
CHAPTER II

LITERATURE REVIEW

2.1 Review of Literatures Related to Statistical Inferences of 
Missing Data

T. Schneider [1] applied the expectation maximization (EM) algorithm, an iterative 
method, for the estimation of mean values and covariance matrices from incomplete datasets 
and for the imputation of missing values. Estimating the mean and the covariance matrix of 
an incomplete dataset and filling in missing values with imputed values was a nonlinear 
problem, which had to be solved iteratively. He proposed the regularized EM algorithm that 
was applicable to set of climate data, in which the number of variables typically exceeds the 
sample size. Because of the availability of climatic measurements was various space and 
time that set of climate data were usually incomplete. A test of the regularized EM algorithm 
with simulated surface temperature data demonstrates that the algorithm was applicable to 
typical set of climate data and lead to more accurate estimates of missing values than a 
conventional noniterative imputation technique.

G. McLachlan and T. Krishnan [2] suggested the situations where the EM can be 
applied include not only incomplete-data situations, where there are missing data, truncated 
distributions, grouped observation, but also a whole variety of situation where the 
completeness of the data is not all that natural or evident, and statistical model. The EM 
algorithm has found applications in almost all statistical contexts and in almost all fields 
where statistical techniques have been applied.



A. p. Dempster, N. M. Laird, and D. B. Rubin [3] proposed the Expectation- 
Maximization (EM) algorithm which is useful in a variety of incomplete-data problem. The 
EM algorithm is a largely applicable approach to the iterative computation of maximum 
likelihood (ML) estimates. There are two steps called the expectation step or the E-Step and 
the maximization step or the M-step. The situations where the EM algorithm is usefully 
applied can be described as incomplete-data problems, where ML estimation is made 
difficult by the lack of some part of data in a more familiar and simpler data structure. The 
EM algorithm is closely related to the ad hoc approach to estimating missing data, where the 
parameters are estimated after filling in initial values for the missing data. The latter are then 
updated by their predicted values using these initial parameter estimates. The parameters are 
then re-estimated, and so on, proceeded iteratively until convergence.

R. J. Hathway and J. c. Bezdek [4] proposed a new algorithm for doing fuzzy c- 
means (FCM) clustering of incomplete data sets. Numerical convergence properties of the 
new algorithm were discussed and all approaches were tested using real and artificially 
generated incomplete data sets, ft was important for general statistical method to handle 
incomplete data based on the expectation maximization (EM) algorithm [3]. In brief, this 
approach iteratively produced maximum likelihood estimates using two-part iteration. First, 
(E-step) used current distributional parameter estimates to calculate expected values for the 
missing features. Second, (M-step) used the current expected values to complete the value 
data and then calculated improved (complete data) maximum-likelihood parameter 
estimates. These two parts, EM iteration continued using the improve parameter estimates 
until convergence was achieved.
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2.2 Review of Literatures Related to Neural Inferences of 
Missing Data

c. E. Pedreira and E. Parente [5] presented a framework based on maximum 
likelihood density estimation for learning from high-dimensional data sets with arbitrary 
patterns of missing data. Learning in this framework was a classical estimation problem 
requiring an explicit probabilistic model and an algorithm for estimating the parameters of 
the model. Mixture models combined much of the flexibility of nonparametric methods with 
certain of the analytic advantages of parametric methods. This density-based approach was 
applicable to both supervised and unsupervised learning. This happened because the 
problem of estimating mixture densities could be viewed as a missing data problem (the 
label for the component densities were missing) and the Expectation-Maximization (EM) 
algorithm [3] could be developed to handle both kinds of missing data. Results from a 
classification benchmark which was presented.

c. E. Pedreira and E. Parente [6] introduced a new theoretical approach that enabled 
to deal with missing values attributes as inputs. The neural network inputs were now treated 
as random variables, and possibly with large variances in the case when the input variable 
information was not complete. Feedforward Neural Networks trained with backpropagation 
algorithm that had been successfully using in a variety of applications. This paper proposed 
a stochastic framework to backpropagation. In many practical situations, the input patterns 
had intrinsic doses of uncertainty. An automatic diagnosis system was used to illustrate this 
new technique potential.

A. Verikas, A. Gelzinis, K. Malmqvist, and M. Bacauskiene [7] proposed an

approach using both labeled and unlabelled data to train a multilayer perceptron. The
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unlabelled data were iteratively pre-processed by a perceptron being trained to obtain the 
soft class label estimates. Because of one reason, conventional supervised learning 
approaches, the error back propagation had no direct way to incorporate unlabelled data, and 
discarded them.

M. p. Perrone and L. N. Cooper [8] presented a general theoretical framework for 
ensemble methods of constructing significantly improved regression estimates. They 
constructed a hybrid estimator which was better in the MSE sense than any estimator. The 
ensemble method had several properties: 1) it efficiently used all the networks. 2) It 
efficiently used all data for training without over-fitting. 3) ft performed regularization by 
smoothing in functional space. 4) It utilized local minima to construct improved estimates.
5) It was suite for parallel computation. 6) It led to a very useful and natural measure of the 
number of distinct estimators. Hybrid neural network systems had been employed to 
improve results in classification and regression problems. The authors addressed the issues 
of optimal combination and efficient data usage in the framework of ensemble averaging.

M. c. Mozer [9] presented a general taxonomy of neural net architectures for 
processing time-varying patterns. The architecture based on a characterization of short term 
memory models along the dimensions of form, content and adaptability. Experiment on 
predicting future values of a financial time series were presented using several alternative 
memory models. The result served as a based line against which more sophisticated 
architecture could be compared.
2.3 Review of Literatures Related to Radar Rainfall Estimates

D. Rosenfeld, Wolff. D. B. and E. Amitai [10] introduced a simplified probability

matching method that relies on matching the unconditional probabilities o f gauge rain
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intensity (R) and effective radar intensity (z 1,)- This was achieved by matching rain gauge
intensities to radar reflectivity taken only from small "windows" centered about the gauges 
in time and space. The windows had to be small enough for the gauge to represent the 
rainfall depth within the radar window, and it had to be also large enough to encompass the 
timing and geometrical errors inherent to the observations. A relatively small sample size
was required to achieve a stable Ze -  R relation with the standard deviation of 15 % of R
for a given z e . The Window Probability Matching Method (WPMM) significantly
performed better rainfall integrations than the power law. The standard deviation of the 
WPMM rainfall integration, after correction for systematic bias errors, was only two-thirds 
of the standard deviation obtained when using power law based on disdrometer which 
measured drop size distribution. Author mentioned that the accuracy of the WPMM was 
provided upon its application to the data that had been objectively classified into different 
rain regimes.

D. Rosenfeld and E. Amitai [11] evaluated the accuracy of the estimation of Ze -  R 
relationships for the Window Probability Matching Method (WPMM) and regression 
method. The evaluation was based on experiments of random sub-sampling of disdrometer
obtained 1-min reflectivity z e and rain-rate R pairs. Geometrical mismatch and 
synchronization inaccuracies between the radar and rain gauges were simulated by
desynchronization of dt minutes. The WPMM had significant advantage in estimating the 
rain intensities when geometrical and synchronization errors were introduced to the radar 
and rain gauge measured Ze -  R pairs for simulating real-world radar and rain gauge 
comparisons. Regression-based relationships tended to overestimate the low rain intensities 
and underestimate the high rain intensities with the crossover at the estimated median rain
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volume intensity. Although, rain gauge bias correction might make the overall rain 
accumulation insensitive to the power of the Ze -  R law, its appropriate selection had a 
major effect on the partition of rainfall amounts between weak and strong intensities or the 
partition between convective and stratiform rainfall.

Rongrui Xiao and V. Chandrasekar [12] introduced a neural network based approach 
to address radar rainfall estimation by taking into account the three-dimensional (3-D) 
structure of precipitation. A three-layer perceptron neural network was developed for 
rainfall estimation from radar measurements. The neural network was trained using the radar 
measurements as the input and the ground rain gage measurements as the target (output). 
The neural network based estimates were evaluated using data collected during the 
Convection and Precipitation Electrification (CaPE) experiment conducted over central 
Florida in 1991 [13]. The results of the evaluation showed that the neural network could be 
successfully applied to obtain rainfall estimates on the ground, based on radar observations. 
The rainfall estimates obtained from the neural network were shown to be better than those 
obtained from several existing techniques. The neural network based rainfall estimate 
offered an alternate approach to the rainfall estimation, and it could be implemented easily 
in operational weather radar systems.
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