การพัฒนาเทอร์โมโครมิกพอลิแอคริลิกฟิล์มที่มีพอลิไดแอเซทิลีน เวสิเคิล

นางสาวพัชรินทร์ กิยะแพทย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปีโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF THERMOCHROMIC POLYACRYLIC FILM CONTAINING POLYDIACETYLENE VESICLES

Miss Patcharin Kiyapat

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Petrochemistry and Polymer Science

Faculty of Science

Chulalongkorn University

Academic Year 2006

Copyright of Chulalongkorn University

Thesis Title	DEVELOPMENT OF THERMOCHROMIC
	POLYACRYLIC FILM CONTAINING
	POLYDIACETYLENE VESICLES
By	Miss Patcharin Kiyapat
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Associate Professor Mongkol Sukwattanasinitt, Ph.D.
-	by the Faculty of Science, Chulalongkorn University in Partial
G	equirements for the Master's Degree
THESIS COMMIT	ГЕЕ
	Chairman Chairman
(Assoc	iate Professor Supawan Tantayanon, Ph.D.)
/	Thesis Advisor
(Assoc	iate Professor Mongkol Sukwattanasinitt, Ph.D.)
W	annham Chavarin Member
(Assist	ant Professor Warinthorn Chavasiri, Ph.D.)
	Patchaida Vatell. Member
(Patcha	anita Vatakul, Ph.D.)

พัชรินทร์ กิยะแพทย์: การพัฒนาเทอร์โมโครมิกพอลิแอคริลิกฟิล์มที่มีพอลิไดแอเซทิลีน เวสิเคิล (DEVELOPMENT OF THERMOCHROMIC POLYACRYLIC FILM CONTAINING POLYDIACETYLENE VESICLES) อ. ที่ปรึกษา: รศ. ดร. มงคล สุขวัฒนาสินิทธ์: 88 หน้า

วิทยานิพนธ์นี้เกี่ยวข้องกับการเตรียมและศึกษาเทอร์โมโครมิกฟิล์ม ที่มีอุณหภูมิการ เปลี่ยนสีปรับเปลี่ยนได้ เพื่อใช้เป็นฉลากบ่งบอกการเปลี่ยนแปลงอุณหภูมิ โดยเทอร์โมโครมิกฟิล์ม เตรียมได้จากสารที่เปลี่ยนสีได้ตามอุณหภูมิคือพอลิไดแอเซทิลีน เวลิเคิล ฝังในโคพอลิเมธาคริลิก-แอคริเลตลาเท็กซ์ อุณหภูมิที่นำไปสู่การเปลี่ยนสีของฟิล์มจากน้ำเงินเป็นแดงสังเกตได้ด้วยตา เปล่าและโดยวิธีวิสิเบิลสเปกโตสโครปี เทกขานอลซึ่งเป็นสารช่วยการเกิดฟิล์มสามารถนำมาใช้ ปรับลาเทกซ์ให้ได้เทอร์โมโครมิกฟิล์มที่มีอุณหภูมิการเปลี่ยนสีปรับเปลี่ยนได้ในช่วงตั้งแต่ 0-70 องศาเซลเซียส ครอสลิงกิงมอนอเมอร์คือ มิลทิลออล แอคริเลต ไกลซิดิว เมทาคริเลต และเอทิล ลีนไกลคอลไดเมทาแอคริเลต ช่วยทำให้สมบัติการเกิดฟิล์มและค่าอุณหภูมิการเปลี่ยนสีของเทอร์โมโครมิกฟิล์ม ความสัมพันธ์ระหว่างค่าอุณหภูมิการเกิดฟิล์มและค่าอุณหภูมิการเปลี่ยนสีของเทอร์โมโครมิกฟิล์ม ความสัมพันธ์ระหว่างค่าอุณหภูมิการหลอมแก้ว (T_g) และอุณหภูมิการเปลี่ยนสีของ ฟิล์มชี้ให้เห็นว่า อุณหภูมิการเปลี่ยนสีของเทอร์โมโครมิซึมและโซลวาโตโครมิซึมโดยความร้อนด้วย งานวิจัยนี้จึงแสดงให้เห็นถึงวิธีการทีละดวกสามารถใช้ในการเตรียมฟิล์มเปลี่ยนสีที่มีอุณหภูมิการ เปลี่ยนสีปรับเปลี่ยนได้ เพื่อใช้บันทึกประวัติอุณหภูมิที่ผ่านมาของฟิล์มได้ โดยการเปลี่ยนสีแบบ ไม่ผันกลับ

สาขาวิชา	ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์	ลายมือชื่อนิสิต	न भीग्रहमा	ร์ กัยะแพทย์
ปีการศึกษ	n2549	ลายมือชื่ออาจา	รย์ที่ปรึกษา	lifted Stora for esini A

#4873408323: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEY WORD: THERMOCHROMIC FILM, PCDA

PATCHARIN KIYAPAT: DELVELOPMENT OF THERMOCHROMIC FILM CONTAINING POLYDIACETYLENE VESICLES THESIS ADVISOR: ASSOC.PROF. MONGKOL SUKWATTANASINITT, Ph.D., 88 pp.

This thesis deals with preparation and study of the tunable thermochromic films for applications as thermal sensing label. The thermochromic films were prepared from a thermochromogen, poly(10,12-pentacosadiynoic acid) vesicles, embedded in copoly(methacrylic-acrylate) latexes. The temperature induced color transition of the films from blue to red was observed visually and by visible spectroscopy. A coalescing agent, texanol, was used to modify the latex that allow tuning of the color transition temperature (CTT) of the thermochromic films in the range of 0-70 °C. Crosslinking monomers, n-methylol acrylamide (nMA), glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA), were used to enhance a film forming properties. The variation of methacrylic/acrylate monomer ratio also affected the film forming properties and the CTT of the thermochromic films. The correlation of the glass transition temperature and the CTT suggested that the color transition of the films involved not only the thermochromism but also the thermally induced mechanochromism and solvatochromism. This research work presents a convenient approach for preparation of tunable thermochromic films that can record temperature history by their irreversible color change.

Field of study Petrochemistry and polymer science

Academic year 2006

Student's signature Advisor's signature Advisor's signature

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor, Associate Professor Mongkol Sukwattanasinitt, Ph.D. for his encouranging guidance, supervision, and helpful suggestion throughout this research. I would like to thank Associate Professor Supawan Tantayanon, Ph.D., Assistant Professor Warinthon Chavasiri, Ph.D. and Patchanita Vatakul, Ph.D. for serving as my thesis committee, and for their valuable comments.

I would like to thank for financial supports form Chulalongkorn University.

Research facilities and supports from HEXION SPECIALTY CHEMICALS

SAMUTSAKORN, LTD., Ms. Jasuma Boonyaying were gratefully acknowledged.

Gratitude is expressed towards everyone who has contributed suggestions and support throughout this work. Finally, I wish to express thankfulness to my family for their support and encouragement throughout the course of my study.

CONTENTS

	Page
ABSTRACT (in Thai)	iv
ABSTRACT (in English)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xv
CHAPTER	
I INTRODUCTION AND THEORY	1
1.1 Introduction.	1
1.2 Theory	2
1.2.1 Polydiacetylene	2
1.2.2 Acrylic-acrylate latexes	7
1.2.3 Analysis of particle size and microstructure	11
1.3 Literature survey	13
1.4 Objective and scope of thesis	16
II EXPERIMENTAL	17
2.1 Chemicals	17
2.2 Equipments	17
2.3 Procedure	17
2.3.1 Preparation of PPCDA vesicle solution	18
2.3.2 Preparation of acrylate-methacrylate latexes	18
2.3.3 Characterization of latex	18
2.3.3.1 Determination of nonvolatile content	22
2.3.3.2 Viscosity measurement	22
2.3.3.3 pH measurement	22

			2.3.3.4	Determination of minimum film	
				forming temperature of latex and	
				thermochromic film (MFFT)	22
			2.3.3.5	Determination of particle size	23
			2.3.3.6	UV-Vis spectroscopy	23
			2.3.3.7	Scanning Electron Microscopy (SEM)	23
			2.3.3.8	Transmission Electron Microscopy	
				(TEM)	24
			2.3.3.9	Determination of Glass transition	
				temperature	24
			2.3.3.10	Measurement of film hardness	24
			2.3.3.11	Film appearance	24
Ш	RES	ULTS ANI	D DISCUSS	ION	25
	3.1	Preparation	on and chara	acterization of the PPCDA vesicles	25
	3.2	Preparation	on and chara	acterization of acrylic-acrylate latexes	27
		3.2.1	Effects of	comonomer ratio on the properties of latexes	27
		3.2.2	Variation of	of monomer concentration	29
		3.2.3	Addition o	f cross linking agents	32
		3.2.4	Variation of	of emulsifier concentration	31
		3.2.5	Addition o	f ammonia	31
		3.2.6	Addition o	f texanol (a coalescing agent)	32
	3.3	Color tra	nsition temp	perature (CTT) of the latex films containing	
		PPCDA v	vesicles (the	rmochromic film)	33
		3.3.1	Latexes wi	th variation of monomer ratio	34
		3.3.2	Latexes wi	th variation of monomer concentration	35
		3.3.3	Latexes wi	th cross linking monomers	35
		3.3.4	Variation of	of emulsifier concentration	37
		3.3.5	Variation of	of pH	38
		3.3.6	Addition o	f texanol	39
		3.3.7	Variation of	of PPCDA concentration	41
	3.4	Stability	of the therm	ochromic film	41

	3.5	Characterization and proposed mechanism of color transition in	
		the thermochromic film	42
IV	CO	NCLUSION AND SUGGESTION	48
	4.1	Conclusion	48
	4.2	Suggestion for future work	48
Refe	rences	S	49
Appe	endice	S	53
		Appendix A: Formation of latexes	54
		Appendix B: Specification of latexes	56
		Appendix C: Glass transition temperature (Tg)	58
		Appendix D: Particle size	72
Vita	ì		86

LIST OF FIGURES

Figu	re	Page
1.1	Schemetic representation of polymerization of assembled disubstituted	
	diacetylene monomers by irradiation with UV light	2
1.2	Schematic representation of polydiacetylene vesicles formed from a	
	diacetylene lipid	3
1.3	Visible absorbtion spectra of a) blue and B) red forms of poly(PCDA)	
	vesicle solution	4
1.4	Schematic diagram of the molecular orbitals in the π -conjugated PDA	
	backbone in the planar configuration	5
1.5	A simple illustration of the three intervals of an emulsion	
	polymerization	9
2.1	Apparatus set up for the preparation of acrylte-methacrylic latexes from	
	emulsion copolymerization	19
2.2	Schematic process of the emulsion polymerization	21
3.1	Dynamic light scattering spectrum and TEM micrograph of PPCDA	
	Vesicles	25
3.2	Thermochromism of aqueous suspension of PPCDA vesicle	26
3.3	Vesible spectra of the blue PPCDA vesicle solution at 25 90°C and the	
	red solution at 90°C	26
3.4	The colorimetric reponses of PCDA vesicle solution upon increasing	
	temperature	26
3.5	The relationship between %CR and temperature of	
	EA21/MAA14/E0.5/CM2.76 latex films containing PPCDA vesicles	37
3.6	Thermochrmism of the EA21/MAA14/E0.5/CM2.76 latex film	
	containing PPCDA vesicles	37
3.7	The 1.6 mM of PPCDA vesicles solution versus thermochromic film	37
3.8	Models for thermally induced mechanochromism and solvatochromism	43
3.9	SEM micrographs of dry sample latex and PPCDA	44
3.10	TEM images of dry samples of vesicles and latex	45

3.11	DSC thermogram of latex mixed with PPCDA vesicles at 4.5% w/w of	
	solid	46
3.12	DSC thermogram of MMA31/BA4/E0.8/CM2.76latex mixed with	
	EA21/MAA14/E0.5/CM2.76 latex at 100% w/w of solid	47
3.13	SEM images of MMA31/BA4/E0.8/CM2.76 mixed with	
	EA21/MAA14/E0.5/CM2.76 at 100% w/w of solid	47

.

LIST OF TABLES

Table	Page
1.1 Qualitative details of the three intervals of an emulsion polymerization	9
2.1 Formulation of acrylate-methacrylic latexes	20
3.1 Effects of the comonomer ratio on the properties of latexes	28
3.2 Effects of hardness properties of latex on adhesion on various substrates	29
3.3 The effects of monomer concentration on latex properties	30
3.4 Effects of cross linking agent on the properties of latexes and their films	30
3.5 The effect of emulsifier concentration on latexes properties	31
3.6 Effects of ammonia solution on latex properties	32
3.7 Effects of texanol on latex properties	33
3.8 Effects of monomer ratio in the latexes on the CTT	34
3.9 Effects of monomer concentration in the latexes on the CTT	35
3.10 Effects of cross linking monomers in the latexes on the CTT	36
3.11 Effects of the emulsifier concentration used in the latexes on the CTT	38
3.12 Effects of addition of ammonia on the latexes on the CTT	39
3.13 Effects of texanol on CTT of thermochromic films	40
3.14 Comparison of the CTT of the thermochromic films having similar Tg	40
formulated from the latexes with and without texanol	41
3.15 Effects of PPCDA vesicles content in the latex mixture on the CTT	42
3.16 Storage stability of thermochromic films on various substrates	43

LIST OF ABBREVIATIONS

°C

Degree celsius

SEM

Scanning Electron Microscope

TEM

Transmission Electron microscope

UV

Ultraviolet

ml

Millilitre (s)

mg

Milligram (s)

nm

Nanometre

ppm

parts per million

% w/w

percent by weight

 $\mathbf{c}\mathbf{P}$

Centripoint

%NV

%Nonvolatile

DA

Diacetylene

PDA

Polydiacetylene

CR

Colorimetric Response