SILK FIBROIN/POLYCARBAZOLE COMPOSITE AS ARTIFICIAL MUSCLE

Thanida Srisawasdi

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

Thesis Title:	Silk Fibroin/Polycarbazole Composite as Artificial Muscle
By:	Thanida Srisawasdi
Program:	Polymer Science
Thesis Advisors:	Prof. Anuvat Sirivat
	Prof. Alexander M. Jamicson

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Anuvat Sirivat)

Som Junge

(Prof. Alexander M. Jamieson)

- Jyy/s

(Prof. Pitt Supaphol)

D. Patavarakom

(Dr. Datchanee Pattavarakorn)

561032

ABSTRACT

5472051063	Polymer Science Program
	Thanida Srisawasdi: Silk Fibroin/Polycarbazole Composite as
	Artificial Muscle.
	Thesis Advisors: Prof. Anuvat Sirivat, Prof. Alexander M. Jamieson
	119 pp.
Keywords:	Silk fibroin/ Hydrogels/ Polycarbazole/ Actuator/ Biopolymer

Pure silk fibroin (SF) hydrogel and composites of polycarbazole/silk fibroin (PCZ/SF) hydrogel were fabricated by solvent casting technique to investigate electromechanical properties, dielectric properties, and deflection properties as functions of SF concentration, glutaraldehyde concentration, and particle concentration in the blends electric field strength. Electromechanical properties were characterized using oscillatory shear mode over a frequency range from 0.1 to 100 rad/s under various electric field strengths from 0 to 600 V/mm at a temperature of 27 °C. For both pristine SF hydrogel and the composites, the storage modulus response ($\Delta G'$) and the storage modulus sensitivity ($\Delta G'/G'_0$) increase dramatically with increasing electric field strength; the pristine hydrogel possesses the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other electroactive polymers. With increasing incorporation of conductive polycarbazole into the SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decrease; the conductive polymer thus provides a softening effect. In a deflection experiment with using a cantilever fixture, for both the pure SF hydrogel and the composites, the dielectrophoresis force and deflection distance increase monotonically with electric field strength, with the pure SF hydrogel showing the highest deflection distance and dielectrophoresis force.

บทคัดย่อ

ธนิดา ศรีสวัสดิ์ : การศึกษาพอลิเมอร์ผสมระหว่างใยไหมและพอลิการ์บาโซล เพื่อใช้ ในงานกล้ามเนื้อเทียม (Silk Fibroin/Polycarbazole Composite as Artificial Muscle) อ. ที่ปรึกษา : ศ. อนุวัฒน์ ศรีวัฒน์ และ ศ. อเล็กเซนเดอร์ เอ็ม เจมิซัน 119 หน้า

ใยไหมบริสุทธิ์และพอลิเมอร์ผสมระหว่างใยไหมและพอลิการ์บาโซลถูกขึ้นรูปโดย วิธีการทำให้เป็นไฮโดรเจล เพื่อศึกษาอุณสมบัติเชิงกลที่คอบสนองทางไฟฟ้า, ค่าคงที่ไดอิเล็กทริก, และการตอบสนองการเบี่ยงเบนในกระแสไฟฟ้า ในปัจจัยของปริมาณความเข้มข้นของใยไหม, กลูตาเอาดิไฮด์, และผลของปริมาณพอลิการ์บาโซลในวัสดุผสม การทดลองกระทำโดยการให้แรง เฉือนแบบกลับไปกลับมาจากความถี่ 0.1 ถึง 100 เรเดียนต่อวินาที และให้สนามไฟฟ้าตั้งแต่ 0 ถึง 600 โวลด์ต่อมิลลิเมตรกับสารตัวอย่าง ที่อุณหภูมิ 27 องศาเซลเซียส สำหรัยไฮโดรเจลใยไหม แรกเริ่ม ค่าการเปลี่ยนแปลงสตอเรจมอดูลัส และค่าความแข็งเพิ่มขึ้น เมื่อเพิ่มความเข้มของ สนามไฟฟ้า ซึ่งแสดงค่าความแข็งสูงสุดที่ 5.87 เมื่อเปรียบเทียบกับพอลิเมอร์ที่ตอบสนองต่อไฟฟ้า ชนิดอื่นๆ อย่างไรก็ตาม เมื่อผสมพอลิการ์บาโซลกับใยไหม พบว่าค่าความแข็งและค่าคงที่ไดอิ เล็กทริกลดลง เนื่องจากพอลิเมอร์นำไฟฟ้าช่วยทำให้เกิดการนิ่มขึ้นของชิ้นงาน ในการทดลองการ ตอบสนองการเบนในสนามไฟฟ้า แรงไดอิเล็กโตรโฟรีซีส และระยะเบี่ยงเบนเพิ่มขึ้น เมื่อเพิ่ม ความเข็มของสนามไฟฟ้า ซึ่งไฮโดรเจลใยไหมบริสุทธิ์ แสดงระยะการเบี่ยนเบน และแรงไดอิเล็ก โตรโฟรีซีสมากที่สด

ACKNOWLEDGEMENTS

The author would like to thank all faculties who have provided invalueable knowledge to her, especially, Prof. Anuvat Sirivat and Prof. Alexander M. Jamieson who is her advisor.

Special thank goes to Conductive and Electroactive Polymers Research Unit of Chulalongkorn University, Thailand Research Fund (TRF-RTA), and Royal Thai Government.

She would like to express her sincere appreciation to Prof. Pitt Supaphol and Dr. Datchanee Pattavarakorn for being on her committee and her friends in Conductive and Electroactive Polymers Research Unit of Chulalongkorn University for their various suggestions and discussion on this work and the oral presentation.

The author is grateful for the scholarship and funding of this thesis work provided by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х

CHAPTER

I	INTRODUCTION	1
H	LITERATURE REVIEW	3
	2.1 Artificial Muscle as an Actuator	3
	2.2 Electroactive Polymers (EAPs)	7
	2.3 Conductive Polymers	8
	2.4 Polycarbazole	10
	2.5 Purification of Silk Fibroin and Formation of Silk Fibroin	
	Hydrogel	17
III	EXPERIMENTAL	23
	3.1 Materials	23
	3.1.1 Chemicals	23
	3.1.2 Solvents	23
	3.2 Equipment	23
	3.3 Methodology	24
	3.3.1 Preparation of Silk Fibroin (SF) Solution and	
	Formation of SF Hydrogels	24
	3.3.2 Characterizations of SF Hydrogels	24

PTER		P	PAGE
	3.3.3 Po	lymerization of Polycarbazole (PCZ)	25
	3.3.4 Cł	naracterizations of Polycarbazole	25
	3.3.5 Bl	ending Polycarbazole into Silk Fibroin Hydrogels	26
	3.3.6 Cł	naracterizations of Silk Sibroin/Polycarbazole	
	H	ydrogel Composites	26
IV	ELECTRON	MECHANICAL RESPONSE OF SILK FIBROI	N
	HYDROGE	L AND CONDUCTIVE POLYCARBAZOLE/S	ILK
	FIBROIN H	YDROGEL COMPOSITES AS AN ARTIFICI	AL
	MUSCLE		29
	4.1 Abstract		29
	4.2 Introduct	ion	30
	4.3 Experime	ental	31
	4.4 Results a	nd Discussion	36
	4.5 Conclusi	ons	43
	4.6 Acknowl	edgements	44
	4.7 Referenc	es	44
V	CONCLUSI	ONS	57
	REFERENC	ES	58
	APPENDICI	ES	63
	Appendix A	Determination the Functional Group of	
		Polycarbazole and Silk fibroin Hydrogel by	
		Fourier Transform Infrared Spectroscopy	63
	Appendix B	Thermal Properties of Polycarbazole and Silk	
		Fibroin Hydrogel	67
	Appendix C	The Electrical Conductivity Measurement of	
		Polycarbazole	71
	Appendix D	Density Determination of Polycarbazole	73

CHA

CH	AP	TEI	R
----	----	-----	---

R		PAGE
Appendix H	E Scanning Electron Micrographs of Polycarbazole,	
	Silk Fibroin Hydrogels and Silk Fibroin/	
	Polycarbazole Hydrogel	75
Appendix F	Electromechanical Properties Measurement of	
	Crosslinked Silk Fibroin Hydrogels with Various	
	Amounts of Glutaraldehyde	78
Appendix G	Frequency Sweep Testof Crosslinked Silk Fibroin	
	Hydrogels with Various Amounts of	
	Glutaraldehyde; Various Electric Fields	84
Appendix H	Effect of Electric Field on The Storage Modulus	
	Response ($\Delta G'$) and The Storage Modulus	
	Sensitivity ($\Delta G'/G'0$) of Crosslinked Silk Fibroin	
	Hydrogels	89
Appendix I	Electromechanical Properties Measurements of	
	Silk Fibroin/ Polycarbazole Composites	95
Appendix J	Frequency Sweep Test of Silk Fibroin/Polycarbazo	e
	Composites; Various Electric Fields	99
Appendix K	Electromechanical Properties Measurements of	
	Silk Fibroin/ Dedoped Polycarbazole Composites	106
Appendix L	Frequency Sweep Test of Silk Fibroin/Dedoped	
	Polycarbazole Composites; Various Electric Fields	108
Appendix M	Dielectric Constant of Crosslinked Silk Fibroin	
	Hydrogels, Silk Fibroin/Polycarbazole Hydrogels,	
	and Silk Fibroin/Dedoped Polycarbazole Hydrogel	s 112
Appendix N	Deflection Responses of Pure Silk Fibroin Hydroge	l
	and Silk Fibroin/Polycarbazole (SF/PCZ) Hydrogels	116

CURRICULUM VITAE

120

LIST OF TABLES

TABLE		PAGE
4.1	Comparison of storage modulus sensitivities of pure silk	
	fibroin (SF) hydrogel and electroactive materials	55

LIST OF FIGURES

FIGURE		PAGE
2.1	Schematic representatives of three states during the	
	electromechanical cycle of a rocking-chair-type, bimorph	
	actuator.	3
2.2	Schematic illustrations of: (a) bending response	
	measurement of Phy gel suspended vertically in silicone-	
	oil bath and sandwiched between copper electrodes. A	
	DC electric field was applied horizontally at $30 \pm 0.5^{\circ}$ C	
	causing a deflection distance, (b) actuation mechanisms	
	were from two dominating factors; ionic polarization of	
	BMIM+ cation and electronic polarization of cellulosic	
	hydroxyl group.	6
2.3	Mechanism of polyacetylene when becomes doped.	9
2.4	Chemical structure of Poly(3,6-carbazole) and its starting	
	materials.	10
2.5	Chemical structure of Poly(2,7-carbazole) and its starting	
	materials.	10
2.6	The mechanism of formation of polycarbazole.	12
2.7	The structure of carbazole (C) and its oxidation products:	
	C^+ is cation radical, D and $D2^+$ are dimer and dimer	
	dication, respectively, and P^+ is the half-oxidized polymer	13
2.8	Scheme of the oxidation, demerization of carbazole as	
	well as the redox transformations of the dimer/polymer.	14
2.9	Synthesis of poly(1,4,5,8,9-pentamethyl-3,6-	
	carbazolylene by oxidative polymerization with $FeCl_3$ of	
	pentamethylcarbazole.	14
2.10	Proposed mechanistic scheme for the	
	electropolymerization of carbazole.	15

FIGURE

2.11	Primary structure of silk fibroin, (Gly-Ser-Gly-Ala-Gly-	17
	Ala) _n .	
2.12	Silk fibroin is purified from sericins by boiling in alkaline	
	solution. The de-gummed or purified silk fibers can be	
	processed into silk cords and non-woven silk mat	
	Schematic illustrations of pregelation and early and late	
	stages of fibroin gelation, a three-stage model. A fresh	
	solution (pregelation) has about 20 % content of β -sheet	
	structures with negligible intermolecular bindings.	18
2.13	Gelation is initially induced by weaker interchain	
	interactions such as hydrogen bonding, hydrophobic	
	interactions, and electrostatic interactions. The β -sheet	
	structures occur in the phase transition resulting in stable	
	and essentially irreversible intermolecular structures.	19
2.14	Schematic illustration of mechanism of silk gelation. The	
	gelation process contains two kinetic steps: (a) structural	
	change from random coil to β -sheet with some interchain	
	physical crosslinks occurring in a short timeframe; (b) β -	
	sheet structure extended, large quantity of interchain β -	
	sheet crosslinks formed, and molecules organized to gel	
	network over a relative long timeframe.	20
2.15	Electeogelation mechanisms. Silk fibroin firstly	
	assembled into nanoparticles with a size of tens of	
	nanometers and then further aggregated into microspheres	
	with a size up to macrometers. In reversing the process	
	the microspheres dispersed into solution rather than	
	separated into nanoparticles.	21
4.1	SEM photographs of: (a) dedoped polycarbazole; (b)	
	doped 100 :1 polycarbazole at magnification of 18000.	47

FIGURE

4.2	SEM photographs of dispersion of polycarbazole (PCZ)	
	particle in silk fibroin hygrogel: (a) 0 vol.%; (b) 0.01	
	vol.%; and (c) 0.1 vol.% of PCZ particle.	48
4.3	The storage modulus sensitivity ($\Delta G'/G'_0$) vesus electric	
	field strength of silk fibroin (SF) hydrogels prepared by	
	various glutaradehyde (GTA) concentrations in 4 and 5	
	vol.% SF solutions, at strain 0.1 %, frequency 100 rad/s,	
	temperature 300 K.	49
4.4	Effect of polycarbazole concentration on the storage	
	modulus response and the storage modulus sensitivity at	
	strain 0.1 %, frequency 100 rad/s, electric field strength	
	600 V/mm, temperature 300 K.	50
4.5	Temporal responses of the storage modulus (G') of the	
	pure silk fibroin (SF) hydrogel and the silk	
	fibroin/polycarbazole (SF/PCZ) (0.001 %v/v of PCZ)	
	hydrogel at strain of 0.15 %, frequency of 100 rad/s,	
	electric field strength of 600 V/mm, temperature of 300	
	К.	51
4.6	Relative dielectric constant (ϵ_r') versus frequency of pure	
	silk fibroin (SF) hydrogel, silk fibroin/polycarbazole	
	(SF/PCZ) hydrogels with various polycarbazole (PCZ)	
	concentration at temperature of 300 K.	52
4.7	Deflection of pure silk fibroin/polycarbazole (SF/PCZ)	
	hydrogels at $E = 0$ and 500 V/mm: (a) pure SF hydrogel	
	and (b) SF/PCZ (0.5 $%v/v$ of PCZ) hydrogel.	53
4.8	(a) Deflection distances of silk fibroin (SF) hydrogel, silk	
	fibroin/polycarbazole (SF/PCZ) (0.001 vol.% of PCZ),	
	and SF/PCZ (0.01 vol.% of PCZ) hydrogels at various	
	electric field strengths. (b) Dielectricphoretic forces.	54