การประหยัดพลังงานในโรงงานโดยการวิเคราะห์เอ็กเซอร์ชี

นางสาว รุจิรา ตาปราบ

วัทยานีพนธ์นี้ เป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบันริต ภาควิชาวิศวกรรม เคมี บันริตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ.2531

ISBN 974-568-931-9 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

014141

11748118X

Energy Conservation in Plants by Exergy Analysis

Miss Ruchira Taprap

A Thesis Submitted in Partial Fulfillment of The Requirements

for the Degree of Master of Engineering

Department of Chemical Engineering

Graduate School

Chulalongkorn University

1988

ISBN 974-568-931-9

หัวข้อวิทยานิพนธ์

การประหยัดผลังงานในโรงงานโดยการวิเคราะห์เอ็กเซอร์ฮี

โดย

นางสาว รุจิรา ตาปราบ

ภาควิชา

วีศวกรรมเคมื

อาจารย์ที่ปรึกษา

รองศาสตราจารย์ ดร. วิวัฒน์ ตัณฑะพานิชกุล

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ชองการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

คณบดีบัณฑิตวิทยาลัย
 ศาสตราจารย์ ดร. ถาวร วัชราภัย >

คณะกรรมการสอบวิทยานีพนธ์

(ผู้ช่วยศาสตราจารย์ ดร. ศคิธร บุญ-หลง)

(รองศาสตราจารย์ ดร. วิวัฒน์ ตัณฑะพานีชกุล)

ได้ () รู้ ! ___________กรรมการ

(รองศาสตราจารย์ ดร. เกริกชัย สุกาญจนัจที)

(รองศาสตราจารย์ ดร. วรพัฒน์ อรรถยุกติ)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

รุ่มรา ตาบราบ : การประหยัดพลังงานในโรงงานโดยการวีเคราะห์เอ็กเชอร์ซี CENERGY CONSERVATION IN PLANTS BY EXERGY ANALYSIS) อ.ที่ปรึกษา : รศ.ดร.วิวัฒน์ ตัณฑะพานิชกุล, 164 หน้า.

งานวิจัยนี้ ได้วิเคราะห์การใช้พลังงานความร้อนในโรงงานยิบชั่มบอร์ด ได้พิจารณาระบบชอง หม้อไอน้ำ, เตาอบบอร์ด, อุปกรณ์แคลไซน์แร่ (Imp. mill), เตาอบแบบหมุน โดยเน้นให้ทราบถึง ประสิทธิภาพเชิงความร้อน(กฎข้อที่หนึ่ง) (γ) และประสิทธิผล(กฎข้อที่สอง) (€) รวมทั้งการสูญเสีย เนื่องจาก Irreversibility เพื่อใช้เป็นแนวทางในการพิจารณาการปรับปรุง เพื่อประหยัดผลังงานต่อไป จากการวิเคราะห์พบว่า หม้อไอน้ำมีค่า γ = 90.90%, € = 31.16% เตาอบบอร์ดมีค่า γ = 45.23%, € = 24.78% Imp. mill มีค่า η = 76.40%, € = 16.16% และเตาอบแบบหมุนมีค่า η = 39.11%, € = 6.81% และได้ทำการเสนอแนะมาตราการในการปรับปรุงกระบวนการ ดังนี้: - ทำการอุ่นบอร์ด ล่วงหน้าก่อนเข้าเตาอบ จะประหยัดพลังงานในรูปของเชื้อเพล็งได้ 4.96 kg/h หรือเป็นเงิน 10,073.75 บาท/เดือน ระยะเวลาคืนทุน 7.05 ปี หุ้มฉนานที่ตัวอุปกรณ์จะประหยัดพลังงานได้เป็นเงิน 14,076.0 บาท /ปี ระยะเวลาคืนทุน 4.6 ปี

ภาควิชา	วิศวกรรมเคมี	M Å
	วิศวกรรมเคมี	ลายมือชื่อนิสิต
	2530	ลายมือชื่ออาจารย์ที่ป

ลายมือชื่ออาจารย์ที่ปรึกษา ออน อากะทะเพายาว.

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

RUCHIRA TAPRAP: ENERGY CONSERVATION IN PLANTS BY EXERGY ANALYSIS.

THESIS ADVISOR: ASSO. PROF. DR.WIWUT TANTHAPANICHAKOON, Ed.D. 164 PP.

Thermal energy analyses of various pieces of equipment in a factory manufacturing gypsum boards were carried out. The energy analysis and exergy analysis were made for the boiler system, board dryer, impaction mill and rotary dryer. The first-law thermal efficiency and second-law effectiveness of the various apparata were found to be as follow: boiler has $\eta=90.90\%$, $\epsilon=31.16\%$, board dryer has $\eta=45.23\%$, $\epsilon=24.78\%$, impaction mill has $\eta=76.40\%$, $\epsilon=16.16\%$ and rotary dryer has $\eta=39.11\%$, $\epsilon=6.81\%$. After the analysis, recommendations for energy saving were made as follows:-preheating the boards could save energy (fuel) about 4.96 kg/h or equivalent to about 10,073.75 baht/month and its pay-back period would be about 7.05 years. Insulation of apparata could save about 14,076.0 baht/year, its pay-back period being about 4.6 years.

ภาควิชา	วิศวกรรมเคมี	4 4 00	00.10
สาขาวิชา	วิศวกรรมเคมี		
ปีการศึกษา	2530	ลายมือชื่ออาจารย์ที่ปรึกษา 🚵	

ก็ตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้ลำ เร็จสมบูรณ์ได้ โดยได้รับความช่วย เหลือจากหลายฝ่าย ข้าพเจ้าขอขอบพระคุณ รศ.ดร. วีวัฒน์ ตัณฑะพานิชกุล อาจารย์ที่ปรึกษาวิทยานิพนธ์ที่ได้ กรุณาให้คำปรึกษาแนะนำแนวทางการแก้ปัญหาในขณะทำงานวิจัย และให้ข้อคิด เห็นต่างๆที่ เป็นประโยชน์ยิ่ง ตลอดจนการตรวจแก้ไขวิทยานิพนธ์จนสำ เร็จ เป็นรูป เล่มสมบูรณ์

นอกจากนี้ข้าพเจ้าขอขอบคุณ คุณ อริชัย ผู้จัดการโรงงาน บริษัทไทยผลิตภัณฑ์ ยิบชั่มจำกัด ที่ให้โอกาสกับผู้วิจัยในการเลือกโรงงานตัวอย่างในการวิจัยครั้งนี้ ตลอดจน คุณ พงษ์คักดี๋ วิศวกรโรงงาน คุณ ขจีพันธ์ และคุณ รุ่งเรือง ที่ให้ความช่วยเหลือในการเก็บข้อ มูลและข้อคิดเห็นในการทำวิจัยในครั้งนี้ และขอขอบพระคุณ ผศ.ดร. ศคิธร บุญ-หลง, รศ. ดร. เกริกชัย สุกาญจนัจที และ รศ.ดร. วรพัฒน์ อรรถยุกติ ที่ได้กรุณาสละเวลาในการ พิจารณาผลการสอบวิทยานิพนธ์ในครั้งนี้เช่นกัน

ท้ายที่สุดนี้ ข้าพเจ้าขอขอบคุณ บิคา มารดา และเพื่อนๆ ที่ให้กำลังใจในการทำ งานวิจัยครั้งนี้ ให้สำเร็จลงได้ด้วยดี

สารบัญ

หน้า
บทคัดย่อภาษาไทยก
บทคัดย่อภาษาอังกฤษ ข
กิตติกรรมประกาศ ค
สารบัญดาราง ช
สารบัญรูป ญ
คำอธิบายสัญญลักษณ์
บทที่
1 บทน้ำ
2 ทฤษฎีในการวิเคราะห์พลังงาน
2.1 เอ็นรัลปี (enthalpy)
2.2 เอ็กเซอร์ซี (exergy) 5
2.3 สมการดลของระบบผลังงานในแง่เอ็นธัลบีและเอ็กเซอร์ยี 6
2.3.1 สมการดลเอ็นรัลปี
2.3.2 สมการดุลเอ็กเซอร์ชี
2.4 การวิเคราะห์ระบบพลังงานโดยใช้เอ็นธัลบีและใช้เอ็กเซอร์ยี 7
2.4.1 การวิเคราะห์ระบบโดยใช้เอ็นธัลปี 7
2.4.2 การวิเคราะห์ระบบโดยใช้เอ็กเซอร์ยี 8
2.5 ตัวอย่างการวิเคราะห์ระบบผลังงานโดยใช้กฎร้อที่หนึ่งและ
กฏข้อที่สองของเทอร์โมไดนามีกล์
2.6 เอ็กเซอร์ยีซองระบบสหองค์ประกอบ(Multicomponent system)11
2.6.1 ศักยภาพเช็งเคมี
2.6.2 สมดุลของเฟล
2.6.3 ก๊าซผสมเชิงอุดมคติ
2.6.4 เอ็กเซอร์ยีของก๊าซผสมเช็งอุดมคติ
2.7 เอ็กเซอร์ยีเซ็งเคมี(Chemical exergy) 15
2.8 เอ็กเซอร์ยีเชิงเคมีของเชื้อเพลิง

สารบัญ(ต่อ)

		N1	น้า
	2.9	เอ็กเชอร์ยีของปฏิกิริยา	22
		2.9.1 วิธีคำนวนเอ็กเซอร์ยีของปฏิกิริยาหลัก	23
	2.10	สรุปสมการสำหรับคำนวนเอ็กเซอร์ยีซองระบบต่าง ๆ	26
		2.10.1 สมการคำนวนเอ็กเซอร์ยีเชิงความร้อน	26
		2.10.2 สมการคำนวนเอ็กเซอร์ยีเชิงเคมี	3Ø
3	ตัวอย่	างการวิเคราะห์เอ็กเชอร์ยีร่วมกับเอ็นธัลบีในอุตสาหกรรม	33
4		เคราะห์เอ็นธัลบีและเอ็กเซอร์ยีของโรงงานยิบชั่มบอร์ด	
	4.1	กระบวนการผลิตแผ่นยีบชั่มบอร์ดของโรงงาน	66
	4.2	การใช้พลังงานในอดีตของโรงงาน	67
	4.3	การวิเคราะห์เอ็นธัลปีและเอ็กเซอร์ยีของอุปกรณ์ต่าง ๆ	
		ในกระบวนการผลิต	81
		4.3.1 สมคุลมวลและสมคุลพลังงานรอบขอบเขตรวมของโรงงาน	81
		4.3.2 การวิเคราะห์เอ็นธิลบีและเอ็กเซอร์ซีรอบเตาอบแบบหมุน	87
		4.3.3 การวิเคราะห์เอ็นธัลปีและเอ็กเซอร์ซีรอบ lmp. mill	92
		4.3.4 การวิเคราะห์เอ็นธัลบีและเอ็กเซอร์ซีซองหม้อไอน้ำ	96
		4.3.5 การวิเคราะห์เอ็นธัลบีและเอ็กเซอร์ยีของเตาอบบอร์ด 1	00
	4.4	การประเมินหาพลังงานที่สูญเสียในเส้นทางเชื่อมระหว่างอุปกรณ์	
		ของกระบวนการผลีต	Ø 4
		4.4.1 พลังงานความร้อนที่สูญเสียที่ระบบย่อย 1 1	94
		4.4.2 พลังงานความร้อนที่สูญเสียที่ระบบย่อย 2 1	Ø 6
5	สรุปแ	ละวิจารณ์ผลการวิเคราะห์เอ็นธิลปีและเอ็กเซอร์ยีของอุปกรณ์	
	ในกร	ะบวนการผลิตยิบชั่มบอร์ด	.08
	5.1	ผลสรุปของการวิเคราะห์พลังงานและเอ็กเชอร์ยีของเตาอบแบบหมุน 1	.08
	5.2	ผลสรุปของการวิเคราะห์พลังงานและเอ็กเซอร์ยีของ lmp. mill1	
	5.3	ผลสรุปของการวิเคราะห์ผลังงานและเอ็กเชอร์ยีของหม้อไอน้ำ 1	
	5.4	ผลสรุปของการวิเคราะห์พลังงานและเอ็กเซอร์ยีของเตาอบบอร์ด 1	18
	5.5	วิจารณ์ผลการวิเคราะห์เอ็นตัลปี	
	5.6	วิจารณ์ผลการวิเคราะห์เอ็กเซอร์ยี	
	5.7	สรุปประเด็นที่ได้จากการวิเคราะห์เอ็นธัลปีและเอ็กเซอร์ยี 1	124

สารบัญ(ต่อ)

		n	โา
6		ารปรับปรุงประสิทธิผลของการใช้ผลังงานและความเป็นไปได้ทาง	
	เศรษฐ	ศาสตร์	27
	6.1	แนวทางการประหยัดพลังงาน	27
		6.1.1 การดูแลบำรุงรักษา 12	27
		6.1.2 ข้อเสนอแนะในขั้นตอนการดูแลรักษา 13	34
	6.2	การปรับปรุงและแก้ไขเพื่อให้มีประสิทธิผลโดยปรับปรุงเล็กน้อย 13	34
		6.2.1 มาตรการโดยการหุ้มฉนวนที่อุปกรณ์ 1	34
	6.3	การปรับปรุงกระบวนการผลิต 1-	43
7	บทสรุบ	1	45
บรรณานุเ	กรม		47
ภาคผนว	n		49
ประวัติผู้	i gen .		64

สารบัญตาราง

	หน้า
ตารางที่	
2.1	เอ็กเซอร์ยีเชิงเคมีของธาตุต่าง ๆ
2.2	เอ็กเซอร์ยีเชิงเคมีของสารอนินทรีย์หลัก
2.3	เอ็กเชอร์ยีเชิงเคมีของสารอินทรีย์หลัก
2.4	เอ็กเชอร์ยีมาตรฐานของเชื้อเพลิงเดี่ยว
2.5	เอ็กเชอร์ยิของปฏิกิริยาหลัก
3.1	Process streams in ammonnia production 35
3.2	Process streams in nitric acid production 35
3.3	Exergy Losses by Plant Area
3.4	Reactor System Exergy Losses 38
3.5	Reactor System Exergy Losses with inevitable
	Reactor Loss Discounted
3.6	Refrigeration System Exchangers-Loads and
	Second Law Efficiencies 40
3.7	Exergy Losses
3.8	Energy Consumption of the Factory in 1983 46
3.9	Summary of Chillers Performances 59
3.10	Comparison of Steam Generation Performances 60
3.11	Losses of Available Power in the Refinery 62
4.1	Yearly Energy Consumption and Cost 74
4.2	Monthly Energy Consumption in 1987 75
4.3	Monthly Energy Consumption in 1986 76
4.4	Monthly Energy Consumption in 1985 77
4.5	Monthly Energy Consumption in 1984 78
4.6	Energy Equivalent of Electricity and Total Energy
	in 1986-1987 79

สารปัญหาราง(ต่อ)

	หน้า
4.7	Energy Equivalent of Electricity and Total Energy
	in 1984-1985 8Ø
5.1	สรุปผลการวิเคราะห์พลังงานของเตาอบแบบหมุน 109
5.2	สรุปผลการวิเคราะห์เอ็กเซอร์ัยีของเตาอบแบบหมุน 110
5.3	สรุปผลการวิเคราะห์พลังงานของ Imp. mill 113
5.4	สรุปผลการวิเคราะห์เอ็กเซอร์ยีของ lmp. mill 114
5.5	สรุปผลการวิเคราะห์ผลังงานของหม้อไอน้ำ 116
5.6	สรุปผลการวิเคราะห์เอ็กเซอร์ยีของหม้อไอน้ำ 117
5.7	สรุปผลการวิเคราะห์พลังงานของเตาอบบอร์ด 120
5.8	สรุปผลการวิเคราะห์เอ็กเซอร์ปีของเตาอบบอร์ด 121
5.9	เอ็กเชอร์ยีที่ถูกทำลายเนื่องจาก Irreversibility
	ในกระบวนการ
6.1	จุดเด่นที่สำคัญของกับตักไอน้ำแบบต่าง ๆ
6.2	แสดงปริมาณพลังงานความร้อนที่จะเก็บรักษาได้เมื่อดำเนิน
	มาตรการปรับปรุงที่ระบบย่อย 1 (subprocess 1) 139
6.3	แสดงปรีมาณการลงทุนและผลที่ได้รับเมื่อดำเนินมาตรการ
	ปรับปรงที่ระบบย่อย 1 (subprocess 1) 140

สารบัญรูป

	หน้า
รูปที่	
2.1	ระบบปริมาตรควบคุม 7
3.1	Flow sheet ของกระบวนการผลิตแอมโมเนียจากก๊าซธรรมชาติ 34
3.2	Flow sheet ของกระบวนการผลิตกรดในคริกจากแอมโมเนีย 34
3.3	Process Block Diagram
3.4	Process Reactor System Flow Diagram
3.5	Refrigeration System
3.6	Atmospheric Pressure Ammonia Converter 41
3.7	Best Practical Ammonai Converter 42
3.8	Simplified Nitric Acid Process
3.9	Simplified Bang Pa-In Paper Production Process
	Flow chart
3.10	Break-down of Bang Pa-In Paper Mill Factory's Demand 46
3.11	Historical yearly energy consumption 47
3.12	Monthly Energy Consumption 48
3.13	Simplified Piping Diagram in Boiler House 49
3.14	Closed Loop for Improving 55
3.15	Electricity Consumption of BH 57
3.16	Electricity Demand Two Hour Periods Characteristics 57
3.17	Electricity Consumption of Major Users 58
3.18	Energy Index and Cost Effectiveness 58
3.19	Flow-sheet of the Considered Refinery 61
4.1	Simplified Block Diagram of Board Production Process 68
4.2	Historical Yearly Energy Consumption 69
4.3	Historical Monthly Energy Consumption in 1987 70
4.4	Historical Monthly Energy Consumption in 1986 71
4.5	Historical Monthly Energy Consumption in 1985 72
4.6	Historical Monthly Energy Consumption in 1984 73

สารบัญรูป(ต่อ)

	หนา
4.7	Mass Balance around Subprocesses 1 & 2 (kg/h) 83
4.8	Mass Balance around Whole Plant (kg/month) 84
4.9	Energy Balance around Subprocesses 1 & 2 (kJ/h) 85
4.10	Energy Balance around Whole Plant (kJ/month) 86
4.11	สมคุลมวลรอบขอบเขตเตาอบแบบหมุน (kg/h)
4.12	สมคุลมวลรอบขอบเขต lmp. mill (kg/h)
4.13	สมคุลมวลรอบขอบเขตหม้อไอน้ำ
4.14	สมคุลมวลรอบขอบเขตเตาอบบอร์ด
4.15	Detail Equipment in Subprocess 1 107
5.1	Sankey's Diagram of Energy Flow of Rotary Dryer 108
5.2	Sankey's Diagram of Exergy Flow of Rotary Dryer 111
5.3	Sankey's Diagram of Energy Flow of Imp. mill 112
5.4	Sankey's Diagram of Exergy Flow of Imp. mill 112
5.5	Sankey's Diagram of Energy Flow of Boiler 115
5.6	Sankey's Diagram of Exergy Flow of Boiler 118
5.7	Sankey's Diagram of Energy Flow of Board Dryer 119
5.8	Sankey's Diagram of Exergy Flow of Board Dryer 119
5.9	Grassman's Diagram of Gypsum Board Process 126
6.1	Inverted-bucket steam trap
6.2	Open-top bucket steam trap
6.3	Float and Thermostatic 132
6.4	Impulse trap
6.5	Bimetal steam trap
6.6	Thermodynamic trap operation
6.7	Proposed Model for Preheating Board

ค้าอธิบายสัญญลักษณ์

- C : ค่าความร้อนจำเพาะกรณี p คงที่
- C : ค่าความร้อนจำเพาะกรณี V คงที่
- E : พลังงานรวม (Totel Energy), kJ
- E เ พลังงานจลน์ (Kinetic Energy), kJ
- E เ พลังงานศักย์ (Potential Energy), kJ
- Ex เล็กเซอร์ซี. kJ
- ex : เอ็กเซอร์ยีจำเพาะ (Specific Exergy), kJ/kg
- ex : เอ็กเซอร์ยี/โมล, kJ/mol
- ร : แรงโน้มถ่วงของโลก. m/s²
- G เค่า Gibbs free energy
- G เ Gibbs free energy/โมล. kJ/mol
- H : เอ็นธัลปี. kJ
- h เอ็นธัลปีจำเพาะ kJ/kg
- h : เอ็นธัลปี/โมล. kJ/mol
- ! ความย้อนกลับไม่ได้ (Irreversibility)
- m เ มวลไหลเข้า-ออกระบบ. kg/hr
- N : จำนวนโมลของสาร
- p : ความดันสมบูรณ์ของระบบ. N/m²
- P : ความดันที่สภาวะแวดล้อม, ber
- P : ความดันย่อยชององค์ประกอบ k, N/m²
- R : Universal gas constant, kJ/m³N·K
- S : เอ็นโทรปีของระบบ, kJ/kg K
- S ู : เอ็นโทรปีของสิ่งแวดล้อม. kJ/kg K
- ธิ : เอ็นโทรปี/โมล. kJ/K mol
- T : อุณหภูมิที่สภาวะแวดล้อม. K
- U : พลังงานภายใน (Internal Energy) ของระบบ, kJ
- นี : พลังงานภายใน/โมล. kJ/mol
- V : ปริมาตรของระบบ ๓³
- v : ความเร็วของการไหลของมวลเข้า-ออกจากระบบ. m/s
- พ : งานกลหรืองานไฟฟ้าที่กระทำข้ามขอบเขต. พ
- x เ Mole fraction ขององค์ประกอบ k

: ความสูงของระบบ. m

ທ : ค่า chemical potential

Fugacity coefficient

k : สภาพการนำความร้อนของวัสดุ, kJ/m.h.K

d : สัมประสิทธิ์การถ่ายเทความร้อนระหว่างผิววัสดุหุ้มฉนาน และอากาศ ภายนอก โดยการพาและแผ่รังสีความร้อน, kJ/m².h.K

เ ส้มประสิทธิ์การถ่ายเทความร้อน, kJ/m².h.K

G ิ ค่าพลังงานก็บส์ในการฟอร์มตัวของสารประกอบที่สภาวะมาตรฐาน. kJ/kmol

หา๊ : ค่าพลังงานความร้อนในการฟอร์มตัวของสารประกอบที่สภาวะมาตรฐาน. kJ/kmol

ะ ปริมาณความร้อนที่เกี่ยวข้องในขอบเขต. kJ

บ : ลัมประสิทธิ์การถ่ายเทความร้อนรวม. kJ/m².h.K

Subscript

Ø : สภาวะสิ่งแวดล้อม

cv : ระบบปริมาตรควบคุม 1 : สภาวะเริ่มต้นของระบบ

2 : สภาวะสุดท้ายของระบบ

F : เชื้อเพลิง

Superscript

ะ ค่าต่อหน่วยเวลา

ch : เชิงเคมี (chemical)

th : เชิงความร้อน (thermal)

ph : เชิงกายภาพ (physical)