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Ethylene oxide, which is an important petrochemical substrate in chemical
industry, is used as an intermediate in the manufacture of various useful chemicals
such as polyethylene glycol, polyethylene oxide, detergents, and solvents. In
commercial processes, ethylene oxide was generated by the ethylene epoxidation
reaction under high temperature operation, which results in high energy
consumption. The objective of this work was to determine the optimum condition for
the maximum ethylene oxide selectivity by using a low-temperature parallel plate
dielectric barrier discharge (DBD) system, with two glass plates as dielectric barriers
under ambient temperature and pressure to produce active oxygen species prior to
reacting with ethylene in order to maximize ethylene oxide production. The effects
of applied voltage, input frequency, and oaiczris feed molar ratio, as well as
ethylene feed position, on ethylene epoxidation activity were examined. The DBD
system with two rough glass plates was found to provide the highest EO selectivity
of 68.15 % and the highest EO yield of 10.88 %, at 23 kv, 500 Hz, an o2ic2H4 feed
molar ratio of 1:5, and an ethylene feed position fraction of 0.5, which gave twice as
much as EO selectivity in a DBD system with a single smooth dielectric glass plate.
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