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ABSTRACT
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Polyethylene naphthalate (PEN) is one of the engineering plastics with
superior properties suitable for utilizing in many innovative applications. However,
its widespread utilizations are still limited by its relatively high cost. One of the
factors holstering the polymer price is the price of 2,6-dimethylnaphthalene (2,6-
DMN), which is a precursor for the polymer synthesis. Commercially, 2,6-DMN is
synthesized using the BP Amoco process, in which a complex synthesis route with a
thermodynamical limitation and freeze crystallization are employed. As a result, the
low availability and high utility used for the production of 2,6-DMN entail its high
cost. In this study, attempts to demonstrate a non-energy intensive alternative for
producing the chemical were made. Catalytic isomerization of 1,5- to 2,6-DMN and
adsorptive separation were of interest. Insight studies to understand both systems
were individually performed. It was found that the maximum vyield of the
Isomerization can be achieved at significantly lower temperatures and the adsorptive
purification of 2,6-DMN can be accomplished in a rejective system by using toluene
as a media. The combinations of the isomerization and adsorption were also
demonstrated in two different approaches and their potential to produce high purity
2,6-DMN have been proven under different operating conditions. For instance,
performing the isomerization in equilibrium is suitable for the system that connects
the adsorption unit right after the isomerization with the selected adsorbent, catalyst
and desorbent, while the reactive adsorption should be carried out at the appropriate
temperatures below the equilibrium,
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