REFERENCES

http:// www.naturalgas.org

- Chavadej, S., Kiatubolpaiboon, W., Rangsunvigit, P., and Sreethawong, T. (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. <u>Journal of Molecular Catalysis A: Chemical</u>, 263, 128-136.
- Chavadej, S., Saktrakool, K., Rangsunvigit, P., Lobban, L.L., and Sreethawong, T. (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO₂. <u>Chemical Engineering Journal</u>, 132, 345-353.
- Chavadej, S., Supat, K., Lobban, L.L., and Mallinson, R.G. (2005). Partial oxidation of methane and carbon dioxide reforming with methane in corona discharge with/without Pt/KL catalyst. Journal of Chemical Engineering of Japan, 38(3), 163-170.
- Dawe, R.A. (2000) <u>Modern Petroleum Technology: Volume 1 Upstream</u>. 6th, England: John Wiley & Sons Ltd.
- Eliasson, B., Hirth, M., and Kogeischatz, U. (1987). Ozone synthesis from oxygen in dielectric barrier discharge. Journal of Applied Physics, 20, 1421-1437.
- Eliasson, B. and Kogeischatz, U. (1991). Nonequilibrium volume plasma chemical processing. <u>IEEE Transactions on Plasma Science</u>, 19(6), 1063-1077.
- Fridman, A., Naster, S., Kennedy, L.A., Savaliev, A., and Mutaf-Yardimci, O. (1999). Gliding arc discharge. <u>Progress in Energy and Combustion</u> <u>Science</u>, 25, 211-231.
- Indarto, A., Yang, D.R., Choi, J.W., Lee, H., and Song, H.K. (2007). Gliding arc plasma processing of CO₂ conversion. <u>Journal of Hazardous Materials</u>, 146, 309-315.
- Jiang, T., Li, Y., Liu, C.J., Xu, G.H., Eliasson, B., and Xue, B. (2002). Plasma methane conversion using dielectric-barrier discharges with zeolite A. <u>Catalysis Today</u>, 72, 229-235.

- Kado, S., Urasaki, K., Sekine, Y., and Fujimoto, K. (2003). Direct conversion of methane to acetylene or syngas at room temperature using non-equilibrium pulsed discharge. <u>Fuel</u>, 82, 1377-1385.
- Kim, S.S., Lee, H., Choi, J.W., Na, B.K., and Song, H.K. (2007). Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al₂O₃ catalyst. <u>Catalysis Communications</u>, 8, 1438-1442.
- Krawczyk, K., and Młotek, M. (2001). Combined plasma-catalytic processing of nitrous oxide. <u>Applied Catalysis B: Environmental</u>, 30, 233-245.
- Kruapong, A. (2000). <u>Partial Oxidation of Methane to Synthesis Gas in Low</u> <u>Temperature Plasma</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University.
- Nair, S.A., Nozaki, T., and Okazaki, K. (2007). Methane oxidative conversion pathways in a dielectric barrier discharge reactor–Investigation of gas phase mechanism. <u>Chemical Engineering Journal</u>, 132, 85-95.
- Nasser, E. (1971). <u>Fundamentals of Gaseous Ionization and Plasma Electronics</u>. USA: John Wiley & Sons, Inc.
- Ouni, F., Khacef, A., and Cormier, M. (2009). Syngas production from propane using atmospheric non-thermal plasma. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 29, 119-130.
- Perry R.H., Green D.W., and Maloney J.O., (1997). <u>Perry's Chemical Engineering'</u> <u>Handbook.</u> 7th, USA: McGraw-Hill, Inc.
- Poonphatanapricha, P. (1997). <u>Methane Conversion in an AC Electric Discharge</u>.M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University.
- Pornmai, K., Jindanin, A., Sekiguchi, H., and Chavadej, S. (2012). Synthesis gas production from CO₂-containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge. <u>Plasma Chemistry and</u> <u>Plasma Processing</u>, 32.

- Rafiq, M.H., and Hustad, J.E. (2011). biosyngas production by autothermal reforming of waste cooking oil with propane using a plasma-assisted gliding arc reactor. <u>International Journal of Hydrogen Energy</u>, 36, 8221-8233.
- Rosacha, L.A., Anderson, G.K.. bechtold, L.A., Coogan, J.J., Heck, H.G., Kang, M.,
 McCulla, W.H., Tennant, R.A., and Wantuck, P.J. (1993). Treatment of hazardous organic wastes using silent discharge plasma. <u>NATO ASI Series</u>, 34, Part B.
- Rueangjitt, N., Akarawitoo, C., Sreethawong, T., and Chavadej, S. (2007).
 Reforming of CO₂-containing natural gas using an AC gliding arc system:
 Effect of gas component in natural gas. <u>Plasma Chemistry and Plasma</u> <u>Processing</u>, 27, 559-576.
- Rueangjitt, N., Jittiang, W., Pornmai, K., Chamnanmanoontham, C., Sreethawong, T., and Chavadej, S. (2009). Combined reforming and partial oxidation of CO₂-containing natural gas using an AC multistage gliding arc discharge system: Effect of stage number of plasma reactor. <u>Plasma Chemistry and</u> <u>Plasma Processing</u>, 29, 433-453.
- Rueangjitt, N., Sreethawong, T., and Chavadej, S. (2008). Reforming of CO₂containing natural gas using an AC gliding arc system: Effects of operational parameters and oxygen addition in feed. <u>Plasma Chemistry and</u> Plasma Processing, 28, 49-67.
- Rusu, I., and Cornier, J.M. (2003). On a possible mechanism of the methane steam reforming in a gliding arc reactor. <u>Chemical Engineering Journal</u>, 91, 23-31.
- Sekine, Y., Urasaki, K., Kado, S., Matsukata, M., and Kikuchi, E. (2004). Nonequilibrium pulsed discharge: A novel method for steam reforming of hydrocarbons or alcohols. <u>Energy & Fuels</u>, 18, 455-459.
- Sreethawong, T., Thakonpatthanakun, P., and Chavadej, S. (2007). Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. <u>International Journal of Hydrogen Energy</u>, 32, 1067-1079.

- Suetsuna, T. Seiichi, S., and Takayuki, F. (2004). Monolithic Cu–Ni-based catalyst for reforming hydrocarbon fuel sources. <u>Applied Catalysis A</u>, 276, 275-279
- Thanyachotpaiboon, K., Chavadej, S., Caldwell, L., Lobban, L.L., and Mallinson, R.G. (1998). Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. <u>AIChE Journal</u>, 44(10), 2252-2257.
- Wei-Hsin, C., Mu-Rong, L., Jau-Jang, L., Yu, C., and Tzong-Shyng, L. (2010). Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction. <u>International Journal of Hydrogen Energy</u>, 35, 11787-117979.
- Zhang, K., Kogelschatz, U., and Eliasson, B. (2001). Conversion of greenhouse gases synthesis gas and higher hydrocarbons. <u>Energy & Fuels</u>, 15, 395-402.
- Zhang, X., Zhu, A., Li, X., and Gong, W. (2004). Oxidative dehydrogenation of ethane with CO₂ over catalyst under pulse corona plasma. <u>Catalysis Today</u>, 89, 97-102.
- Zhou, Z., Zhang, J., Ye, J., Zhao, P., and Xia, W. (2011). Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. <u>Chinese Science Bulletin</u>, 56, 2162-2166.
- Zou, J.J., Zhang, Y.P., and Liu, C.J. (2007). Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma. <u>International</u> <u>Journal of Hydrogen Energy</u>, 32, 958-964.

APPENDICES

Appendix A Experimental Data of Effect of Stage Number of Plasma Reactors

Table A1 Effect of stage number of plasma reactors on reactant conversions and product yields for the combined steam reforming and partial oxidation of natural gas at a constant total feed flow rate of $100 \text{ cm}^3/\text{min}$ (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Residence	Number	F	Reactant	conver	Product yield (%)				
time (s)	of stage	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂	СО
1.37	1	22.28	31.22	39.42	-2.81	34.62	63.38	21.75	53.99
2.74	2	37.55	38.76	55.26	-5.45	26.12	106.57	30.99	106.71
4.11	3	39.58	45.60	68.95	7.78	36.79	120.75	41.35	134.84
5.48	4	52.22	52.94	76.10	4.70	43.30	121.51	43.37	158.39

Table A2 Effect of stage number of plasma reactors on concentrations of outlet gas for the combined steam reforming and partial oxidation of natural gas at a constant total feed flow rate of $100 \text{ cm}^3/\text{min}$ (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm).

Residence	Number	Concentration of outlet gas (mol%)								
time (s)	of stage	H ₂	CO	CH ₄	CO ₂	C_2H_2	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
1.37	1	19.63	9.49	35.41	14.16	0.477	1.437	2.343	2.030	0.176
2.74	2	35.28	19.84	27.54	12.21	1.057	1.825	1.943	1.366	0.179
4.11	3	39.74	24.51	28.17	11.83	1.570	2.189	1.822	1.039	0.262
5.48	4	41.62	29.65	21.69	10.83	1.939	2.122	1.529	0.746	0.203

Table A3 Effect of stage number of plasma reactors on product selectivities for the combined steam reforming and partial oxidation of natural gas at a constant total feed flow rate of 100 cm³/min (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Residence time (s)	Number of stage	Product selectivity (%)							
		H ₂	C ₂ H ₂	C ₂ H ₄	СО	C ₄ H ₁₀			
1.37	1	68.216	6.020	18.122	59.915	4.434			
2.74	2	81.002	9.009	15.565	84.618	3.061			
4.11	3	78.345	10.665	14.875	83.285	3.554			
5.48	4	67.038	11.135	12.191	85.175	2.332			

Table A4 Effect of stage number of plasma reactors on product molar ratios for the combined steam reforming and partial oxidation of natural gas at a constant total feed flow rate of 100 cm³/min (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Residence time (s)	Number of stage		Molar ratio						
		H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2				
1.37	1	2.067	41.136	13.666	3.010				
2.74	2	1.778	33.401	19.334	1.728				
4.11	3	1.621	25.323	18.156	1.395				
5.48	4	1.404	21.473	19.614	1.095				

Table A5 Effect of stage number of plasma reactors on power consumptions and coke formation for the combined steam reforming and partial oxidation of natural gas at a constant total feed flow rate of $100 \text{ cm}^3/\text{min}$ (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Residence time (s)	Number of stage	Power cor (× 10 ⁻¹⁷ Ws per reactant converted	s/molecule) per H ₂ produced
1.37	1	19.784	12.244
2.74	2	18.735	10.007
4.11	3	3.485	2.043
5.48	4	8.106	5.520

Table A6 Effect of stage number of plasma reactors on reactant conversions and product yields for the combined steam reforming and partial oxidation of natural gas at a constant residence time of 4.11 s (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Feed flow	Numbe		Reactan	t conve	Product yield (%)					
rate	r of				(*					
(cm ³ /min)	stage	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂	СО	
33.3	1	35.10	40.52	56.50	-1.58	35.96	118.70	34.40	122.56	
66.6	2	39.82	45.17	68.31	6.11	30.83	124.36	43.95	139.49	
100.0	3	39.58	45.60	68.95	7.78	36.79	120.76	41.35	134.84	
133.3	4	39.29	47.35	70.49	-2.04	45.02	119.35	46.48	121.46	

Table A7 Effect of stage number of plasma reactors on concentrations of outlet gas for the combined steam reforming and partial oxidation of natural gas at a constant residence time of 4.11 s (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Feed flow rate	Number of stage	Concentrations of outlet gas (mol%)								
(cm ³ /min)	or stage	H ₂	СО	CH ₄	CO ₂	C ₂ H ₂	C ₂ H ₄	C_2H_6	C ₃ H ₈	C ₄ H ₁₀
33.3	1	38.07	21.99	28.99	11.92	1.49	1.59	1.93	1.36	0.17
66.6	2	39.57	24.52	27.07	11.63	1.80	2.06	1.76	1.00	0.24
100.0	3	39.75	24.51	28.17	11.83	1.57	2.19	1.82	1.04	0.26
133.3	4	38.80	22.26	28.52	12.53	1.90	2.36	1.78	0.98	0.28

Table A8 Effect of stage number of plasma reactors on product selectivities for the combined steam reforming and partial oxidation of natural gas at a constant residence time of 4.11 s (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Feed flow rate (cm ³ /min)	Number of stage	Product selectivity (%)						
(0)	8-	H ₂	C ₂ H ₂	C ₂ H ₄	СО	C ₄ H ₁₀		
33.3]	89.839	12.735	13.615	93.88	2.885		
66.6	2	81.124	12.851	14.718	87.50	3.368		
100.0	3	78.345	10.665	14.875	83.28	3.554		
133.3	4	75.956	13.358	16.613	78.31	3.882		

Table A9 Effect of stage number of plasma reactors on product molar ratios for the combined steam reforming and partial oxidation of natural gas at a constant residence time of 4.11 s (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Feed flow rate	Number of stage		Molar ratio						
	orstuge	H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2				
33.3	1	1.731	25.523	23.874	1.069				
66.6	2	1.614	21.976	19.189	1.145				
100.0	3	1.621	25.323	18.156	1.395				
133.3	4	1.743	20.433	16.429	1.244				

Table A10 Effect of stage number of plasma reactors on power consumptions and coke formation for the combined steam reforming and partial oxidation of natural gas at a constant residence time of 4.11 s (steam content, 10 mol%; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Feed flow rate (cm ³ /min)	Number of stage	Power consumption $(\times 10^{-17} \text{ Ws/molecule})$					
()		per reactant converted	per H ₂ produced				
33.3	1	52.483	25.483				
66.6	2	14.881	8.375				
100.0	3	3.485	2.043				
133.3	4	8.960	5.115				

Appendix B Experimental Data of Effect of HCs/O2 Feed Molar Ratio

Table B1 Effect of HCs/O₂ feed molar ratio on reactant conversions and product yields for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; total feed flow rate, $100 \text{ cm}^3/\text{min}$; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

HCs/O ₂ feed		Reactan	t convers	Product yield (%)				
molar ratio	CH4	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂	СО
2/1	39.585	45.596	68.952	7.775	36.788	120.756	41.351	134.845
3/1	31.155	37.452	60.247	0.723	10.349	114.765	46.562	87.562
6/1	19.911	26.399	52.374	4.367	4.367	84.160	45.689	25.265
w/o O ₂	13.975	28.533	80.262	3.707		115.974	40.837	6.641

Table B2 Effect of HCs/O_2 feed molar ratio on concentrations of outlet gas for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; total feed flow rate, 100 cm³/min; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

HCs/O ₂		Concentration of outlet gas (mol%)									
feed		concentration of outlet gas (mor/o)									
molar ratio	H ₂	СО	CH4	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C_3H_8	C ₄ H ₁₀		
2/1	39.745	24.514	28.174	11.832	1.570	2.189	1.822	1.039	0.262		
3/1	37.756	16.166	33.805	13.178	1.832	2.466	2.119	1.318	0.308		
6/1	26.228	4.514	41.241	15.254	1.431	2.651	2.601	1.694	0.429		
w/o O ₂	32.893	1.164	52.613	16.786	0.932	2.648	3.121	0.860	0.570		

Table B3 Effect of HCs/O_2 feed molar ratio on product selectivities for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; total feed flow rate, 100 cm³/min; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

HCs/O_2 feed	Product selectivity (%)						
	H ₂	C_2H_2	C ₂ H ₄	СО	C ₄ H ₁₀		
2/1	78.345	10.665	14.875	83.285	3.554		
3/1	89.066	15.320	20.613	67.575	5.149		
6/1	85.282	15.663	29.016	24.707	9.392		
w/o O ₂	94.464	8.404	23.885	5.251	10.288		

Table B4 Effect of HCs/O_2 feed molar ratio on product molar ratios for the combined steam reforming and partial oxidation of natural gas (3 stages number of plasma reactors; steam content, 10 mol%; total feed flow rate, 100 cm3/min; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

HCs/O ₂ feed	Molar ratio					
	H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C_2H_4/C_2H_2		
2/1	1.621	25.323	18.156	1.395		
3/1	2.336	20.603	15.313	1.346		
6/1	5.810	18.329	9.894	1.853		
w/o O ₂	28.247	35.300	12.420	2.842		

Table B5 Effect of HCs/O_2 feed molar ratio on power consumptions and coke formation for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; total feed flow rate, 100 cm³/min; input voltage, 14.5 kV; input frequency, 300 Hz; and electrode gap distance, 6 mm)

HCs/O ₂ feed	Power consumption (× 10 ⁻¹⁷ Ws/molecule)			
	per reactant converted	per H ₂ produced		
2/1	3.485	2.043		
3/1	4.520	2.234		
6/1	7.744	4.020		
w/o O ₂	4.539	1.923		

Appendix C Experimental Data of Effect of Input voltage

Table C1 Effect of input voltage on reactant conversions and product yields for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; HCs/O₂ feed molar ratio of 2/1; total feed flow rate, 100 cm³/min; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Input		Reactar	nt convers	Product vield (%)				
voltage		10000		(, , ,)	(,)
(kV)	CH ₄	C ₂ H ₆	C ₃ H ₈	CO ₂	O ₂	H ₂	C ₂	CO
13.5	41.215	46.064	67.703	7.676	40.082	135.003	41.523	133.732
14.5	39.585	45.596	68.952	7.775	36.788	120.756	41.351	134.845
15.0	38.375	44.693	67.987	23.400	33.180	121.117	43.291	153.583
16.0	38.038	45.125	67.827	22.279	37.499	120.110	44.139	149.014
16.8	38.196	46.382	70.306	21.554	39.005	134.224	48.683	147.953

Table C2 Effect of input voltage on concentrations of outlet gas for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; HCs/O₂ feed molar ratio of 2/1; total feed flow rate, 100 cm³/min; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Input voltage	Concentration of outlet gas (mol%)									
(kV)	H ₂	02	СО	CH4	CO ₂	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀
12.5	20.97	10.56	22.20	28.66	12.00	1 501	1.045	1 246	0.744	0.220
13.5	39.87	19.30	22.20	28.00	12.09	1.301	1.945	1.340	0.744	0.229
14.5	39.75	19.53	24.51	28.17	11.83	1.570	2.189	1.822	1.039	0.262
15.0	41.13	19.42	28.04	29.99	10.16	1.640	2.312	1.906	1.098	0.281
16.0	39.79	19.34	26.67	29.42	10.18	1.621	2.330	1.871	1.100	0.274
16.8	41.90	18.37	25.07	28.17	9.88	1.735	2.389	1.741	0.952	0.262

Table C3 Effect of input voltage on product selectivities for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; HCs/O₂ feed molar ratio of 2/1; total feed flow rate, 100 cm³/min; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Input voltage (kV)	Product selectivity (%)				
	H ₂	C ₂ H ₂	C ₂ H ₄	CO	C ₄ H ₁₀
13.5	77.316	9.923	12.856	73.363	3.031
14.5	78.345	10.665	14.875	83.285	3.554
15.0	80.181	10.298	14.517	88.036	3.534
16.0	79.548	10.451	15.024	86.002	3.538
16.8	86.661	11.610	15.982	83.855	3.500

Table C4 Effect of input voltage on product molar ratios for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; HCs/O₂ feed molar ratio of 2/1; total feed flow rate, 100 cm³/min; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Input voltage (kV)	Molar ratio					
	H ₂ /CO	H_2/C_2H_2	H_2/C_2H_4	C ₂ H ₄ /C ₂ H ₂		
13.5	1.796	26.559	20.500	1.296		
14.5	1.621	25.323	18.156	1.395		
15.0	1.467	25.078	17.790	1.410		
16.0	1.492	24.552	17.078	1.438		
16.8	1.671	24.144	17.539	1.377		

Table C5 Effect of input voltage on power consumptions and coke formation for the combined steam reforming and partial oxidation of natural gas (3 stages of plasma reactors; steam content, 10 mol%; HCs/O₂ feed molar ratio of 2/1; total feed flow rate, 100 cm³/min; input frequency, 300 Hz; and electrode gap distance, 6 mm)

Input voltage (kV)	Power consumption (× 10 ⁻¹⁷ Ws/molecule)			
	per reactant converted	per H ₂ produced		
13.5	6.896	4.034		
14.5	3.485	2.043		
15.0	3.195	1.993		
16.0	3.771	2.354		
16.8	3.777	2.153		

CURRICULUM VITAE

Name: Ms. Narissara Arthiwet

Date of Birth: August 18, 1985

Nationality: Thai

University Education:

2004-2008 Bachelor Degree of Engineering, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand

Working Experience:

March-May	2007 Position:	Student Internship
	Company name:	Seagate Technology (Thailand) Co.,Ltd
2008-2010	Position:	Production Engineer
	Company name:	Double A (1991) Public Co.,Ltd.

Proceedings:

 Arthiwet, N., Pornmai, K., and Chavadej, S. (2012, April 24) Combined Steam Reforming of CO₂-Containing Natural Gas and Partial Oxidation in a Multistage Gliding Arc Discharge System. <u>Proceedings of The 3rd Research Symposium on</u> <u>Petroleum. Petrochemicals, and Advanced Materials and The 18th PPC Symposium on Petroleum. Petrochemicals, and Polymers, Bangkok, Thailand.</u>