THE EFFECT OF SURFACE SCALLOPING ON FLOW HYDRODYNAMICS AND PRESSURE DROP

Mr. Chaiwat Lertsurasakda

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2007

501909

Thesis Title:	The Effect of Surface Scalloping on Flow Hydrodynamics	
	and Pressure Drop	
By:	Chaiwat Lertsurasakda	
Program:	Petrochemical Technology	
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon	
	Prof. Derek H. Lister	
	Prof. Frank R. Steward	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nartayo Yamunet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Flullo

(Assoc. Prof. Thirasak Rirksomboon)

KL

(Prof. Derek H. Lister)

-Mu

(Prof. Frank R. Steward)

Champel R

(Assoc. Prof. Pramoch Rangsunvigit)

tipat Siemennond

(Assist. Prof. Kitipat Siemanond)

ABSTRACT

4871007063 Petrochemical Technology Program
Chaiwat Lertsurasakda: The Effect of Surface Scalloping on
Flow Hydrodynamics and Pressure Drop
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H.
Lister, and Prof. Frank R. Steward 58 pp.
Keywords: Scallop/ Pressure drop/ Hydrodynamics/ Corrosion/ Roughness/
CFD/ FLUENT

Scalloping, a texturing of a corroding surface that imparts the appearance of orange peel, is commonly observed in the area exposed to the flow assistedcorrosion. The effects of surface scalloping on flow hydrodynamics and pressure drop remain unclear. The scalloped surface characteristics are believed to be mainly a function of flow hydrodynamics. On the other hand, the special surface characteristics of the scallop are also believed to change the hydrodynamics which affects the pressure drop. In this thesis, two dimensional (2D) scalloped surface was studied. The experiments were conducted in an atmospheric-pressure, recirculating loop. The internal surface of the acrylic test section was machined into scalloped surfaces. Static pressure was measured along the test section with various Reynolds numbers of flow. Flow separation causing flow recirculation was observed in congruence with a previous study. Flow hydrodynamics simulated by CFD code -Fluent 6.3.26 was validated with the experimental results and SST k- ω is the most appropriate viscous model. It was found that the pressure drop of 2D scalloped surface was proportional to its surface area but was not a function of scalloped distribution. The von Karman equation for fully roughness in turbulence flow cannot be used to predict the friction factor for the scalloped surface accurately and the values of friction factor obtained from backward and forward flows on the scalloped surface were unidentical even though the roughness was the same.

บทคัดย่อ

ชัยวัฒน์ เลิศสุรศักคา : ผลกระทบของพื้นผิวชนิดสแกลอปต่อคุณสมบัติการไหลของ น้ำและความดันลดของระบบ (The Effect of Surface Scalloping on Flow Hydrodynamics and Pressure Drop) อ.ที่ปรึกษา :รศ.คร.ธีรศักดิ์ ฤกษ์สมบูรณ์, ศ.คร.ดีเรก เอช ลิสเตอร์ และ ศ.คร.แฟรงค์ อาร์ สจ้วต 58 หน้า

พื้นผิวชนิดสแกลอปเป็นพื้นผิวซึ่งมีลักษณะคล้ายเปลือกส้มที่เกิดจากการกัดเซาะ โดย ของไหลมีส่วนสำคัญในการทำให้เกิดการกัดเซาะอย่างรุนแรง ปัจจุบันผลกระทบของพื้นผิวชนิด สแกลอปต่ออุณสมบัติการไหลของของไหลและความดันลดของระบบยังไม่เป็นที่เข้าใจแน่ชัด เชื่อกันว่าคุณสมบัติการไหลของของไหลเเป็นดัวการสำคัญในการกำหนดคุณลักษณะของพื้นผิว ชนิดสแกลอป ในทางกลับกัน เชื่อว่าพื้นผิวชนิดพิเศษนี้สามารถเปลี่ยนคุณสมบัติการไหลของของ ไหลซึ่งส่งผลกระทบต่อความดันลดของระบบได้/ งานวิจัยนี้ศึกษาพื้นผิวชนิดสแกลอปแบบสอง มิติในระบบที่มีการหมุนวนของของไหลที่ความดันดงที่ โดยกลึงพื้นผิวภายในท่ออกรีลิคให้เป็น พื้นผิวแบบสแกลอป ทำการวัดความดันลดหลายตำแหน่งต่างๆตามความยาวท่อทดลองที่ก่าเรย์โน ด่างๆของของไหล จากการทดลองพบว่าเกิดการแยกไหลของของไหล ส่งผลให้เกิดบริเวณที่ของ ใหลเกิดการหมุนวน ได้จำลองคุณสมบัติการไหลของของไหลโดยโปรแกรมฟลูเอน (FLUENT) พบว่ามีความถูกต้องตรงกลับผลการทดลองโดยที่โมเดลดวามหนืดชนิด เอสเอสที เดโอเมกา ให้ ความถูกต้องแม่นยำที่สุดในการทำนายคุณสมบัติการไหลของของไหล จากการทดลองพบว่ากวาม ดันลดของพื้นผิวชนิดสแกลอปแบบสองมิตินั้นแปรผันตามพื้นที่ของพื้นผิวชนิดสแกลอปโดยที่ การกระจายตัวของพื้นผิวแบบสแกลอปนั้นแทบจะไม่มีผลต่อความลดของระบบ สมการวอน คา แมน (von Karman) ที่ใช้สำหรับพื้นผิวที่องกิการไหลงองของไหลกเบบปั่นว่นไม่สามารถใช้

แมน (von Kannan) ที่เข้าทายหนังที่จรูงระมากันการการแกบบบนบรน เมกามารถาม ทำนายการไหลได้ นอกจากนี้ก่าสัมประสิทธิ์ความฝืดที่กำนวณได้จากการทดลองที่ใช้ของไหลวิ่ง ไปข้างหน้า และ ของไหลวิ่งย้อนกลับมีก่าไม่เท่ากันทั้งที่ก่าความขรุขระมีก่าเท่ากัน

ACKNOWLEDGEMENTS

First of all, I would like to give special thanks my supervisors, Dr. Thirasak Rirksomboon, Dr. D. H. Lister and Dr. Frank R. Steward for an opportunity given to me to do this work. I'm grateful for your kindness and guidance.

I want to thank Chien-ee Ng for his practical advises and endless creative idea. I appreciate his professional and willing to help. Feicht Andrew is thanked for all the helps and suggestions. The experiment will be much more difficult without him.

I thank Keith and Jody from chemical engineering shop who always provide technical supports with kindness. I would like to thank Dr. Kishawy for allows me to use the CNC Lethe which is necessary for the project. Pang Lei is thanks for his friendly technical support for the CNC Lethe.

Big thanks come to my friends in chemical engineering department, UNB for a very nice friendship and care about where I slept last night. I thank all of my PPC friends for their support and care. They are such a nice friend.

I thank Thai community in Fredericton for their warm welcome, helps and support. Kittima Khum sa-ang is thanked for her helps in machining and polishing.

My family is a source of my power. Their unconditional love and support are a driving force for me to have everything that I have today. I would like to say thank you.

I want to say thank you very much to Ratchanee Patcharasaksakol for her care and love. Since she was here, I never feel lonely or loose my stimulation in my work.

Finally, this thesis work is partially funded by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	vii
List of Figures	ix
Abbreviations	xii
List of Symbols	xii

CHAPTER

.

I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Flow-Assisted Corrosion in Nuclear Power Plant	4
	2.2 Scalloping Phenomena	6
	2.3 Roughness and Pressure Drop	10
	2.4 FLUENT CFD and Viscous Model	11
III	EXPERIMENTAL	14
	3.1 Materials	14
	3.2 Equipment	14
	3.3 Methodology	14
	3.3.1 Test Section Design	17
	3.3.2 Validation of FLUENT CFD model	28
	3.3.3 Effect of Scallop's Surface Area on Pressure Drop	31
	3.3.4 Effect of Scallop's Distribution on Pressure Drop	32

PAG	E
-----	---

IV	RESULTS AND DISCUSSION	33
	4.1 Validation of FLUENT CFD model	33
	4.1.1 Flow Visualization	33
	4.1.2 Pressure Measurement	34
	4.1.3 CFD Simulation and Viscous Model Selection	
	with FLUENT	39
	4.2 Effect of Scallop's Surface Area on Pressure Drop	46
	4.1.1 Effect of Scallop's Surface Area with Forward	
	Flow Direction	46
	4.1.1 Effect of Scallop's Surface Area with Backward	
	Flow Direction	48
	4.2.3 Comparison of Friction Factor	49
	4.3 Effect of Scallop's distribution on Pressure Drop	50
V	CONCLUSIONS AND RECOMMENDATIONS	52
	REFERENCES	54
	APPENDIX	55
	CURRICULUM VITAE	58

LIST OF TABLES

TABLE		PAGE
3.1	Scallop profile coordinate	19
3.2	Scallop's surface area test matrix for both forward and	
	backward flow	31
3.3	Scallop's distribution test matrix	32

.....

,

LIST OF FIGURES

FIGURE

1.1	Scallop found on outlet feeder pipe k16	1
2.1	Schematic of primary coolant in CANDU reactor	4
2.2	Scalloping on the inner surface of a carbon steel feeder pipe	5
2.3	Flute hydrodynamics	7
2.4	Stages in the delopment of experimental Flutes and grooves	8
2.5	Schematic flow fields (skin-friction lines and streamlines	9
	associated with mature flutes and mature grooves)	
2.6	The pressure drop vs. time	10
3.1	Scalloping test loop	15
3.2	Scallop test section	15
3.3	Plaster scallop contour	16
3.4	Scallop profile before regression	18
3.6	Smooth scallop contour	19
3.7	2D drawing of scallop piece	20
3.8	3D layout of scallop piece	20
3.9	Connector between the first part and the second part	21
3.10	Connector between the second part and the third part	22
3.11	Configuration of the test section	22
3.12	Male connector	23
3.13	Female connector	23
3.14	Flat surface connector	23
3.15	Fabrication of flat surface section	23
3.16	The pressure tap used to measure the static pressure	24
3.17	Prepared acrylic pieces	25
3.18	Cutting tool	25
3.19	CNC lathe	26
3.20	The acrylic pieces while machined	26

FIGURE

3.21	Finished acrylic pieces	27
3.22	Downstream Section	27
3.23	Finished test section	28
3.24	Scalloping loop	28
3.25	Polished scallop pieces	29
3.26	Test section with one scallop	29
3.27	Test section with two scallops	30
3.28	Pressure taps around the scallop area	30
3.29	Position and distribution of the pressure taps	31
3.30	The arrangements of scallops	32
4.1	Picture from high speed camera	33
4.2	Stream line visualized by low shutter speed technique	34
4.3	Pressure transducer and its meter	35
4.4	The wall static pressure along the pipe at 6 GPM, 1 scallop	36
4.5	The wall static pressure along the pipe at 9 GPM, 1 scallop	36
4.6	The wall static pressure along the pipe at 12 GPM, 1 scallop	37
4.7	The wall static pressure along the pipe at 15 GPM, 1 scallop	37
4.8	The wall static pressure along the pipe at 18 GPM, 1 scallop	38
4.9	The wall static pressure along the pipe at 12 GPM 2 scallops	38
4.10	Mesh's resolution on the cross section area of the pipe	39
4.11	Mesh independent study	40
4.12	Comparison of the results from first order and second order	41
	calculation	
4.13	Comparison of viscous models at 6 GPM	42
4.14	Comparison of viscous models at 9 GPM	42
4.15	Comparison of viscous models at 12 GPM	43
4.16	Comparison of viscous models at 15 GPM	43
4.17	Comparison of viscous models at 18 GPM	44
4.18	Prediction of SST K- ω at 12 GPM, 2 scallops	45

FIGURE

PAGE

4.19	Velocity and pressure contour at 9 GPM, SST k- ε model	45
4.20	Flow path line near scalloped surface	46
4.21	Forward flow direction	46
4.22	The pressure drop increase constantly with the scallop's	47
	surface area for forward flow direction.	
4.23	The pressure drop is proportional to Reynolds number	47
	square for forward flow direction.	
4.24	Backward flow direction	48
4.25	The pressure drop increase constantly with the scallop's	48
	surface area for backward flow direction.	
4.26	The pressure drop is proportional to Reynolds number	49
	square for backward flow direction.	
4.27	The friction factors from the experiment are compared with	49
	the one calculated from Von Kaman equation.	
4.28	At the same numbers of scallops, the pressure drop is the	51
	almost the same regardless the scallop's distribution.	
Al	Velocity contour for backward flow direction	55
A2	Pressure contour for backward flow direction	55
A3	Velocity contour of backward flow direction with five	56
	scallop	
A4	Velocity contour of forward flow direction with five scallop	56
A5	Velocity contour of backward flow direction with five	57
	scallop	
A6	Velocity contour of forward flow direction with five scallop	57

ABBREVIATION

2D	Two dimension
3D	Three dimension
CFD	Computational fluid dynamic
DES	Detached eddy simulation
FAC	Flow-assisted corrosion
LES	Large eddy simulation
Re	Reynolds number
SST	Shear-stress transport
R	Realizable
RNG	Renormalization-group
RSM	Reynolds Stress Model

LIST OF SYMBOL

3	Turbulence dissipation rate (epsilon)
ω	Specific dissipation rate (omega)
¢	Roughness height
ρ	Density
Δp	Pressure drop
μ	Viscosity
d	Diameter
f	Friction factor
g	Specific gravity
hſ	Surface energy lost
k	Turbulence kinematics viscosity
L	Characteristic length
V	Velocity