$.

This proof is similar to Case 2.

Case 4. $x \neq a$, y = z = a.

Subcase 4.1. a + a = a. Then (K, +) is a band.

x(y+z) = x(a+a) = xa = xd = xd + xd = xa + xa = xy + xz.

Subcase 4.2. a + a = d + d.

x(y+z) = x(a+a) = x(d+d) = xd + xd = xa + xa = xy + xz.

Case 5. $x \neq a, y \neq a, z = a$.

If $y \in F_L$ then y + d = d. Thus x(y+z) = x(y+a) = xa = xd = x(y+d) = xy + xd = xy + xa = xy + xz.

If $y \in D \setminus F_L$ then x(y+z) = x(y+a) = x(y+d) = xy + xd = xy + xa = xy + xz.

Case 6. $x \neq a$, y = a, $z \neq a$.

This proof is similar to Case 5.

Case 7. $x = a, y \neq a, z \neq a$.

x(y+z) = a(y+z) = d(y+z) = dy + dz = ay + az = xy + xz.

Case 8. $x \neq a, y \neq a, z \neq a$.

x(y+z) = xy + xz.

Hence K is a distributive seminear-field.

 $\psi = \eta |$. Then the following statements hold :

- (1) $\eta(e) = e', \eta(d) = \eta(d') \text{ and } \eta(a) = a'.$
- (2) $S_L = \emptyset$ if and only if $S_L = \emptyset$ and if $S_L \neq \emptyset$ then $S_L = S_L$ as additive semigroups.
- (3) $D \cdot S_L = \emptyset$ if and only if $D \cdot S_L = \emptyset$ and if $D \cdot S_L \neq \emptyset$ then $D \cdot S_L = D \cdot S_L$ as additive semigroups.
- (4) $S_R = \emptyset$ if and only if $S_R = \emptyset$ and if $S_R \neq \emptyset$ then $S_R = S_R$ as additive semigroups.
- (5) $D S_R = \emptyset$ if and only if $D S_R = \emptyset$ and if $D S_R \neq \emptyset$ then $D S_R = D S_R$ as additive semigroups.
- (6) If a + a = a then a + a = a.
- (7) If a + a = d + d then a + a = d + d.
- (8) If $x \in S_L \cap S_R$ then $\gamma(x) = \gamma'(x)$.
- (9) If $x \in S_L \cap (D \setminus S_R)$ then $Y(x) = \psi(x)$.
- (10) If $x \in (D \setminus S_L) \cap S_R$ then $\psi(x) = \psi'(x)$.
- (11) If $x \in (D \setminus S_1) \cap (D \setminus S_2)$ then $\psi(x) = \psi'(x)$.
- (12) If $x \in S_{T_i}$ and $y \in D \setminus S_{T_i}$ then $\psi(x+y) = \varphi(x) + \psi(y)$.
- (13) If $x \in D^{\setminus}S_T$ and $y \in S_T$ then $\psi(x+y) = \psi(x) + \varphi(y)$.
- (14) If $x,y \in S_T$ and $xy \in S_T$ then $\gamma(xy) = \gamma(x)\gamma(y)$.
- (15) If $x \in S_L$, $y \in D \setminus S_L$ and $xy \in S_L$ then $\varphi(xy) = \varphi(x)\psi(y)$.
- (16) If $x \in D \setminus S_{I}$, $y \in S_{I}$ and $xy \in S_{I}$ then $\psi(xy) = \psi(x)\psi(y)$.
- (17) If $x,y \in D\setminus S_L$ and $xy \in S_L$ then $\psi(xy) = \psi(x)\psi(y)$.
- (18) If $x,y \in S_L$ and $xy \in D \setminus S_L$ then $\psi(xy) = \psi(x)\psi(y)$.
- (19) If $x \in S_T$, $y \in D \setminus S_T$ and $xy \in D \setminus S_T$ then $\psi(xy) = \psi(x)\psi(y)$.
- (20) If $x \in DS_L$, $y \in S_L$ and $xy \in DS_L$ then $\psi(xy) = \psi(x)\psi(y)$.
- (21) If $x,y,xy \in D \setminus S_T$ then $\psi(xy) = \psi(x)\psi(y)$.
- <u>Proof.</u> (1) Since e is the only multiplicative idempotent of K and $\left[\eta(e)\right]^2 = \eta(e)$, $\eta(e) = e$. To show that $\eta(a) = a$, suppose that $\eta(a) \neq a$. Then $\eta(a) = e$ \cdot $\eta(a) = \eta(e)$ \cdot $\eta(a) = \eta(e \cdot a) =$

 $\eta(e \cdot d) = \eta(d)$. Since η is 1-1, a = d, a contradiction. Hence $\eta(a) = a$. Now $\eta(d) = \eta(e \cdot d) = \eta(e \cdot a) = \eta(e) \cdot \eta(a) = e \cdot a = e \cdot d = d$.

(2) Assume that $S_L = \emptyset$. Suppose that $S_L \neq \emptyset$. Let $y \in S_L$. Since η is onto, there exists an element x in D such that $\eta_L(x) = y$. Now x + a = x + d. $a = y + a = \eta(x) + \eta(a) = \eta(x+a)$ $= \eta(x+d) = \eta(x) + \eta(d) = y + d \in D$, a contradiction. Hence $S_L = \emptyset$.

Assume that $S_L \neq \emptyset$. Claim that $\varphi: S_{\overline{L}} \rightarrow S_L$. Let $x \in S_L$. Then x + a = a, so $\varphi(x) + a' = \eta(x) + \eta(a) = \eta(x+a) = \eta(a) = a'$. Thus $\varphi(x) \in S_L$. Hence $S_L \neq \emptyset$. It is clear-that φ is a monomorphism. To show φ is onto, let $y \in S_L$. Then y + a' = a'. Since η is onto, there exists an elements an element x in K such that $\eta(x) = y$. Now $x \neq a$ so $x \in D$. Claim that $x \in S_L$. Suppose that $x \in D \cap S_L$. Then $x + a \neq a$, so $\eta(x+a) \in D'$. $a' = y + a' = \eta(x) + \eta(a) = \eta(x+a) \in D'$, a contradiction. Hence $x \in S_L$. So we get that $\varphi(x) = \eta(x) = y$. Thus φ is onto. Hence $S_L = S_L$ as additive semigroups. Therefore we obtain (2).

(3) Assume that $D \cdot S_L = \emptyset$. Then $S_L = D$. To show that $S_L = D$, let $y \in D$. Since η is onto, there exists an element $x \in S_L$ such that $\eta(x) = y$. Now x + a = a so $y + a = \eta(x) + \eta(a)$ $= \eta(x+a) = \eta(a) = a$. Hence $y \in S_L$. Therefore $D \cdot S_L = \emptyset$.

Assume that $D \cdot S_L \neq \emptyset$. Claim that $\psi : D \cdot S_{\overline{L}} \rightarrow D \cdot S_L$. Let $x \in D \cdot S_L$. Then $\psi(x) + a = \eta(x) + \eta(a) = \eta(x+a) = \eta(x+d) = \eta(x) + \eta(d) = \psi(x) + d$ so $\psi(x) \in D \cdot S_L$. Thus $D \cdot S_L \neq \emptyset$. It is clear that ψ is a monomorphism. To show that ψ is onto, let $y \in D \cdot S_L$. Then y + a = y + d. Since η is onto, there exists an element x in K such that $\eta(x) = y$. Now $x \neq a$. If $x \in S_L$ then x + a = a. So $y + d = y + a = \eta(x) + \eta(a) = \eta(x+a) = \eta(a) = a$,

a contradiction. Hence $x \in D \setminus S_L$. Therefore ψ is onto and so $D \setminus S_L \cong D \setminus S_L$ as additive semigroups. We obtain (3).

The proofs of (4) and (5) are similar to the proof of (2) and (3), respectively.

The proofs of (6) - (21) are straightforward and we will omit them.

#

Theorem 3.29. Let D and D' be ratio seminear-rings and let d and d'elements in D and D' respectively. Let a and a' be symbols not representing any element of D and D' respectively. Let $F_L \subseteq LI_D(d)$ be either \emptyset or a filter in (D,+) and let $F_R \subseteq RI_D(d)$ be either \emptyset or a filter in (D,+). Let $F_L \subseteq LI_D(d')$ be either \emptyset or a filter in (D',+). Suppose that there are bijections $\psi: F_{\overline{L}} \to F_L'$ and $\psi: D \to F_{\overline{L}} \to D \to F_L'$ such that $\psi(x+y) = \psi(x) + \psi(y)$ for all $x,y \in F_L$, $\psi(d) = d'$ if $d \in F_L$, $\psi(x+y) = \psi(x) + \psi(y)$ for all $x,y \in D \to F_L$ and $\psi(d) = d'$ if $d \in D \to F_L$. Suppose that there are bijections $\psi: F_{\overline{R}} \to F_R'$ and $\psi: D \to F_{\overline{R}} \to D \to F_R'$ such that $\psi(x+y) = \psi(x) + \psi(y)$ for all $x,y \in F_R$, $\psi(d) = d'$ if $d \in F_R$, $\psi(x+y) = \psi(x) + \psi'(y)$ for all $x,y \in F_R$, $\psi(d) = d'$ if $d \in F_R$, $\psi(x+y) = \psi(x) + \psi'(y)$ for all $x,y \in D \to F_R$ and $\psi'(d) = d'$ if $d \in D \to F_R$.

Suppose that the following conditions are satisfied:

- (1) $F_L = \emptyset$ iff $F_L = \emptyset$.
- (2) $F_{T} = D \text{ iff } F_{T} = D$.
- (3) $\emptyset \neq F_T \subset D \text{ iff } \emptyset \neq F_T \subset D$.
- (4) $F_R = \emptyset$ iff $F_R = \emptyset$.
- (5) $F_R = D$ iff $F_R = D'$.
- (6) $\emptyset \neq F_R \subset D \text{ iff } \emptyset \neq F_R \subset D.$
- (7) If a + a = a then a + a = a.
- (8) If a + a = d + d then a + a = d + d.

- (9) If $x \in F_{L} \cap F_{R}$ then $\psi(x) = \psi'(x)$.
- (10) If $x \in F_{T_i} \cap (D \setminus F_{R})$ then $\psi(x) = \psi'(x)$.
- (11) If $x \in (D \setminus F_L) \cap F_R$ then $\psi(x) = \varphi'(x)$.
- (12) If $x \in (D \setminus F_T) \cap (D \setminus F_R)$ then $\psi(x) = \psi(x)$.
- (13) If $x \in F_{t}$ and $y \in D \setminus F_{t}$ then $\psi(x+y) = \varphi(x) + \psi(y)$.
- (14) If $x \in D \setminus F_L$ and $y \in F_L$ then $\psi(x+y) = \psi(x) + \varphi(y)$.
- (15) If $x,y \in F_{T}$ and $xy \in F_{T}$ then $\psi(xy) = \psi(x)\psi(y)$.
- (16) If $x \in F_L$, $y \in D \setminus F_L$ and $xy \in F_L$ then $\phi(xy) = \phi(x)\psi(y)$.
- (17) If $x \in D \setminus F_{L}$, $y \in F_{L}$ and $xy \in F_{L}$ then $\psi(xy) = \psi(x)\psi(y)$.
- (18) If $x,y \in D \setminus F_1$ and $xy \in F_1$ then $\varphi(xy) = \psi(x)\psi(y)$.
- (19) If $x,y \in F_T$ and $xy \in D \setminus F_T$ then $\psi(xy) = \psi(x)\psi(y)$.
- (20) If $x \in F_{\tau}$, $y \in D \setminus F_{\tau}$ and $xy \in D \setminus F_{\tau}$ then $\psi(xy) = \varphi(x)\psi(y)$.
- (21) If $x \in D \setminus F_L$, $y \in F_L$ and $xy \in D \setminus F_L$ then $\psi(xy) = \psi(x)\psi(y)$.
- (22) If $x,y,xy \in D \setminus F_T$ then $\psi(xy) = \psi(x)\psi(y)$.

Then $\eta : K \rightarrow K$ defined by

$$\eta(x) = \begin{cases} \varphi(x) & \text{if } x \in F_L, \\ \psi(x) & \text{if } x \in D \setminus F_L, \\ a' & \text{if } x = a, \end{cases}$$

is an isomorphism between K and K where $K = D \cup \{a\}$ and $K = D \cup \{a\}$ are seminear-fields with a and a as category VI special elements, respectively.

Proof. By Theorem 3.23, we can construct K and K so that K and K are seminear-fields and a and a are category VI special elements of K and K, respectively.

Case I
$$F_L = \emptyset$$
. Then $F_L = \emptyset$. Define $\eta : K \rightarrow K$ by
$$\eta(x) = \begin{cases} \psi(x) \text{ if } x \in D, \\ a & \text{if } x = a. \end{cases}$$

It is clear that η is a bijection. We need only show that

 $(a_1) \ n(xy) = n(x)n(y)$ for all $x,y \in K$ and $(b_1) \ n(x+y) = n(x) + n(y)$ for all $x,y \in K$. Note that, by(22), $\psi(xy) = \psi(x)\psi(y)$ for all $x,y \in D$.

To prove (a_1) , let $x,y \in K$.

Case 1. x = y = a. Then $a^2 = d^2$ and a = d. $\eta(xy) = \eta(a^2) = \eta(d^2) = \psi(d^2) = \psi(d)\psi(d) = d = a = \eta(a)\eta(a) = \eta(x)\eta(y)$.

Case 2. x = a, $y \neq a$. Then ay = dy. $\eta(xy) = \eta(ay) = \eta(dy) = \psi(dy) = \psi(d)\psi(y) = d \psi(y) = a\psi(y) = \eta(a)\eta(y) = \eta(x)\eta(y)$.

Case 3. $x \neq a, y = a$.

This proof is similar to Case 2.

Case 4. $x \neq a$, $y \neq a$. Then $xy \in D$.

 $\eta(xy) = \psi(x) = \psi(x) \psi(y) = \eta(x) \eta(y).$ To prove (b_1) , let $x, y \in K$.

Case 1. x = y = a.

Subcase 1.1. a + a = a. Then a + a = a.

 $\eta(x+y) = \eta(a+a) = \eta(a) = a = a + a = \eta(a) + \eta(a) = \eta(x) + \eta(y).$ Subcase 1.2. a + a = d + d. Then a + a = d + d.

 $\eta(x+y) = \eta(a+a) = \eta(d+d) = \psi(d+d) = \psi(d) + \psi(d) = d + d = a + a$

 $= \eta(a) + \eta(a) = \eta(x) + \eta(y).$

Case 2. $x = a, y \neq a$.

If $y \in F_R$ then by (11) $\psi(y) = \psi(y)$. Thus $a = a + \psi(y) = a + \psi(y)$.

 $\eta(x+y) = \eta(a+y) = \eta(a) = a = a + \psi(y) = \eta(a) + \eta(y) = \eta(x) + \eta(y).$

If $y \in D \setminus F_R$ then by (12) $\psi(y) = \psi(y)$. Thus a + y = d + y

and $a' + \psi(y) = a' + \psi(y) = d' + \psi(y)$.

 $\eta(x+y) = \eta(a+y) = \eta(d+y) = \psi(d+y) = \psi(d) + \psi(y) = d + \psi(y) = a + \psi(y)$ $= \eta(a) + \eta(y) = \eta(x) + \eta(y).$

Case 3. $x \neq a$, y = a. Then x + a = x + d. n(x+y) = n(x+a) = n(x+d) $= \psi(x+d) = \psi(x) + \psi(d) = \psi(x) + d = \psi(x) + a = n(x) + n(a) = n(x) + n(y).$

Case 4. $x \neq a, y \neq a$.

 $\eta(x+y) = \psi(x+y) = \psi(x) + \psi(y) = \eta(x) + \eta(y).$

Hence n is an isomorphism.

Case II
$$F_L = D$$
. Then $F_L = D$. Define $\eta : K \rightarrow K$ by
$$\eta(x) = \begin{cases} \gamma(x) & \text{if } x \in D, \\ a & \text{if } x = a. \end{cases}$$

It is clear that η is a bijection. We need only show that $(a_2) \eta(xy) = \eta(x)\eta(y)$ for all $x,y \in K$ and $(b_2) \eta(x+y) = \eta(x) + \eta(y)$ for all $x,y \in K$. Note that, by (15), $\psi(xy) = \psi(x)\psi(y)$ for all $x,y \in D$. The proof of (a_2) is the same as the proof of (a_1) . To prove (b_2) , let $x,y \in K$.

Case 1. x = y = a.

This proof is the same as the proof of Case 1 in (b₁).

Case 2. $x = a, y \neq a$.

If $y \in F_R$ then, by (9), $\Psi(y) = \Psi(y)$. Thus $a = a + \Psi(y) = a + \Psi(y)$. $\eta(x+y) = \eta(a+y) = \eta(a) = a = a + \Psi(y) = \eta(a) + \eta(y) = \eta(x) + \eta(y)$. If $y \in D \setminus F_R$ then, by (10), $\Psi(y) = \Psi(y)$. Thus a + y = d + y and $a + \Psi(y) = a + \Psi(y) = d + \Psi(y)$, so $\eta(x+y) = \eta(a+y) = \eta(d+y) = \Psi(d+y) = \Psi(d) + \Psi(y) = d + \Psi(y) = a + \Psi(y) = \eta(a) + \eta(y) = \eta(x) + \eta(y)$. Case 3. $x \neq a$, y = a. Then x + a = a and $\Psi(x) + a = a$. $\eta(x+y) = \eta(x+a) = \eta(a) = a = \Psi(x) + a = \eta(x) + \eta(a) = \eta(x) + \eta(y)$. Case 4. $x \neq a$, $y \neq a$. $\eta(x+y) = \Psi(x+y) = \Psi(x) + \Psi(y) = \eta(x) + \eta(y)$.

Hence η is an isomorphism.

It is clear that η is a bijection. We need only show that $(a_3) \eta(xy) = \eta(x)\eta(y)$ for all $x,y \in K$ and $(b_3) \eta(x+y) = \eta(x) + \eta(y)$ for all $x,y \in K$.

To prove (a_3) , let $x,y \in K$.

Case 1. x = y = a.

Subcase 1.1. d, $d^2 \in F_L$. By (15), $\Psi(d^2) = \Psi(d)\Psi(d)$. $\eta(xy) = \eta(a^2) = \eta(d^2) = \Psi(d)\Psi(d) = d^2 = a^2 = \eta(a)^2 = \eta(x)\eta(y)$.

Subcase 1.2. $d \in F_L$, $d^2 \in D \setminus F_L$. By (19), $\psi(d^2) = \Psi(d)\Psi(d)$. $\eta(xy) = \eta(a^2) = \eta(d^2) = \psi(d^2) = \Psi(d)\Psi(d) = d^2 = a^2 = \eta(a)^2 = \eta(x)\eta(y)$.

 $\frac{\text{Subcase 1.3.}}{\eta(\mathbf{x}\mathbf{y})} = \eta(\mathbf{a}^2) = \eta(\mathbf{d}^2) = \psi(\mathbf{d})\psi(\mathbf{d}) = \mathbf{d}^2 = \mathbf{d}^2 = \eta(\mathbf{a}^2) = \mathbf{d}^2 = \mathbf{d}$

Subcase 1.4. d, $d^2 \in D \setminus F_L$. By (22), $\psi(d^2) = \psi(d)\psi(d)$. $\Pi(xy) = \eta(a^2) = \eta(d^2) = \psi(d)\psi(d) = d = a^2 = \eta(a)^2 = \eta(x)\eta(y)$.

Case 2. $x = a, y \neq a$.

Subcase 2.1. $d,y,dy \in F_L$. By (15), $\Psi(dy) = \Psi(d)\Psi(y)$. $\Pi(xy) = \Pi(ay) = \Pi(dy) = \Psi(dy) = \Psi(d)\Psi(y) = d\Psi(y) = a\Psi(y) = \Pi(a)\Pi(y) = \Pi(x)\Pi(y)$.

Subcase 2.2. $d,y \in F_L, dy \in D \setminus F_L$. By (19), $\psi(dy) = \psi(d)\psi(y)$. $\eta(xy) = \eta(ay) = \eta(dy) = \psi(dy) = \psi(d)\psi(y) = d \psi(y) = a \psi(y) = \eta(a)\eta(y) = \eta(x)\eta(y)$.

Subcase 2.3. d,dy \in F_L , $y \in D \setminus F_L$. By (16), ψ (dy) = ψ (d) ψ (y). $\eta(xy) = \eta(ay) = \eta(dy) = \psi(d)\psi(y) = d \psi(y) = a \psi(y) = \eta(a)\eta(y) = \eta(x)\eta(y)$.

Subcase 2.4. $d \in D \setminus F_L$, y, $dy \in F_L$. By (17), $\psi(dy) = \psi(d)\psi(y)$. $\eta(xy) = \eta(dy) = \eta(dy) = \psi(d)\psi(y) = d \psi(y) = a \psi(y) = \eta(x)\eta(y)$.

Subcase 2.5. d,y \in D\F_L,dy \in F_L. By (18), ψ (dy) = ψ (d) ψ (y). $\eta(xy) = \eta(ay) = \eta(dy) = \psi(d)\psi(y) = d \psi(y) = a \psi(y) = \eta(a) \eta(y) = \eta(x) \eta(y)$.

Subcase 2.6. d,dy $\varepsilon \text{ DVF}_L$,y $\varepsilon \text{ F}_L$. By (21), $\psi(\text{dy}) = \psi(\text{d}) \psi(\text{y})$. $\eta(\text{xy}) = \eta(\text{ay}) = \eta(\text{dy}) = \psi(\text{dy}) = \psi(\text{d}) \psi(\text{y}) = \text{d} \psi$

Subcase 2.7. $d \in F_L$, y, $dy \in D \setminus F_L$. By (20), $\psi(dy) = \Psi(d)\psi(y)$. $\eta(xy) = \eta(ay) = \eta(dy) = \psi(dy) = \Psi(d)\psi(y) = d \Psi(y) = a \Psi(y) = \eta(a)\eta(y) = \eta(x)\eta(y)$.

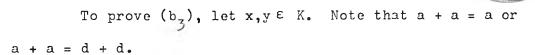
Subcase 2.8. $d,y,dy \in D^{-}F_{L}$. By (22), $\psi(dy) = \psi(d)\psi(y)$. $\eta(xy) = \eta(ay) = \eta(dy) = \psi(dy) = \psi(d)\psi(y) = d\psi(y) = a\psi(y) = \eta(a)\eta(y) = \eta(x)\eta(y)$.

Case 3. $x \neq a$, y = a.

This proof is similar to Case 2.

Case 4. $x \neq a, y \neq a$.

By (9)-(16), we can show that $\eta(xy) = \eta(x)\eta(y)$.



Case 1. x = y = a.

Subcase 1.1. a + a = a. Then a + a = a.

 $\eta(x+y) = \eta(a+a) = \eta(a) = a = a + a = \eta(a) + \eta(a) = \eta(x) + \eta(y).$ Subcase 1.2. a + a = d + d. Then a + a = d + d.

If $d \in F_L$ then $d + d \in F_L$. Thus $\eta(x+y) = \eta(a+a) = \eta(d+d) = \Upsilon(d+d)$ = $\Upsilon(d) + \Upsilon(d) = d + d = a + a = \eta(a) + \eta(a) = \eta(x) + \eta(y)$.

If $d \in D \setminus F_L$ then $d + d \in D \setminus F_L$. Thus $\eta(x+y) = \eta(a+a) = \eta(d+d) =$

 $\psi(d+d) = \psi(d) + \psi(d) = d + d = a + a = \eta(a) + \eta(a) = \eta(x) + \eta(y)$

Case 2. $x = a, y \neq a$.

Subcase 2.1. $F_L \cap F_R = \emptyset$.

Subcase 2.1.1. $y \in F_R$. Then $y \in D - F_L$ and $\psi(y) = \psi(y)$.

 $\eta(x+y) = \eta(a+y) = \eta(a) = a = a + \varphi(y) = \eta(a) + \psi(y) = \eta(x) + \eta(y)$.

Subcase 2.1.2. $y \in D^-F_R$, $y \in F_L$. Then $\Psi(y) = \psi'(y)$.

If $d \in F_L$ then $d + y \in F_L$. Thus $\eta(x+y) = \eta(a+y) = \eta(d+y) =$

 $\Upsilon(d+y) = \Upsilon(d) + \Upsilon(y) = d' + \psi'(y) = a' + \psi'(y) = \eta(a) + \gamma(y) = \eta(a) +$

 $\eta(x) + \eta(y)$.

If $d \in D \setminus F_L$ then $d + y \in D \setminus F_L$. Thus $\eta(x+y) = \eta(a+y) = \eta(d+y) = \psi(d+y) = \frac{by(14)}{4}\psi(d) + \psi(y) = d + \psi(y) = a + \psi(y) = \eta(a) + \psi(y) = \eta(x) + \eta(y)$.

Subcase 2.1.3. $y \in D \setminus F_R$, $y \in D \setminus F_L$. Then $\psi(y) = \psi'(y)$.

If $d \in F_L$ then $d + y \in D \setminus F_L$. Thus $\eta(x+y) = \eta(a+y) = \eta(d+y) = \psi(d+y) = \frac{byh}{3} \varphi(d) + \psi(y) = d' + \psi'(y) = a' + \psi'(y) = \eta(a) + \psi(y) = \eta(x) + \eta(y)$.

If $d \in D \setminus F_L$ then $\eta(x+y) = \eta(a+y) = \eta(d+y) = \psi(d+y) = \psi(d) + \psi(y)$ = $d + \psi(y) = a + \psi(y) = \eta(a) + \psi(y) = \eta(x) + \eta(y)$.

Subcase 2.2. $F_L \cap F_R \neq \emptyset$.

Subcase 2.2.1. $y \in F_L \cap F_R$. Then $\psi(y) = \psi(y)$

and $a = a + \psi(y)$.

 $\eta(x+y) = \eta(a+y) = \eta(a) = a = a + \psi(y) = \eta(a) + \psi(y) = \eta(x) + \eta(y).$ Subcase 2.2.2. $y \in F_{T} \cap (D \setminus F_{R}).$

This proof is the same as the proof of Subcase 2.1.2.

Subcase 2.2.3. $y \in (D \setminus F_L) \cap F_R$.

This proof is the same as the proof of Subcase 2.1.1.

Subcase 2.2.4. $y \in (D \setminus F_L) \cap (D \setminus F_R)$.

This proof is the same as the proof of Subcase 2.1.3.

Case 3. $x \neq a$, y = a.

Subcase 3.1. $x \in F_L$. Then $a = \varphi(x) + a$.

 $\eta(x+y) = \eta(x+a) = \eta(a) = a = \gamma(x) + a = \eta(x) + \eta(a) = \eta(x) + \eta(y)$

Subcase 3.2. $x \in D \setminus F_L$. Thus $x + d \in D \setminus F_L$ and $\psi(x) + a' = \psi(x) + d'$. If $d \in D \setminus F_L$ then $\eta(x+y) = \eta(x+a) = \eta(x+d) = \psi(x+d) = \psi(x) + \psi(d) = \psi(x) + d' = \psi(x) + a' = \eta(x) + a' = \eta(x) + \eta(a) = \eta(x) + \eta(y)$. If $d \in F_L$ then $\eta(x+y) = \eta(x+a) = \eta(x+d) = \psi(x+d) = \psi(x+d) = \psi(x) + \psi(x) + \psi(d) = \psi(x) + d' = \psi(x) + a' = \eta(x) + \eta(a) = \eta(x) + \eta(y)$.

Case 4. $x \neq a, y \neq a$.

Subcase 4.1. $x + y \in F_L$. Since F_L is a filter in (D,+), $x,y \in F_L$.

 $\eta(x+y) \neq \varphi(x+y) = \varphi(x) + \varphi(y) = \eta(x) + \eta(y)$.

Subcase 4.2. $x + y \in D \setminus F_{T}$.

 $\underline{\text{Subcase 4.2.1.}} \quad \text{x ϵ F_L.} \quad \text{Then y ϵ $D $\sim F_L which is an ideal of $(D,+)$.}$

 $\eta(x+y) = \psi(x+y) = \psi(x+y) + \psi(y) = \eta(x) + \eta(y).$

Subcase 4.2.2. x & D-F_I.

If $y \in F_T$ then $\eta(x+y) = \psi(x+y) \stackrel{\text{by}(14)}{=} \psi(x) + \psi(y) = \eta(x) + \eta(y)$.

If $y \in D \setminus F_L$ then $\eta(x+y) = \psi(x+y) = \psi(x) + \psi(y) = \eta(x) + \eta(y)$.

Hence η is an isomorphism.

Remark : η : $K \rightarrow K$ may be defined by

$$\eta(x) = \begin{cases} \psi(x) & \text{if } x \in F_R, \\ \psi'(x) & \text{if } x \in D \setminus F_R, \\ a & \text{if } x = a. \end{cases}$$

The proof is straighforward but very long.

We shall now give an example where $F_L\cong F_L$ as additive semigroups and D-F_T \cong D-F_T as additive semigroups but K \not K .

Example 3.30. $(Q^+,+,\cdot)$ is a ratio seminear-ring where + is defined by $x + y = \min \{x,y\}$ and \cdot is the usual multiplication. Let d, $d \in Q^+$. Then d = rd where $r \in Q^+$. Let $S_R = S_L = LI_+(d) = \{x \in Q^+ | x \ge d\} = RI_+(d)$. Let $F_R = F_L = LI_+(d^-) = \{x \in Q^+ | x \ge 2d^-\} = \{x \in Q^+ | x \ge 2d^-\} = RI_+(d^-)$. It is clear that F_L and F_L are filters in (Q^+, \min) .

Define $\Psi: F_L \to F_L'$ by $\Psi(x) = \frac{2x}{r}$ for all $x \in F_L$. Then Ψ is clearly a bijection. To show that Ψ is homomorphism, let $x,y \in F_L$. We may assume $x \geq y$, so x + y = y. Thus $\Psi(x+y) = \Psi(y)$

 $= \frac{2y}{r} = \frac{2x}{r} + \frac{2y}{r} = \psi(x) + \psi(y). \text{ Hence } F_L = F_L \text{ as additive semigroups.}$ $\mathbb{Q}^+ F_L = \{x \in \mathbb{Q}^+ | x < d\} \text{ and } \mathbb{Q}^+ F_L = \{x \in \mathbb{Q}^+ | x < \frac{2d}{r}\}.$

Thus $Q^+ \setminus F_T$ and $Q^+ \setminus F_T$ are ideals of $(Q^+,+)$.

Define $\psi: \mathbb{Q}^+ F_L \to \mathbb{Q}^+ F_L$ by $\psi(x) = \frac{2x}{r}$ for all $x \in \mathbb{Q}^+ F_L$. Using the same proof as was used for φ we can show that $\mathbb{Q}^+ F_L = \mathbb{Q}^+ F_L$ as additive semigroups.

Let a and a be symbols not representing any element of \mathbb{Q}^+ . Extend + and • from \mathbb{Q}^+ to \mathbb{Q}^+ U $\{a\}$ and • and + from \mathbb{Q}^+ to \mathbb{Q}^+ U $\{a'\}$ by

- (1) xa = xd and ax = dx for all $x \in \mathbb{Q}^+$, $a^2 = d^2$,
- (2) x + a = a + x = a for all $x \in F_L$, x + a = x + d and a + x = d + x for all $x \in Q^+ F_T$,
 - (3) a + a = a and
 - (1) ya = yd and a y = d y for all $y \in \mathbb{Q}^+$, a = d
- (2) y + a = a + y = a for all $y \in F_L$, y + a = y + d and a + y = d + y for all $y \in Q^+ F_L$,
 - (3') a + a' = a'.

By Theorem 3.23, $(Q^+ U \{a\},+,\cdot)$ and $(Q^+ U \{a'\},+,\cdot)$ are seminear-fields and a and a are category VI special elements of $Q^+ U \{a\}$ and $Q^+ U \{a'\}$, respectively. We shall show that $Q^+ U \{a\} \neq Q^+ U \{a'\}$.

Suppose that $\mathbb{Q}^+ \cup \{a\} \cong \mathbb{Q}^+ \cup \{a\}$. Let η be an isomorphism from $\mathbb{Q}^+ \cup \{a\}$ to $\mathbb{Q}^+ \cup \{a\}$. By Theorem 3.28 (1), $\eta(a) = a$ and $\eta(d) = d$. Since $d \in F_L$, d + a = a. Thus $a' = \eta(a) = \eta(d+a) = \eta(d) + \eta(a) = d + a' = d + d'$, a contradiction. Hence $\mathbb{Q}^+ \cup \{a\} \not = \mathbb{Q}^+ \cup \{a\}$.

Now we shall compute all finite seminear-fields with a category VI special element •

At first, we shall compute all finite seminear-fields of order 2. Let $K = \{a,e\}$ be a seminear-field with a as a category VI special element. Since $\{e\}$ is a ratio seminear-ring, e+e=e. Now a+a=e or a+a=a, a+e=e or a+e=a and e+a=e or e+a=a. So we have 8 cases to consider. They are:

+ e	е	a		+	е	а		+	е	a		+	e	a
е	е	е		е	е	е		е	е	е		е	е	a
а	е	е		a	е	а		a	а	е	•	a	е	е
(1)					(2)			(3)				(4)		
+	e	а		+	е	a		+	е	а		+	е	a
е	е	a	•	е	е	а	-	е	е	е		е	е	а
а	a	е	·	a	е	а	-	а	а	а	•	а	а	a
(5)				(6)				(7)				(8)		

K with tables(3) and (4) are not additive semigroups since $a + (a+a) \neq (a+a) + a$. And we can verify that K with tables (1), (2),(5),(6),(7) and (8) are additive semigroups. By defining f(e) = a and f(a) = e, we have that semigroup with table (2) is isomorphic to semigroup with table (8). Therefore up to isomorphism there are 5 seminear-field with a as a category VI special element.

Finally we shall compute all seminear-field of order greater than 2.

Theorem 3.31. Let K be a finite seminear-field of order greater than 2 and let a be category VI special element of K. Let $D = K \setminus \{a\}$, let e be the identity of (D, \cdot) and let d be an element of D such that ax = dx and xa = xd for all $x \in K$. Then

- (1) x + a = x + d, a + x = d + x for all $x \in D$ and a + a = a
- or (2) x + a = x + d, a + x = d + x for all $x \in D$ and a + a = d
- or (3) x + a = a, a + x = d + x for all $x \in D$ and a + a = a or

(4) x + a = x + d, a + x = a for all $x \in D$ and a + a = a.

Proof. By Theorem 3.12, D is a ratio seminear-ring. By Theorem 1.15, $D_1 = \{x \in D \mid x + e = x\}$ and $D_2 = \{x \in D \mid x + e = e\}$ are the unique ratio subseminear-rings of D such that (1) x + y = x for all $x, y \in D_1$, (2) x + y = y for all $x, y \in D_2$, (3) $(D_1 +) \cong (D_1 +) \times (D_2 +)$ and (4) $D_2 + D_1 = \{e\}$. It is clear that $D_2 = LI_D(e)$ and so $D_2 \cdot d = LI_D(e) \cdot d = LI_D(d)$ by Proposition 1.26 (4.1). Claim that $D_1 = RI_D(e)$. Let $x \in D_1$. Then $x^{-1} + e = x^{-1}$. Multiply on the right by x, we obtain that e + x = e. Hence $x \in RI_D(e)$. Therefore $D_1 \subseteq RI_D(e)$. Let $y \in RI_D(e)$. Then e + y = e, so $y^{-1} = ey^{-1} = (e+y)y^{-1} = ey^{-1} + yy^{-1} = y^{-1} + e$. Thus $y^{-1} \notin D_2$. Since (D_1, \cdot) is a group, $y \in D_1$. Hence $RI_D(e) \subseteq D_1$. Therefore $D_1 = RI_D(e)$. By Proposition 1.26 (4.2), $RI_D(e) = RI_D(e) \cdot d = D_1 \cdot d$.

Let $S_L = \{x \in D | x + a = a\}$ and $S_R = \{x \in D | a + x = a\}$. By Proposition 3.21 (1), $S_L \subseteq LI_D(d)$ and $S_R \subseteq RI_D(d)$.

Claim that (1) if S_L is nonempty them $S_L = D_2 \cdot d$,

(2) if S_R is nonempty then $S_R = D_1 \cdot d$.

To prove claim (1), assume that S_L is nonempty. To show that $D_2 \cdot d \subseteq S_L$, let $x \in D_2 \cdot d$. Then $xd^{-1} \in D_2$. Since $S_L \neq \emptyset$, there exists an element y in S_L . Thus y + a = a, so $e = dd^{-1} = ad^{-1} = (y+a)d^{-1} = yd^{-1} + ad^{-1} = yd^{-1} + dd^{-1} = yd^{-1} + e$. Hence $yd^{-1} \in D_2$. Now $xd^{-1} + yd^{-1} = yd^{-1}$. Multiply this equation by d, we obtain that $x + y = y \in S_L$. Since S_L is a filter in (D, +), $x \in S_L$. Hence $D_2 \cdot d \subseteq S_L$. Therefore $S_L = D_2 \cdot d$.

The proof of claim (2) is similar to the proof of claim (1). Consider D_1 and D_2 .

Case 1. $D_1 \neq \{e\}, D_2 \neq \{e\}.$ Claim that $S_L = S_R = \emptyset.$

Suppose that S_L is a filter in (D,+). Then, by Claim (1), $S_L = D_2 \cdot d. \text{ Let } d_1 \in D_1 \setminus \{e\}, d_2 \in D_2 \setminus \{e\}. \text{ Then } (d_1 d_1 + d_2 d_2) + d$ $= d_1 d_1 + (d_2 d_1 + d_2) = d_1 d_1 + (d_2 + e) d_2 = d_1 d_2 + e d_2 = d_1 d_2 \neq d_2$

(since if $d_1d = d$ then $d_1 = e$, a contradiction). Hence $d_1d + d_2d \notin LI_D(d) = D_2 \cdot d. \quad \text{Now } d_2 \cdot d \in D_2 \cdot d. \quad d_2d + (d_1d + d_2d)$ $= (d_2d + d_1d) + d_2d = (d_2 + d_1)d + d_2d = ed + d_2d = (e + d_2)d = d_2d \in D_2 \cdot d = S_L \cdot \text{Since } S_L \text{ is a filter in } (D,+), d_1d + d_2d \in S_L = D_2 \cdot d \text{ contradicting the fact that } d_1d + d_2d \notin D_2 \cdot d \cdot \text{Hence } S_L = \emptyset.$

Similarly, if S_R is a filter in (D,+) then we get a contradiction. Hence $S_R = \emptyset$. Therefore x + a = x + d, a + x = d + x for all $x \in D$. By Theorem 3.14 (2), we obtain the a + a = a or a + a = d + d = d. Hence we get (1) and (2).

Case 2. $D_1 = \{e\}$, $D_2 \neq \{e\}$. Claim that (3) $S_R = \emptyset$, (4) $S_L = \emptyset$ or $S_L = D$.

To prove claim (3), suppose that S_R is a filter in (D,+). By Claim (1), $S_R = D_1 \cdot d = \{e\} \cdot d = \{d\}$. Let $d_2 \in D_2 \setminus \{e\}$. Then $d_2 + e = e$, so $d_2 d + d = d \in D_1 \cdot d = S_R$. Since S_R is a filter in (D,+), $d_2 d = d$. It follows that $d_2 = e$, a contradiction. Hence $S_R = \emptyset$.

To prove claim (4), suppose that $S_L \neq \emptyset$. Then S_L is a filter in (D,+). To show that $S_L = D$, let $x \in D$. Then $xd^{-1} \in D$. Since $(D,+) = (D_1,+) \times (D_2,+)$, there exists an element d_2^* in D_2 such that $xd^{-1} = e + d_2^*$. Thus $xd^{-1} = e + d_2^* \in D_2$, so $x = d_2^*d \in D_2$. d. Let $y \in S_L$. Since $S_L \subseteq LI_D(d) = D_2$. d, $y = d_2^*$. d for some $d_2 \in D_2$. Thus $x + y = d_2^*d + d_2^*d = (d_2^* + d_2^*)d = d_2^*d = y \in S_L$. Since S_L is a filter in (D,+), $x \in S_L$. Hence $D = S_L$. Therefore $S_L = \emptyset$ or $S_L = D$. If $S_L = S_R = \emptyset$ then we obtain (1) or (2). If $S_L = D$ and $S_R = \emptyset$ then x + a = a and a + x = d + x for all $x \in D$. By Proposition 3.22 (2), we get that a + a = a. Hence we obtain (3).

Case 3. $D_1 \neq \{e\}, D_2 = \{e\}.$

Using a proof similar to the one in Case 2, we can show that \mathbf{S}_{L} = \emptyset and (S $_{R}$ = \emptyset or S $_{R}$ = D).

If $S_L = S_R = \emptyset$ then we obtain (1) or (2). If $S_L = \emptyset$ and $S_R = D$ then x + a = x + d and a + x = a for all $x \in D$. By Proposition 3.22 (1), we get that a + a = a. Hence we obtain (4). $\underline{Case \ 4} \cdot D_1 = D_2 = \{e\} \cdot Since \ (D,+) = (D_1,+) \times (D_2,+), \ D = \{e\} \cdot B$ Hence |K| = 2. This is a contradiction. Therefore this case cannot occur.

#