REFERENCES

- Ali, Y. and Hanna, M.A. (1994) Alternative diesel fuels from vegetable oils. Bioresource Technology, 50(2), 153-163.
- Anantarakitti, N., Arpornpong, N., Khaodhiar, S., and Charoensaeng, A. (2014, May 9) Effect of nonionic surfactant structure on fuel properties of microemulsion-based biofuel from palm oil. Paper presented at <u>International</u> <u>Conference On Advances In Civil, Structural, Environmental And Bio-Technology - CSEB 2014</u>, Kuala Lumpur, Malaysia.
- Arpornpong, N., Attaphong, C., Charoensaeng, A., Sabatini, D.A., and Khaodhiar, S.
 (2014) Ethanol-in-palm oil/diesel microemulsion-based biofuel: Phase behavior, viscosity, and droplet size. <u>Fuel</u>, 132(0), 101-106.
- Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., and Sulaiman, N.M.N. (2013) The effects of catalysts in biodiesel production: A review. <u>Journal of Industrial</u> <u>and Engineering Chemistry</u>, 19(1), 14-26.
- Attaphong, C. and Sabatini, D.A. (2013) Phase Behaviors of Vegetable Oil-Based Microemulsion Fuels: The Effects of Temperatures, Surfactants, Oils, and Water in Ethanol. <u>Energy & Fuels</u>, 27(11), 6773-6780.
- Attaphong, C., Do, L., and Sabatini, D.A. (2012) Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel. <u>Fuel</u>, 94, 606-613.
- Balat, M. (2008) Modeling Vegetable Oil Viscosity. <u>Energy Sources, Part A:</u> <u>Recovery, Utilization, and Environmental Effects</u>, 30(20), 1856-1869.
- Balcan, M., Mihăilescu, F.-C., Anghel, D.-F., Văcăreşteanu, I.-C., Aricov, L., and Vasilescu, E.-L. (2014) Microemulsion systems containing diesel and colza oil as alternative fuels: Phase studies, interfacial tension and solubilization. <u>Fuel</u>, 117, Part A, 251-258.
- Benjumea, P., Agudelo, J., and Agudelo, A. (2008) Basic properties of palm oil biodiesel-diesel blends. <u>Fuel</u>, 87(10-11), 2069-2075.

0

- Bora, P., Konwar, L.J., Boro, J., Phukan, M.M., Deka, D., and Konwar, B.K. (2014)
 Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel. <u>Applied Energy</u>, 135, 450-460.
- Che Man, Y.B., Haryati, T., Ghazali, H.M., and Asbi, B.A. (1999) Composition and thermal profile of crude palm oil and its products. <u>Journal of the American</u> <u>Oil Chemists' Society</u>, 76(2), 237-242.
- Chotwichien, A., Luengnaruemitchai, A., and Jai-In, S. (2009) Utilization of palm oil alkyl esters as an additive in ethanol-diesel and butanol-diesel blends. <u>Fuel</u>, 88(9), 1618-1624.
- Danielsson, I. and Lindman, B. (1981) The definition of microemulsion. <u>Colloids</u> <u>and Surfaces</u>, 3(4), 391-392.
- Do, L.D., Singh, V., Chen, L., Kibbey, T.C.G., Gollahalli, S.R., and Sabatini, D.A. (2011) Algae, Canola, or Palm Oils—Diesel Microemulsion Fuels: Phase Behaviors, Viscosity, and Combustion Properties. <u>International Journal of Green Energy</u>, 8(7), 748-767.
- Fletcher, P.D.I. and Morris, J.S. (1995) Turbidity of oil-in-water microemulsion droplets stabilised by nonionic surfactants. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 98(1–2), 147-154.
- Goddeeris, C., Cuppo, F., Reynaers, H., Bouwman, W.G., and Van den Mooter, G.
 (2006) Light scattering measurements on microemulsions: Estimation of droplet sizes. <u>International Journal of Pharmaceutics</u>, 312(1-2), 187-195.
- Gunstone, F.D. (2002) <u>Vegetable Oils in Food Technology: Composition</u>, <u>Properties and Uses</u>. Australia: Blackwell Publishing.
- "Introduction to Bomb Calorimetry." Scimed. 23 May 2014 http://www.scimed.co.uk/wp-content/uploads/2013/03/Introduction-to-bomb-calorimetry.pdf
- Kibbey, T.C.G., Chen, L., Do, L.D., and Sabatini, D.A. (2014) Predicting the temperature-dependent viscosity of vegetable oil/diesel reverse microemulsion fuels. <u>Fuel</u>, 116, 432-437.

σ

- Klossek, M.L., Marcus, J., Touraud, D., and Kunz, W. (2013) The extension of microemulsion regions by combining ethanol with other cosurfactants. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 427, 95-100.
- Klossek, M.L., Marcus, J., Touraud, D., and Kunz, W. (2014) Highly water dilutable green microemulsions. <u>Colloids and Surfaces A: Physicochemical</u> <u>and Engineering Aspects</u>, 442, 105-110.
- Komesvarakul, N., Sanders, M.D., Szekeres, E., Acosta, E.J., Faller, J.F., Mentlik, T., Fisher, L.B., Nicoll, G., Sabatini, D.A., and Scamehorn, J.F. (2006)
 Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams. Journal of Cosmetic Science, 57(4), 309-325.
- "Microemulsions." University of Bristol. 19 April 2014 http://www.chm.bris.ac.uk/ eastoe/Surf_Chem/3%20Microemulsions.pdf>
- Miskandar, M.S., Man, Y.B.C., Rahman, R.A., Aini, I.N., and Yusoff, M.S.A. (2007) Effects of Emulsifiers on Crystal Behavior of Palm Oil Blends on Slow Crystallization. <u>Journal of Food Lipids</u>, 14(1), 1-18.
- Nakkash, N.B. and Al-Karkhi, S.R. (2012) Production of Biodiesel Fuel from Oleic Acid and Comparison of its Properties with Petroleum Diesel. <u>Iraqi Journal</u> <u>of Chemical and Petroleum Engineering</u>, 13(4), 13-25.
- Narváez, P.C., Rincón, S.M., Castañeda, L.Z., and Sánchez, F.J. (2008)
 Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters. <u>Latin American Applied Research</u>, 38(1-6).
 - Neuma de Castro Dantas, T., da Silva, A.C., and Neto, A.A.D. (2001) New microemulsion systems using diesel and vegetable oils. <u>Fuel</u>, 80(1), 75-81.
 - Nguyen, T., Abraham, J., Ramallo, M., Wagner, D., and McLennan, J. (2012) Formulation of Canola-Diesel Microemulsion Fuels and Their Selective Diesel Engine Performance. <u>Journal of the American Oil Chemists' Society</u>, 89(10), 1905-1912.

- Nguyen, T., Do, L., and Sabatini, D.A. (2010) Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions. <u>Fuel</u>, 89(9), 2285-2291.
- Normah, I., Cheow, C.S., and Chong, C.L. (2013) Crystal habit during crystallization of palm Oil: Effect of time and temperature. International Food Research Journal, 20(1), 417-422.
- Normah, I., Cheow, C.S., and Chong, C.L. (2014) Crystal habit during crystallization of RBDPO with the addition of Diacylglycerol (DAG): effect of time and percentage of DAG added. <u>International Food Research Journal</u>, 21(5), 2045-2049.
- Patidar, V., Chandra, A., Singh, M., and Kale, R.K. (2014) Physiochemical and Phase behaviour study of Jatropha curcus oil - ethanol microemulsion fuels using sorbitane fatty esters. <u>International Journal of Renewable and Sustainable Energy</u>, 3(1), 13-19.
- Pengpreecha, S., Arpornpong, N., Khaodhiar, S., and Charoensaeng, A. (2014, May, 9-10) Microemulsion fuels from vegetable oil based renewable resource using mixed nonionic surfactant and cosurfactant systems. Paper presented at <u>International Conference On Advances In Civil, Structural, Environmental And Bio-Technology CSEB 2014</u>, Kuala Lumpur, Malaysia.
- Srivastava, A. and Prasad, R. (2000) Triglycerides-based diesel fuels. <u>Renewable</u> <u>and Sustainable Energy Reviews</u>, 4(2), 111-133.
- Sukirno, Ludi, F, R., S.Bismo, and M.Nasikin1. (2010, March) Formulation and Performance of Palm-grease Using Calcium Soap. Paper presented at <u>the</u> <u>CIGR Ejournal</u>
- "Surfactant." University of Bristol. 19 April 2014 < http://www.britannica.com/ EBchecked/topic/575010/surfactant>
- Tangsathitkulchai, C., Sittichaitaweekul, Y., and Tangsathitkulchai, M. (2004) Temperature effect on the viscosities of palm oil and coconut oil blended with diesel oil. Journal of the American Oil Chemists' Society, 81(4), 401-405.

- "Vegetable Oils". Filter International. 19 April 2014 http://www.filterinternational .com/index.php?lay=show&ac=article&Id=521573&Ntype=8>
- Wang, F., Fang, B., Zhang, Z., Zhang, S., and Chen, Y. (2008) The effect of alkanol chain on the interfacial composition and thermodynamic properties of diesel oil microemulsion. <u>Fuel</u>, 87(12), 2517-2522.
- Wang, X.-I., Yuan, X.-z., Huang, H.-j., Leng, L.-j., Li, H., Peng, X., Wang, H., Liu, Y., and Zeng, G.-m. (2014). Study on the solubilization capacity of bio-oil in diesel by microemulsion technology with Span80 as surfactant. <u>Fuel</u> <u>Processing Technology</u>, 118, 141-147.
- Zaliha, O., Chong, C.L., Cheow, C.S., Norizzah, A.R., and Kellens, M.J. (2004) Crystallization properties of palm oil by dry fractionation. <u>Food Chemistry</u>, 86(2), 245-250.

σ

APPENDICES

1.0

a

Appendix A Supplemental Materials for Phase Diagram

 Table A1
 Methyl oleate/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)

VET TAL STRAD	Concentr	ation (M)	Fraction for Phase Diagram (%)				
A CARLENCE CALL	MO	6	ENDEL	MO+Oct	Oil	l Tiki	
0/5	-	-	0	0	100	100	
1/5	0.8	0.1000	14.17	14.97	70.86	100	
2/5	1.1	0.1375	23.00	19.49	57.51	100	
3/5	1.2	0.1500	29.67	20.89	49.44	100	
4/5	1.3	0.1625	34.56	22.24	43.20	100	
5/5	1.4	0.1750	38.23	23.55	38.22	100	
5/4	1.4	0.1750	42.47	23.55	33.98	100	
5/3	1.5	0.1875	46.99	24.81	28.20	100	
5/2	1.6	0.2000	52.83	26.04	21.13	100	
5/1	1.6	0.2000	61.64	26.04	12.32	100	
5/0	-	-	100	0	0	100	

 Table A2
 Methyl oleate/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)

E+OH(O)	Concentr	ation (M)	Fraction for Phase Diagram (%)			
LIOHON	MO	EH	EtOH	MO+EH	Oil	Total
0/5	-	_	0	0	100	100
1/5	0.9	0.1125	13.94	16.37	69.69	100
2/5	1.2	0.1500	22.66	20.70	56.64	100
3/5	1.4	0.1750	28.74	23.35	47.91	100
4/5	1.5	0.1875	33.51	24.60	41.89	100
5/5	1.6	0.2000	37.09	25.82	37.09	100
5/4	1.6	0.2000	41.21	25.82	32.97	100
5/3	1.8	0.2250	44.91	28.14	26.95	100
5/2	1.8	0.2250	51.33	28.14	20.53	100
5/1	1.9	0.2375	59.88	28.14	11.98	100
5/0	-	-	100	0	0	100

Ø

E-OU/OIL	Concentra	ation (M)	FTa(tion for Pha	se Diagram	(%)
EtOH/OII	Span 80	Øcl	EtOH	S80+Oct	Oil	Total
0/5	-	-	0	0	100	100
1/5	0.9	0.1125	13.97	16.17	69.86	100
2/5	1.1	0.1375	23.12	19.08	57.80	100
3/5	1.2	0.1500	29.83	20.46	49.71	100
4/5	1.4	0.1750	34.18	23.09	42.73	100
5/5	1.5	0.1875	37.83	24.33	37.84	100
_5/4	1.6	0.2000	41.37	25.54	33.09	100
5/3	1.7	0.2125	45.81	26.71	27.48	100
5/2	1.8	0.2250	51.54	27.84	20.62	100
5/1	2.0	0.2500	58.32	30.01	11.67	100
5/0	-	-	100	0	0	100

 Table A3
 Span 80/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)

Table A4 Span 80/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)

E+OH/O:I	Concentr	ation (ND)	Fraction for Phase Diagram			(26)
EIOH/OI	Span 80	EH	EIOH	\$80+EH	Oit	Total
0/5	-	-	0	0	100	100
1/5	1.1	0.1375	13.52	18.90	67.58	100
2/5	1.3	0.1625	22.40	21.60	56.00	100
3/5	1.4	0.1750	28.92	22.88	48.20	100
4/5	1.5	0.1875	33.72	24.12	42.16	100
5/5	1.6	0.2000	37.34	25.32	37.34	100
5/4	1.7	0.2125	.40.84	26.48	32.68	100
5/3	1.8	0.2250	45.24	27.61	27.15	100
5/2	1.9	0.2375	50.93	28.70	20.37	100
5/1	2.1	0.2625	57.67	30.80	11.53	100
5/0	-	-	100	0	0	100

0

E+OULO3	Concentr	ation (M)	Fraction for Phase Diagram (%)				
ElOH/OII	PME.	1. Olet	EtOH	PME+Ocl	Oil		
0/5	-	-	0	0	100	100	
1/5	0.9	0.1125	14.12	15.30	70.58	100	
2/5	1.1	0.1375	23.40	18.08	58.52	100	
3/5	1.3	0.1625	30.22	19.41	50.37	100	
4/5	1.4	0.1750	34.70	21.93	43.37	100	
5/5	1.5	0.1875	38.43	23.14	38.43	100	
5/4	1.6	0.2000	42.05	24.31	33.64	100	
5/3	1.7	0.2125	46.60	25.44	27.96	100	
5/2	1.8	0.2250	52.47	26.54	20.99	100	
5/1	1.9	0.2375	60.33	27.61	12.06	100	
5/0	-	-	100	0	0	100	

Table A5 Palm oil methyl ester (PME)/1-octanol 1:8 mole ratio, palm oil/diesel 1:1(v/v)

Table A6Palm oil methyl ester (PME)/2-ethyl-1-hexanol 1:8 mole ratio, palmoil/diesel 1:1 (v/v)

T-OU/OU	Concentr	atton (M	Fraction for Phase Diagram (%)				
ElOHIOI	РМЕ	1 <u>5)</u> 81	EIOH	PME+EH	Oil .		
0/5	-	-	0	0	100	100	
1/5	1.1	0.1375	13.68	17.90	68.42	100	
2/5	1.3	0.1625	22.72	20.49	56.79	100	
3/5	1.5	0.1875	28.91	22.92	48.17	100	
4/5	1.6	0.2000	33.74	24.08	42.18	100	
5/5	1.7	0.2125	37.40	25.20	37.40	100	
5/4	1.8	0.2250	40.81	26.54	32.65	100	
5/3	1.9	0.2375	45.25	27.61	27.14	100	
5/2	2.0	0.2500	50.97	28.64	20.39	100	
5/1	2.1	0.2625	58.63	29.65	11.72	100	
5/0	-	-	100	0	0	100	

 Table B-1
 Surfactant/cosurfactant 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol

	Fraction of microemulsion biofuels (%)							
Sample	EtOH	Surfactant/ cosurfactant	Palm ail/ diesel	Fotal				
MO/Oct	20.0	18.3	61.7	100 ·				
MO/EH	20.0	19.7	60.3	100				
Span 80/Oct	20.0	18.7	61.3	100				
Span 80/EH	20.0	20.7	59.3	100				
PME/Oct	20.0	17.7	62.3	100				
PME/EH	20.0	20.0	60.0	100				

Table B2Surfactant/cosurfactant 1:8 mole ratio, RBDPO/diesel 1:1 (v/v) with 20vol.% of ethanol

	Fraction of microemulsion biofuels (%)								
Sample	EtOH	Surfactant/ cosurfactant	RBDPO/ diesel	Total					
MO/Oct	20.0	14.3	65.7	100					
MO/EH	20.0	18.3	61.7	100					
Span 80/Oct	20.0	15.0	65.0	100					
Span 80/EH	20.0	17.0	63.0	100					
PME/Oct	20.0	14.0	66.0	100					
PME/EH	20.0	16.7	63.3	100					

1. Kinematic viscosity calculation

The kinematic viscosity of the microemulsion fuel can be measured using a Canon-Fenske type viscometer (ASTM D 445). Kinematic viscosity can be calculated using Equation C.1, which is provided by the manufacturer of the viscometer:

$$\mu = Kt \tag{C1}$$

where	μ	Kinematic viscosity (cSt)	
-------	---	---------------------------	--

K Viscosity constant (K=0.01606 cSt/s at 40°C)

t Time of sample flow in vescometer (sec)

The sample kinematic viscosity calculation of methyl oleate/1-octanol in palm oil/diesel blend with ethanol can be shown as follows;

$$t = 346.85 \text{ sec} (\text{average time})$$

K = 0.01606 cSt/s

Therefore;

 $\mu = (0.01606 \text{ cSt/s})(346.85 \text{ sec})$

$$= 5.57 \, \text{cSt}$$

2. Raw data of kinematic viscosity in palm oil's system

Table C1 Time for measured kinematic viscosity of microemulsion biofuels,surfactant/cosurfactant 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% ofethanol

S		Time (sec							
Sample	#1	1	1 #3	#4	Average				
MO/Oct	353.32	351.32	326.43	356.33	346.85				
MO/EH	332.79	342.10	327.05	340.52	335.62				
Span 80/Oct	332.79	342.10	327.05	340.52	433.14				
Span 80/EH	411.35	388.96	396.11	405.23	400.41				
PME/Oct	351.01	353.71	341.70	358.34	351.19				
PME/EH	344.89	352.59	332.31	341.64	342.86				

Table C2 Kinematic viscosity of microemulsion biofuels, surfactant/cosurfactant1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol

Connels	kinematic visionsity at 40°C (cSt)								
sample	#1	#2	#3	#4	Average	SD			
MO/Oct	5.67	5.64	5.24	5.72	5.57	0.22			
MO/EH	5.34	5.49	5.25	5.47	5.39	0.11			
Span 80/Oct	7.01	6.72	7.34	6.76	6.96	0.28			
Span 80/EH	6.61	6.25	6.36	6.51	6.43	0.16			
PME/Oct	5.64	5.68	5.49	5.75	5.64	0.11			
PME/EH	5.54	5.66	5.34	5.49	5.51	0.13			

Ø

3. Raw data of kinematic viscosity in RBDPO's Ssystem

Table C3Time for measured kinematic viscosity of microemulsion biofuels,surfactant/cosurfactant 1:8mole ratio, RBDPO/diesel 1:1 (v/v) with 20 vol.% ofethanolImage: Image: Imag

	5				
Sample	#1,5	#2		#4	
MO/Oct	381.74	377.72	374.53	391.58	381.39
MO/EH	349.10	339.39	349.11	310.62	337.06
Span 80/Oct	430.62	440.62	397.89	424.31	423.36
Span 80/EH	412.57	389.04	397.43	408.30	401.84
PME/Oct	376.89	372.82	387.09	373.18	377.50
PME/EH	354.09	351.84	346.74	351.56	351.06

Table C4 Kinematic viscosity of microemulsion biofuels, surfactant/cosurfactant1:8 mole ratio, RBDPO/diesel 1:1 (v/v) with 20 vol.% of ethanol

Sample	Kinematic viscosity at 40°C (cSt)							
	#1	#2	#3	#4	Average	SD.		
MO/Oct	6.13	6.07	6.01	6.29	6.13	0.12		
MO/EH	5.61	5.45	5.61	4.99	5.41	0.29		
Span 80/Oct	6.92	7.08	6.39	6.81	6.80	0.29		
Span 80/EH	6.63	6.25	6.38	6.56	6.45	0.17		
PME/Oct	6.05	5.99	6.22	5.99	6.06	0.11		
PME/EH	5.69	5.65	5.57	5.65	5.64	0.05		

σ

Figure D1 Droplet size and size distribution of methyl oleate/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

Figure D2 Droplet size and size distribution of methyl oleate/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

0

Figure D3 Droplet size and size distribution of Span 80/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

Figure D4 Droplet size and size distribution of Span 80/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

Figure D5 Droplet size and size distribution of palm oil methyl ester (PME)/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

Figure D6 Droplet size and size distribution of palm oil methyl ester (PME)/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol.

Figure D7 Droplet size and size distribution of Span 80/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol (measured after prepared immediately).

Figure D8 Droplet size and size distribution of Span 80/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol (measured after prepared immediately).

Appendix E Supplemental Materials for Density Study

Table E1 Density of microemulsion biofuels, surfactant/cosurfactant 1:8 mole ratio,RBDPO/diesel 1:1 (v/v) with 20 vol.% of ethanol at room temperature (25°C)

Sample	Density at 25°C (g/mL)						
	l ti	#2	#3	a 144	Average	SD	
MO/Oct	0.8863	0.8725	0.8701	0.8686	0.8743	0.0081	
MO/EH	0.8240	0.8416	0.8480	0.8503	0.8410	0.0119	
SSpan 80/Oct	0.8375	0.8854	0.8883	0.8999	0.8778	0.0276	
Span 80/EH	0.8458	0.8550	0.8570	0.8586	0.8541	0.0058	
PME/Oct	0.8500	0.8478	0.8615	0.8589	0.8545	0.0067	
PME/EH	0.8268	0.8390	0.8433	0.8447	0.8384	0.0082	

.

Ø

Appendix F HLB Calculation of Nonionic Surfactants

HLB calculation for nonionic products is obtained with the Griffin formula:

$$HLB = 20 \times \frac{MW_{H}}{MW_{H} + MW_{L}} = 20 \times \frac{MW_{H}}{MW}$$

where $MW_H = Molecular$ weight of hydrophilic part $MW_L = Molecular$ weight of hydrophobic part MW = Molecular weight of surfactant

For HLB calculation of Methyl oleate

 $MW_{H} = 59.04$ $MW = MW_{H} + MW_{L} = 296.5$

$$HLB = 20 \times \frac{MW_{H}}{MW}$$
$$HLB = 20 \times \frac{59.04}{296.50}$$

$$HLB = 3.98$$

For HLB calculation of Span 80

.

 $MW_{H} = 91.08$ $MW = MW_{H} + MW_{L} = 428.60$

$$HLB = 20 \times \frac{MW_{H}}{MW}$$
$$HLB = 20 \times \frac{91.08}{428.60}$$

0

$$HLB = 4.25$$

o

For HLB calculation of Palm oil methyl ester (PME)

 $\mathrm{HLB}_{\mathrm{AVG}}$ calculation of mixed products is obtained with this equation:

$$HLB_{AVG} = \%wt._1 \times HLB_1 + \%wt._2 \times HLB_2 + \%wt._3 \times HLB_3 + \dots$$

Table F1 shows HLB_{AVG} calculation of mixed products

	Carbon number	Composition (%)	MWH	MW	1:11 3	% ≈ ¥€11 78 - ,
Lauric acid	C12:0	0.1	59.04	214.35	5.51	0.0055
Mtristic acid	C14:0	0.9	59.04	242.40	4.87	0.0438
Palmitic acid	C16:0	45.6	59.04	270.46	4.37	1.9908
Palmitoleic acid	C16:1	0.4	59.04	268.44	4.40	0.0176
Estearic acid	C18:0	3.8	59.04	298.51	3.96	0.1503
Oleic acid	C18:1	38.6	59.04	296.50	3.98	1.5372
Linoleic acid	C18.2	10.5	59.04	294.48	4.01	0.4210
Linolenic acid	C18:3	0.1	59.04	292.46	4.04	0.0040
	SUM	1.00	HLB Average			4.17

o

o

CURRICULUM VITAE

Name:Mr. Sachart ManaphatiDate of Birth:April 26, 1991Nationality:Thai

University Education:

2009–2013 Bachelor Degree of Petrochemical Engineering, Faculty of Engineering, Silpakorn University, Nakornphathom, Thailand

Student Internship

Work Experience:

Mar-Jun 2012 Position:

Company name: PTTPE Co. ltd., PTTGC Group.

Proceedings:

 Manaphati, S.; Malakul, P.; Sabatini, D.A.; and Charoensaeng, A. (2015, April 21) Reverse Micelle Microemulsion Biofuel using Palm oil/Diesel Ethanol with Renewable Nonionic Surfactant Systems. <u>Proceedings of The 6th Research Symposium on Petrochemical and Materials Technology and The 20th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.
</u>

Presentations:

- Manaphati, S.; Malakul, P.; Sabatini, D.A.; and Charoensaeng, A. (2015, April 21) Reverse Micelle Microemulsion Biofuel using Palm oil/Diesel Ethanol with Renewable Nonionic Surfactant Systems. Paper presented at <u>The 6th Research Symposium on Petrochemical and Materials Technology and The 20th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.
 </u>
- Manaphati, S.; Malakul, P.; Sabatini, D.A.; and Charoensaeng, A. (2015, June 11-14) Effect of Cosufactant Structure on Renewable Microemulsion Fuels Properties Using Palm Oil/Diesel Blend with Ethanol. Paper presented at <u>The Fifth Asian_Conference on Sustainability, Energy and the Environment 2015</u>, Kobe, Japan.