สารสำคัญจาก เปลือกต้นจำปี

นางสาว มาลี บริบูรณ์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต

ภาควิชาเภสัชเวท

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. ๒๕๓๑

ISBN 974-568-830-4

ลิขสิทธ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

014211

117455481

CONSTITUENTS OF MICHELIA LONGIFOLIA STEM BARK

Miss Malee Boriboon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy

Department of Pharmacognosy

Graduate School

Chulalongkorn University

1988

ISBN 974-568-830-4

Ву	Miss Malee Boriboon
Department	Pharmacognosy
Thesis Advisors	Associate Professor Nijsiri Ruangrungsi
	Lecturer Kittisak Likhitwitayawuid
,	
Accepted	by the Graduate School, Chulalongkorn University in
partial fulfillm	ent of the requirements for the Master's degree.
	rofessor Thavorn Vajrabhaya, Ph.D.)
Thesis Committee	:
(As	Ssociate Professor Kalaya Pharadai, M. Eng.)
	Payern Tantivalana rofessor Payom Tantivatana, Ph.D.)
• • • • •	Member Speciate Professor Nijsiri Ruangrungsi, M.Sc.)
••••	K-likhit. Member
(Le	ecturer Kittisak Likhitwitayawuid, M.S.)

Thesis Title CONSTITUENTS OF MICHELIA LONGIFOLIA STEM BARK

มาลี บริบูรณ์ : สารสำคัญจากเปลือกต้นจำปี (CONSTITUENTS OF MICHELIA LONGIFOLIA STEM BARK) อ. ที่ปรึกษา : รศ. นิจศิริ เรื่องรังษี, ๑๔๘ หน้า

จากการตรวจสอบสิ่งสกัดในชั้นคลอโรฟอร์มของเปลือกต้นจำปี (Michelia longifolia Blume, Magnoliaceae) พบสารต้านมะเร็ง ๔ ชนิด คือ parthenolide, costunolide, B-sitosterol และ liriodenine ซึ่งได้ศึกษาสูตรโครงสร้างโดยวิธีทางสเปคโตรสโคปี พร้อมทั้ง บรรยายการกำหนดสูตรโครงสร้างอย่างละเอียด

ภาควิชา <u>เภสช เวท</u>
สาขาวิชา <u>เภสช เวท</u>

ปีการศึกษา <u>ผสตอ</u> ลายมือชื่ออาจารย์ที่ปรึกษา **เ**กสฟ เรื่องโภ

MALEE BORIBOON: CONSTITUENTS OF MICHELIA LONGIFOLIA STEM BARK.

THESIS ADVISOR: ASSO. PROF. NIJSIRI RUANGRUNGSI, M.Sc. 148 pp.

Examination of the chloroform extract from *Michelia longifolia* Blume (Magnoliaceae) stem bark revealed the presence of four antitumor principles, parthenolide, costunolide, β -sitosterol and liriodenine. Structure elucidations have been established by spectroscopic means. A detail discussion on the elucidation of chemical structures is included.

ภาควิชา	เภสัชเวท	* * * * /	
	เภสัชเวท	ลายมือชื่อนิสิต 📶	1 . 1 . 1
ปีการศึกษา	ριζηο	ลายมือชื่ออาจารย์ที่ปรึกษา	17X1 1/00 1/2

ACKNOWLEDGEMENTS

The author wishes to express her sincere gratitude to the followings:-

Associate Professor Nijsiri Ruangrungsi of the Department of Pharmacognosy, Faculty of Pharmaceutical Science, Chulalongkorn University, for his supervision of the research, helpful guidances, keen interest and continual encouragements throughout the course of this study.

Lecturer Kittisak Likhitwitayawuid of the Department of
Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn
University, for his coadvisor, encouragements and keen interest during
the present work.

Assistant Professor Thatree Phadungcharoen of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University for her kindly supply the plant materials for this study.

Ms. Porntipa Picha, Chief of Section of Experimental Cancer Therapy, Research Division, National Cancer Institute for her kindly study on cytotoxic activity of the plant extract.

Professor Gordon L. Lange, Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada for his kindly interpretation and identification of all compounds.

All staff members and colleagues of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their kindnesses, encouragements and helps.

Graduate School, Chulalongkorn University, for granting her partial financial support of eleven thousand and five hundred baht to fulfill this investigation.

Thai-Sankyo Co., Ltd. for the kindness and encouragement throughout the course of this study.

CONTENTS

	Page
ABSTRACT (Thai)	iv
ABSTRACT (English)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	viii
LIST OF FIGURES	хi
LIST OF TABLES	xvi
ABBREVIATIONS	xvii
CHAPTER	
I INTRODUCTION	1
II HISTORICAL	
1. CHEMICAL CONSTITUENTS OF MICHELIA SPP	10
2. APORPHINE AND OXOAPORPHINE ALKALOIDS	
2.1 Chemistry of Aporphine Alkaloids	22
2.2 Chemistry of Oxoaporphine Alkaloids	23
2.3 Biosynthesis of Aporphine Alkaloids	26
2.4 Biological Activities of Aporphine	
Alkaloids	34

page

	٥.	SESQ	UTTERPENE LACTUMES	
		3.1	Chemistry of Sesquiterpene Lactones	37
		3.2	Classification of Sesquiterpene Lactones	39
		3.3	Distribution of Sesquiterpene Lactones	42
		3.4	Biosynthesis of Sesquiterpene Lactones	45
		3.5	Biological Activities of Sesquiterpene	
			Lactones	53
	4.	STER	OIDS	
		4.1	Chemistry of Steroids	65
		4.2	Distribution of Steroids	65
		4.3	Classification of Steroids	66
		4.4	Biosynthesis of Steroids	87
III	EXP	ERIME	NTAL	
		1.	Source of Plant Material	93
		2.	General Techniques	93
			2.1 Thin Layer Chromatography	9 3
			2.2 Column Chromatography	95
			2.3 Physical Constants	95
			2.4 Spectroscopy	95
			2.5 Authentic Samples	96
		3.	Isolation of Chemical Substances from	
			Michelia longifolia Bl. Stem bark	96
			3.1 Extraction	96
			3.2 Isolation of Chemical Substances	97

	page
4. Characterization of ML-1, ML-2,	
ML-3 and ML-4	98
4.1 Characterization of ML-1 as	
Parthenolide	98
4.2 Characterization of ML-2 as	
β -Sitosterol	101
4.3 Characterization of ML-3 as	
Liriodenine	103
4.4 Characterization of ML-4 as	
Costunolide	107
IV DISCUSSION	110
V CONCLUSION AND RECOMMENDATION	114
REFERENCES	115
APPENDIX	129
VITA	148

LIST OF FIGURES

Figur	ce		page
	1.1	Michelia longifolia Blume	9
	2.1	Aporphine alkaloids isolated from Michelia spp.	24
	2.2	Oxoaporphine alkaloids isolated from	
		Michelia spp.	25
	2.3	Proven or Probable Biogenetic loci for the	
		Formation of the Isoquinoline alkaloids	27
	2.4	Biogenetic relationships of the major alkaloid	
		groups derived from a tetrahydrobenzylisoquinoline	
		precursor	28
	2.5	The formation of 1-benzy1-1,2,3,4-tetrahydro	
		isoquinolines	29
	2.6	Biosynthesis of (+)-roemerine in Papaver dubium	30
	2.7	Biosynthesis of (+)-isothebaine in Papaver	
		orientale	31
	2.8	Biosynthesis of isoboldine and magnoflorine	32
	2.9	Biosynthesis of aporphines from benzylisoquinolines	32
	2.10	Biosynthesis of boldine in Litsea glutinosa var.	
		glabraria	35
	2.11	Biosynthesis of Corydine, Dicentrine and Glaucine	
		in Dicentra eximia (Ker.) Torr.	36
	2.12	Types and biogenetic relationships of	
		germacranolide-derived sesquiterpenes.	41
	2.13	Configurational types of germacranolides	42
	2.14	Structures of some sesquiterpene lactones	
		isolated from Michelia spp	44

Figure	Page
2.15 Biosynthesis of isopentenyl pyropho	sphate
from acetyl CoA	48
2.16 Biogenesis of the germacranolide sk	eleton 50
2.17 Biogenesis of the lactone ring	52
2.18 Biogenesis of the lactone ring via	
furanosesquiterpenes	53
2.19 α -Methylene- γ -lactone, a major func	tional
group for biological activity in di	verse
compounds.	55
2.20 Structures of sesquiterpene lactone	s
exhibited antitumor activity	55
2.21 Structures of antimicrobial sesquit	erpene
lactones	56
2.22 Structures of sesquiterpene lactone	s exhibited
schistosomicidal activity.	57
2.23 Insect feeding deterent sesquiterpe	ne
lactone	59
2.24 Vertebrate poisoning sesquiterpene	lactone 59
2.25 Structures of lanosterol and cholest	erol
(a C ₂₇ sterol)	67
2,26 Some C ₂₈ Sterols	69
2.27 Some plant sterols (Phytosterols)	70
2.28 Insect molting hormones isolated fr	om plants 72
2.29 Biogenesis of estrone	73
2.30 Biogenesis of C_{21} steroids	74

Figu	re		Page
	2.31	C ₁₉ Steroids in higher plants	75
	2.32	C ₁₈ Estrogens in higher plants.	75
	2.33	Structure of spiroketal steroid nucleus	76
	2.34	Steroidal sapogenins	77
	2.35	Structures of some aglycones of cardenolide	
		group	79
	2.36	Structures of some aglycones of scilladienolide	
		group	80
	2.37	Sugar portion in cardiac glycosides	81
	2.38	Structures of some Holarrhena alkaloids	
		(the C ₂₁ alkaloids)	84
	2.39	Structures of some <i>Buxus</i> alkaloids	
		(the C ₂₁ alkaloids)	84
	2.40	Structures of some Solonum alkaloids	86
	2.41	Structures of some Veratrum alkaloids	86
	2.42	Formation of squalene from farnesyl pyrophosphate	91
	2.43	Biosynthetic pathways of plant sterols	92
	3.1-	3.3 Thin-layer chromatograms of isolated	
		compounds from Michelia longifolia Blume stem ba	rk 130-132
	3.4	Infrared absorption spectrum of ML-1 from	
		Michelia longifolia Blume stem bark in CCl4	133
	3.5	H-Nuclear magnetic resonance (400 MHz) of	
		ML-1 from Michelia longifolia Blume stem bark	
		in CDC1 ₃	134
	3.6	Electron impact mass spectrum of ML-1 from	
		Michelia longifolia Blume stem bark	135

Figure	Page
3.7 Infrared absorption spectrum of ML-2 from	
Michelia longifolia Blume stem bark in KBr disc.	136
3.8 ¹ H-Nuclear magnetic resonance spectrum (400 MHz)	
of ML-2 from Michelia longifolia Blume stem bark	
in CDCL ₃	137
3.9 Electron impact mass spectrum of ML-2 from	
Michelia longifolia Blume stem bark	138
3.10 Infrared absorption spectrum of ML-3 from	
Michelia longifolia Blume stem bark in $\mathrm{CH_2Cl}_2$	139
3.11 ¹ H-Nuclear magnetic resonance spectrum (400 MHz)	
of ML-3 from Michelia longifolia Blume stem bark	
in CDC1 ₃	140
3.12 H-Nuclear magnetic resonance spectrum (400 MHz)	
of ML-3 from Michelia longifolia Blume stem bark	
in 10 % DMSO-D ₆ in CDCl ₃	141
3.13 Electron impact mass spectrum of ML-3 from	
Michelia longifolia Blume stem bark	142
3.14 Ultraviolet absorption spectrum of ML-3 from	
Michelia longifolia Blume stem bark in 95 %	
ethanol	143
3.15 Ultraviolet absorption spectrum of ML-3 from	
Michelia longifolia Blume stem bark in 0.1	
N HCl in ethanol	144
3.16 Infrared absorption spectrum of ML-4 from	
Michelia longifolia Blume stem bark in CCl4	145

Figure		Page
3.17	H-Nuclear magnetic resonance (400 MHz) of	
	ML-4 from Michelia longifolia Blume stem	
	bark in CDCl ₃	146
3.18	Electron impact mass spectrum of ML-4 from	
	Michelia longifolia Blume stem bark.	147

LIST OF TABLES

[able		Page
1.	Chemical investigations of <i>Michelia</i> spp.	11-21
2.	Natural products formed from isoprene units	38
3.	Sesquiterpene lactones demonstrated to have antitumor and cytotoxic activity	61
4.	Some sesquiterpene lactones reported to cause allergic contact dermatitis in humans	64
5.	Some plant sources and structural relatives of some cardioactive glycosides	82

xvii

ABBREVIATIONS

°C = degree Celsius

1 H-NMR = Proton Nuclear Magnetic Resonance

TMS = Tetramethylsilane

IR = Infrared

UV = Ultraviolet

TLC = Thin Layer Chromatography

CC = Column Chromatography

hRf = Rate of flow in Chromatography

multiplied by 100

EIMS = Electron Impact Mass Spectrum

 $(\alpha)_{D}^{20}$ = Optical Rotation at 20 °C

 v_{max} = The wavelength at maximum absorption

s = singlet

d = doublet

t = triplet

m = multiplet

br = broad

MHz = Mega Hertz

Hz = Hertz

ppm = part per million

m/z = mass to charge ratio

M = Molecular ion

mm = millimeter

ml = milliliter

J = Coupling Constant

nm = nanometer

2D-COSY = two dimension correlation spectroscopy