DEVELOPMENTS OF POLYTHIOPHENE/ACRYLONITRILE BUTADIENE RUBBER FOR ARTIFICIAL MUSCLE

Į.

.

2

Pacharavalee Thipdech

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

502030

Thesis Title:	Development of Polythiophene/Acrylonitrile Butadiene
	Rubber for Artificial Muscle
By:	Pacharavalee Thipdech
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Anuvat Sirivat
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Narty Janum College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

.....Anwat lour!

(Assoc. Prof. Anuvat Sirivat)

Suited

(Prof. Alexander M. Jamieson)

yarla.

(Assoc. Prof. Pitt Supaphol)

Ratena Rujiremonit.

(Asst. Prof. Ratana Rujiravanit)

ABSTRACT

4872011063: Polymer Science Program
Pacharavalee Thipdech: Development of Polythiophene/
Acrylonitrile-butadiene Rubber for Artificial Muscle.
Thesis Advisors: Assoc. Prof. Anuvat Sirivat, Prof. Alexander M.
Jamieson 107 pp.
Keywords: Electrorheological properties/ Dielectric properties/ Acrylonitrile

Butadiene rubber/ Poly(3-thiopheneacetic acid)

Acrylonitrile-butadiene rubber (NBR) and blends of acrylonitrile-butadiene rubber/poly(3-thiopheneacetic acid), NBR/P3TAA, were prepared to investigate electrorheological properties, dielectric properties, and electrical conductivities. Electrorheological properties were carried out under an oscillatory shear mode in range of frequency from 0.1 to 100 rad/s at various electric field strengths from 0 to 2 kV/mm at fixed temperature of 27°C to observe the effect of acrylonitrile content (ACN) in pure rubbers and particle concentration in the blends. For pure NBR, the storage modulus, G', increases with increasing electric field strength. The storage modulus respons ($\Delta G'$) were correlated with the dielectric constants (ϵ') to study the effect of ACN content. With increasing ACN content, the modulus linearly increases with dielectric constants. With the conductive polymer particles added into the highest ACN content rubber matrix (NBR1), the modulus of blend film increases because of the electrostriction force between particles and the dielectric constant is also increased.

บทคัดย่อ

พชราวลี ทิพย์เคช : การศึกษาคุณสมบัติของพอลิเมอร์ผสมระหว่างพอลิทิโอฟีนและ ยางอะคริโลไนไทรล์บิวตะไดอีนเพื่อพัฒนาเป็นกล้ามเนื้อเทียม (Development of Polythiophene/Acrylonitrile Butadiene Rubbers for Artificial Muscle) อ. ที่ปรึกษา : รศ. คร. อนุวัฒน์ ศิริวัฒน์ และ ศ. คร. อเล็กเซนเดอร์ เอ็ม เจมิซัน 107 หน้า

ยางอะคริโลไนไทรล์บิวตะไดอีนและพอลิเมอร์ผสมระหว่างพอลิทิโอฟีนอะซิติกแอซิด กับยางอะคริโลไนไทรล์ถูกเตรียมขึ้นเพื่อศึกษาสมบัติทางรีโอโลจี, ค่าคงที่ไดอิเล็กทริก, และค่า การนำไฟฟ้า การทดลองวัดสมบัติทางรีโอโลจีโดยการให้แรงเฉือนแบบกลับไปกลับมา จาก ความถี่ 0.1 ถึง 100 เรเดียนต่อวินาทีและให้สนามไฟฟ้าตั้งแต่ 0 ถึง 2000 โวลต์ต่อมิลลิเมตรกับ สารตัวอย่าง เพื่อศึกษาผลของปริมาณอะคริโลไนไทรล์ในยางและผลของปริมาณพอลิทิโอฟีนอะ ซิติกแอซิดในวัสดุผสม โดยพบว่าค่าการเปลี่ยนแปลงสตอเรจมอดูลัสของสารตัวอย่างเพิ่มขึ้นเมื่อ เพิ่มความเข้มของสนามไฟฟ้า เมื่อนำค่าการเปลี่ยนแปลงสตอเรจมอดูลัสของสารตัวอย่างเพิ่มขึ้นเมื่อ ก่าคงที่ไดอิเล็กทริกเพื่อพิจารณาผลของปริมาณอะคริโลไนไทรล์ต่อยางอะคริโลไนไทรล์บิวตะได อีน พบว่าเมื่อปริมาณอะคริโลไนไทรล์เพิ่มขึ้นค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นเป็นสัดส่วนสัมพันธ์กับ ค่ากรเปลี่ยนแปลงสตอเรจมอดูลัสของยาง เมื่อผสมพอลิทิโอฟีนอะซิติกแอซิดกับยางอะคริโลไน ไทรล์บิวตะไดอีน พบว่าค่าการเปลี่ยนแปลงสตอเรจมอดูลัสของพอลิเมอร์ผสมเพิ่มขึ้นเนื่องจาก แรงกระทำระหว่างอนุภาคของพอลิทิโอฟีนอะซิติกแอซิดกแอซิดกังอาง

ACKNOWLEDGEMENTS

The author would like to thank all faculties who have provided invaluable knowledge to her, especially, Assoc. Prof. Anuvat Sirivat who is her advisor.

Special thank goes to Conductive & Electroactive Polymers Research Unit members for their various discussions and suggestions on this work.

She would like to thank Mr. Robert Wright for the encouragement and the suggestions on the oral presentations.

The author is grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Finally, the sincerest appreciation is for her family for the love, understanding, encouragement, and financial support.

- 1

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

PAGE

CHAPTER

Ι	INTRODUCTION	1
П	BACKGROUND AND LITERATURE REVIEW	3
	2.1 Artificial Muscle	3
	2.2 Acrylonitrile-butadiene rubbers, NBR	9
	2.3 Conductive Polymers	10
	2.4 Polythiophene	11
	2.4.1 Synthesis of Poly(thiophenes)	12
	2.4.2 Poly(3-substituted thiophenes)	13
	2.4.3 Applications of Poly(thiophenes)	16
	2.5 Acrylonitirile-butadiene Rubbers (NBR) and Blends of NBR	17
	2.6 Dielectric properties of NBR and NBR blends	22
	2.7 Polythiophene and Derivatives	23
	2.8 Electroactive Polymers, EAPs	26
III	EXPERIMENTAL	30
	3.1 Materials	30
	3.1.1 Synthesis Poly(3-Thiopheneacetic acid)	30

3.1.2 Acrylonitrile-butadiene Rubbers (NBR) 30

	3.2 Methodology	30
	3.2.1 Polymerization Procedure	30
	3.2.2 Preparation of Pure Acrylonitrile-butadiene Rubber	33
	3.2.3 Preparation of the P3TAA/Acrylonitrile-butadiene	
	Rubber Blends	34
	3.2.4 Characterization and Testing	34
IV	ELECTROMECHANICAL RESPONSE OF	
	POLYTHIOPHENE/ACRYLONITRILE-BUTADIENE	
	RUBBER AS AN ARTIFICIAL MUSCLE	37
	4.1 Abstract	37
	4.2 Introduction	38
	4.3 Experimental	44
	4.4 Results and Discussion	53
	4.5 Conclusions	53
	4.6 References	54
V	CONCLUSIONS	63
	REFERENCES	64
	APPENDICES	69
	Appendix A Identification of Characteristic FT-IR Spectrum of	
	3-Thiophene Acetic Acid,	
	Poly(3thiophenemethylacetate),Undoped Poly(3-	
	thiophene acetic acid), Acrylonitirle-butadiene	
	Rubber, and P3TAA/NBR Blends	69

CHAPTER

Appendix B	Identification of Characteristic of Proton Nuclear	
	Magnetic Resonance (1H-NMR)	70
Appendix C	Identification of Characteristic Peaks of	
	Undoped Poly (3-thiophene acetic acid) from	
	UV-Visible Spectroscopy	76
Appendix D	The Thermogravimetric Thermogram of	
	Undoped poly(3-thiophene acetic acid) and	
	Acrylonitrile-butadiene Rubber	77
Appendix E	Conductivity Measurement	81
Appendix F	Scanning Electron Micrograph of Undoped PTAA	87
Appendix G	Determination of Particle Sizes of Undoped and	
	Doped P3TAA	86
Appendix H	Electrorheological Properties and Dielectric	
	Properties Measurement of Pure Acrylonitrile-	
	butadiene rubber and Poly(3-thiopheneacetic	
	acid)/Acrylonitrile-butadiene Rubber Blends	88
	butadiene rubber and Poly(3-thiopheneacetic acid)/Acrylonitrile-butadiene Rubber Blends	88

CURRICULUM VITAE

107

LIST OF TABLES

.

TABLE

PAGE

CHAPTER III

3.1	Summary of specification data of Acrylonitrile-butadiene	
	rubber various acrylonitrile contents	

CHAPTER IV

1.4

4.1	Induction time and recovery time at electric strength 1.2	
	kV/mm of the pure NBR system and P3TAA_10/NBR1	
	blends	56

ix

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Conducting polymer actuators undergo dimensional chang	es	
	in response to changes in oxidation state		4
2.2	Principle of operation of dielectric elastomers		6
2.3	Strain versus actuation pressure/density for various high-		
	speed technologies		8
2.4	The structural formula of NBR		9
2.5	Schematic structure of polythiophene		12
2.6	The first chemical syntheses of polythiophene		13
2.7	Specific examples of the synthesis of polythiophene		13
2.8	Structure of (a) poly(2-(3-Thienyl ethylperfluorobutyrate)))	
	(PFTE), (b) Poly(2-(3-Thienyl) acetyl		
	3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanate) (PSFTE)	14
2.9	Chiral Poly(thiophenes)	4.5	16

CHAPTER IV

4.1	SEM photographs of (a) undope poly(3-thiopheneacetic	
	acid); (b) P3TAA_5/NBR1; (c) P3TAA_20/NBR1; (d)	
	P3TAA_30/NBR1	56
4.2	Comparison of the dielectric constant (ϵ') of pure NBR and	
	P3TAA/NBR1 vs. frequency at applied volt = 1.0 volt, 27 \pm	
	0.5 °C, gab between 0.7 to 1.0 mm: (a) pure NBR; (b)	
	P3TAA/NBR blends	57

4.3	Comparison of the storage modulus response ($\Delta G'$) of pure	
	NBR and P3TAA/NBR1 at various particle concentrations	
	(5%, 10%, 15%, 20%, and 30%vol.) at frequency 1.0 rad/s	
	vs. electric filed strength, strain 0.1%, 27±0.5 °C, gap	
	between 0.7 to 1.0 mm: (a) pure NBR; (b) P3TAA/NBR1	58
4.4	Comparison of the storage modulus response ($\Delta G'$) of pure	
	NBR and P3TAA/NBR1 blends at various electric field	
	strengths (0.1, 0.2, and 1 kV/mm) vs. particle concentration	
	$(\phi = 0, 5, 10, 15, 20, \text{ and } 30 \text{ %vol.})$ frequency 1.0 rad/s,	
	strain 0.1%, e 27 \pm 0.5 °C, gap between 0.7 to 1.0 mm	59
4.5	Storage modulus responses at frequency 1.0 rad/s, strain	
	0.1%, and various electric field strength (0.1, 0.2, and 1	
	kV/mm) of pure NBR and P3TAA/ vs. dielectric constants,	
	at 20 Hz, applied volt = 1 volt, 27 ± 0.5 °C °C, and gap 0.7 to	
	1.0 mm: (a) pure NBR; (b) P3TAA/NBR1 at various particle	
	concentrations (5%, 10%, 15%, 20%, and 30%vol.)	60
4.6	Schematic diagram of the bending response measurement	61
4.7	Bending response pictures of pure NBR1	61
4.8	Bending angle of pure NBR1 and P3TAA_10/NBR1 vs.	
	electric field strength at ambient temperature	62
4.9	Electric force of pure NBR1 and P3TAA_10/NBR1 vs.	
	electric field strength at ambient temperature. Size of pure	
	NBR sample is 0.6 mm thick, with the weight 0.1515 g; for	
	P3TAA_10/NBR1 it is 0.5 mm thick, weight of 0.1356 g,	
	both samples have a width of 5.55 mm	62