ELECTROSPUN FIBROUS AND SOLVENT-CAST FILM SCAFFOLDS FOR TISSUE ENGINEERING APPLICATION

•

Pakakrong Sangsanoh

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2014

I28369634

Electrospun Fibrous and Solvent-Cast Film Scaffolds
for Tissue Engineering Application
Pakakrong Sangsanoh
Polymer Science
Prof. Pitt Supaphol

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

......... College Dean _____

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

M W/nc

(Asst. Prof. Pomthong Malakul)

huratherwat

(Prof. Anuvat Sirivat)

Sygl.

(Prof. Pitt Supaphol)

Hathailean M.

(Asst. Prof. Hathaikarn Manuspiya)

O. Surventary

(Dr. Orawan Suwantong)

ABSTRACT

4882005063: Polymer Science Program
Pakakrong Sangsanoh: Electrospun Fibrous and Solvent-Cast Film
Scaffolds for Tissue Engineering Application
Thesis Advisors: Prof. Pitt Supaphol, 170 pp.
Keywords: Electrospinning/Tissue engineering/Fibrous scaffold/Film scaffold

Tissue engineering is an emerging technology in the contemporary human health care administration, in which the basic understanding of cellular biology and bioengineering are combined together for developing feasible substitutes to aid in the clinical treatment. The primary objectives of these substitutes are to restore, maintain and/or improve tissue functions by mimicking the structure and biological function of native extracellular matrix (ECM) proteins. In the present contribution, natural biocompatible polymer, Chitosan and synthetic biocompatible polymer, poly(3hydroxybutyrate) were fabricated into fibrous membranes by electrospinning technique. The 3D structure and topography of the obtained electrospun fibrous membranes resemble those of the collagen bundles in the natural ECM. The potential for use of the electrospun fibrous membranes as tissue scaffolds was evaluated with different cell types in terms of the cytotoxicity, attachment and the proliferation of the cells as well as the morphology of the seeded and the cultured cells. For enhancing the cell-scaffold interaction, the surface treatment was performed. These treatments not only improve the hydrophilicity on the surface substrates, but also provide the necessary active sites for interacting with cell-adhesive molecules such laminin. The results from *in vitro* cell studies suggested that the surface topography and surface chemistry have a significant influence on the particular cell responding. All of these results emphasized the importance of the surface properties on the cellular behaviour.

บทคัดย่อ

ผกากรอง สังข์เสนาะ : เส้นใยอิเล็คโตรสปันและแบบแผ่นฟิล์มสำหรับการประยุกต์ ด้านวิศวกรรมเนื้อเยื่อ (Electrospun Fibrous and Solvent-Cast Film Scaffolds for Tissue Engineering Application) อ. ที่ปรึกษา: ศาสตราจารย์ คร. พิชญ์ ศุภผล 170 หน้า

้วิศวกรรมเนื้อเยื่อเป็นเทคโนโลยีที่มีความเร่งด่วนในการพัฒนาความรู้เพื่อใช้ในการ ้รักษาผู้ป่วย ซึ่งในการศึกษาพัฒนาจำเป็นต้องมีความรู้พื้นฐานทางค้านชีววิทยาของเซลล์และ วิศวกรรมชีวภาพ เพื่อประยุกต์ใช้ในการพัฒนาวัสดุทดแทนเนื้อเยื่อสำหรับใช้ในทางการรักษา เป็นหมายหลักในการใช้งานวัสดุทคแทนเนื้อเยื่อคือการนำไปทคแทน หรือปรับปรุงการทำงาน ของเนื้อเยื่อโคยการจำลองแบบโครงสร้างของเนื้อเยื่อโปรตีนตามธรรมชาติ ในงานวิจัยนี้เราได้ทำ การขึ้นรูปแผ่นเส้นใยไคโตซานซึ่งเป็นพอลิเมอร์จากธรรมชาติ และแผ่นเส้นใยพอลิไฮครอกซิบิว ทิเรตซึ่งเป็นพอลิเมอร์สังเคราะห์ด้วยกระบวนการปั่นเส้นใยด้วยไฟฟ้าสถิตย์ โครงสร้างสามมิติ และลักษณะพื้นผิวของแผ่นเส้นใยอิเล็คโตรสปันที่เตรียมได้สามารถจำลองลักษณะของเส้นใย ้คอลลาเจนที่ธรรมชาติ ความเป็นไปได้ในการใช้แผ่นเส้นใยอิเล็คโตรสปันเพื่อใช้เป็นวัสดุโครง ร่างเทียมสำรับการเพาะเลี้ยงเซลล์ได้ถูกประเมินโดยใช้เซลล์ทดสอบชนิดต่างๆ ซึ่งประกอบด้วย เซลล์ชวานน์ เซลล์ออสทิโอบลาสต์ เซลล์คีราติโนไซต์ เซลล์ไฟโปรบลาสต์ เซลล์มูรีนนิวโรบ ลาสต์โตมา และ สเต็มเซลล์ของเซลล์ประสาท ในแง่ของความเป็นพิษต่อเซลล์ การยึดเกาะของ เซลล์ การเพิ่มจำนวนเซลล์ และสัณฐานวิทยาของเซลล์ และเพื่อเพิ่มความเข้ากันได้ระหว่างเซลล์ ทคสอบกับวัสดุโครงร่างเทียม แผ่นเส้นใยจะถูกนำไปผ่านกระบวนการไลซิสที่พื้นผิวของเส้นใย กระบวนการ ไลซิสนี้ไม่เพียงแต่ช่วยเพิ่มความชอบน้ำบนพื้นผิวของเส้นใย แต่ยังช่วยเพิ่มหมู่ฟังชั่น ในการทำปฏิกิริยากับโปรตีนที่ช่วยส่งเสริมการยึดเกาะของเซลล์ได้อีกด้วย จากผลการทดสอบกับ เซลล์ในห้องทุดลองพบว่าลักษณะพื้นผิวและลักษณะทางเคมีของพื้นผิวมีอิทธิพลอย่างมากต่อการ ตอบแสดงของเซลล์ทคสอบ และจากการศึกษาเหล่านี้แสดงให้เห็นถึงความสำคัญของสมบัติของ พื้นผิวที่มีผลต่อพฤติกรรมของเซลล์

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisors, Prof. Pitt Supaphol from The Petroleum and Petrochemical College, Chulalongkorn University, for giving her invaluable knowledge, meaningful guidance and encouragement all along the way.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover she would like to give her special thanks to all members in her research group and all of her friends for their kind assistance, continual encouragement and wonderful friendship.

Asst. Prof. Pomthong Malakul, Prof. Pitt Supaphol, Prof. Anuvat Sirivat, Asst. Prof. Hathaikarn Manuspiya, and Dr. Orawan Suwantong are further acknowledged for being her dissertation committees, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for her Ph.D. study.

Finally, she is grateful for the partial support received from the Petroleum and Petrochemical College; and the Center of Excellence for Petrochemicals and Materials Technology, Thailand and a doctoral scholarship received from the Royal Golden Jubilee PhD Program, The Thailand Research Fund (TRF) (PHD/0191/2550). This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	х
List of Figures	xiii
Abbreviations	xix
List of Symbols	xxi

CHAPTER

Ι	INTRODUCTION	1
II	THEORITICAL BACKGROUND AND LITERATURE	
	SURVEYS	4
III	IN VITRO BIOCOMPATIBILITY OF ELECTROSPUN A	ND
	SOLVENT-CAST CHITOSAN SUBSTRATA TOWARDS	
	SCHWANN, OSTEOBLAST, KERATINOCYTE AND	
	FIBROBLAST CELLS	
	3.1 Abstract	25
	3.2 Introduction	26
	3.3 Experimental	29
	3.4 Results and Discussion	33
	3.5 Further Discussion	40
	3.6 Conclusions	42
	3.7 Acknowledgements	43
	3.8 References	43

IV EFECT OF SURFACE TOPOGRAPHY AND CHEMISTRY OF POLY(3-HYDROXYBUTYRATE) SUBSTRATES ON THE CELLULAR BEHAVIOR TOWARDS MURINE NEUROBLASTOMA NEURO 2A CELL LINEAGE

4.1 Abstract	64
4.2 Introduction	65
4.3 Experimental	66
4.4 Results and Discussion	71
4.5 Conclusions	78
4.6 Acknowledgements	78
4.7 References	78

V ENHANCEMENT OF BIOCOMPATIBILITY ON ALIGNED ELECTROSPUN POLY(3-HYDROXYBUTYRATE) SCAFFOLDS IMMOBILIZED WITH LAMININ TOWARDS MURINE NEUROBLASTOMA CELL LINE AND RAT BRAIN-DERIVED NEURAL STEM CELLS

5.1 Abstract	91
5.2 Introduction	92
5.3 Experimental	94
5.4 Results and Discussion	101
5.5 Conclusions	110
5.6 Acknowledgements	110
5.7 References	111

VI	POLY(3-HYDROXYBUTYRATE)/MAGNETITE CO	MPOSITE	
	NANOFIBERS VIA COMBINING ELECTROSPUNN	ING	
	TECHNIQUE WITH THE AMMONIA GAS-ENHAN	CING	
	IN SITU CO-PRECIPITATION METHOD: PREPAR	ΓΙΟΝ	
	AND THEIR POTENTIAL USE IN BIOMEDICAL		
	APPLICATION		
	6.1 Abstract	133	
	6.2 Introduction	134	
	6.3 Experimental	135	
	6.4 Results and Discussion	139	
	6.5 Conclusions	143	
	6.6 Acknowledgements	144	
	6.7 References	144	
VII	CONCLUSIONS AND RECOMMENDATIONS	156	
	REFERENCES	159	
	CURRICULUM VITAE	168	

LIST OF TABLES

TABLE

PAGE

CHAPTER III

3.1	Representative SEM images of murine Schwann cells (RT4-	
	D6P2T) hat had been seeded or cultured on electrospun	
	chitosan (CS) nanofibers and corresponding solution-cast	
	film substrates and TCPS (i.e., control) for 2 h, 8 h, 1 d, 3 d	
	and 5 d.	55
3.2	Representative SEM images of murine osteoblast-like cells	
	(MC3T3-E1) that had been seeded or cultured on	
	electrospun chitosan (CS) nanofibers and corresponding	
	solution-cast film substrates and TCPS (i.e., control) for 2 h,	
	8 h, 1 d, 3 d and 5 d.	56
3.3	Representative SEM images of human keratinocytes	
	(HaCaT) hat had been seeded or cultured on electrospun	
	chitosan (CS) nanofibers and corresponding solution-cast	
	film substrates and TCPS (i.e., control) for 2 h, 8 h, 1 d, 3 d	
	and 5 d.	57
3.4	Representative SEM images of human fibroblasts (HFF) hat	
	had been seeded or cultured on electrospun chitosan (CS)	
	nanofibers and corresponding solution-cast film substrates	
	and TCPS (i.e., control) for 2 h, 8 h, 1 d, 3 d and 5 d.	58
3.1s	¹ H-NMR integral intensities for chitosan in 2 wt.%	
	$CD_3COOD/D_2O.$	60
3.2s	Molecular weight distribution of chitosan by gel permeation	
	chromatography technique.	61

.

CHAPTER IV

4.1	Element composition of carbon, oxygen, and nitrogen on the	
	various surfaces of PHB substrates as determined by X-ray	
	photoelectron spectrometry.	88
4.2	Atomic ratios of N1s/C1s and O1s/C1s on the various	
	surfaces of PHB substrates as determined by X-ray	
	photoelectron spectrometry.	89
4.3	Representative SEM images of murine neuroblastoma	
	Neuro2a cell line (ATCC, CCL-131) that had been seeded or	
	cultured on various types of PHB substrates for 4 h, 1 d and	
	3 d.	90

CHAPTER V

5.1	The resulting static water contact angles of the original and	
	modified PHB fibrous scaffolds.	127
5.2	Element composition of carbon, oxygen, and nitrogen on the	
	surface of original PHB and surface modified PHB fibrous	
	scaffolds as determined by X-ray photoelectron	
	spectrometry.	128
5.3	Atomic ratios of N1s/C1s and O1s/C1s on the surface of	
	neat PHB and surface modified PHB fibrous scaffolds.	129
5.4	The amount of laminin coupled on the surface modified	
	PHB fibrous scaffolds.	130
5.5	Representative SEM images of murine neuroblastoma	
	Neuro2a cell line (ATCC, CCL-131) that had been seeded or	
	cultured on surface modified electrospun PHB fibrous	
	scaffold for 4 h, 1 d and 3 d.	131

TABLE		
5.6	Representative SEM images of neural stem cells (NSCs) that	
	had been seeded or cultured on surface modified electrospun	
	PHB fibrous scaffold for 4 h, 1 d and 3 d.	132

CHAPTER VI

6.1 Selected SEM images of the as-spun pristine PHB, PHB containing iron ion and corresponding PHB-Fe₃O₄ composite nanofibers that were produced under a constant electrical potential of 15 kV and over a fixed collection distance about 20 cm.

xiii

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1 Schematic drawing of electrospinning apparatus.

CHAPTER III

- 3.1 Selected SEM images of free-standing chitosan nanofibers before cull culture.
- 3.2 Attachment of (a) murine Schwann cells (RT4-D6P2T), (b) murine osteoblast-like cells (MC3T3-E1), (c) human keratinocytes (HaCaT), and (d) human fibroblasts (HFF) that had been seeded on electrospun chitosan nanofibers and corresponding solution-cast film substrates and TCPS (i.e., control) for 2, 8 and 24 h. The viability of the attached cells that had been seeded on TCPS for 2 h was used as reference to calculate the relative viability of the attached cells shown in the figure. *, # are significantly different at p < 0.05.
- 3.3 Proliferation of (a) murine Schwann cells (RT4-D6P2T), (b) murine osteoblast-like cells (MC3T3-E1), (c) human keratinocytes (HaCaT), and (d) human fibroblasts (HFF) that had been cultured on electrospun chitosan nanofibers and corresponding solution-cast film substrates and TCPS (i.e., control) for 1, 3 and 5 d. The viability of the attached cells that had been cultured on TCPS for 1 d was used as reference to calculate the relative viability of the proliferated cells shown in the figure. *, # are significantly different at p< 0.05.

4

FIGU	RE	PAGE
3.1s	¹ H-NMR spectrum of chitosan in 2 wt.% CD ₃ COOD/D ₂ O.	59
3.2s	Molecular weight distribution of chitosan.	60
3.3s	Selected SEM images of electrospun chitosan nanofibers at	
	(a) 5, (b) 6, (c) 7 and (d) 8% w/v chitosan solutions by	
	dissolving a measured amount of chitosan powder in 70:30	
	v/v TFA/DCM mixture and stirred continuously for 12 h at	
	room temperature. The distance from the needle tip to the	
	screen was fixed at 20 cm. The electrical potential and the	
	collection time were 25 kV and 5 min.	62
3.4s	Representative SEM images illustrating the surface	
	morphology of chitosan films that had been cast from 2.5%	
	w/v chitosan solutions in (left) 1 wt.% acetic aqueous	
	solution and (right) 70:30 v/v TFA/DCM.	63
	CHAPTER IV	
4.1	Summarizes the chemical pathway for aminolysis treatment	
	and laminin immobilization of laminin on the surface of the	
	electrospun PHB fibrous scaffolds; a) aminolysis reaction.	82
4.2	Selected SEM images of (a) unmodified electrospun fibrous	
	and (b) film PHB substrate.	83
4.3	Selected SEM images of (a) aminolysed PHB fibrous, (b)	
	film substrates using (0.04 g/ml of HMD/IPA solution for 15	
	min at room temperature), (c) laminin immobilized on	
	aminolysed PHB fibrous and (d) film substrates.	84
4.4	The resulting static water contact angles electrospun fibrous	
	and film PHB substrates.	85

FIGURE

- 4.5 Indirect cytotoxicity evaluation of (a) unmodified PHB film, (b) unmodified PHB fibrous, (c) aminolysed PHB film, (d) aminolysed PHB fibrous, (e) laminin immobilized on aminolysed PHB film and (d) laminin immobilized on aminolysed PHB fibrous substrates based on the viability of Neuro 2a that were cultured with the extraction media from these materials for 24 h. The viability of the cells that were cultured with fresh culture medium (SFM) (i.e., control) was used as the reference to arrive at the viability of the attached cells shown in the figure.
- 4.6 Attachment and proliferation of Neuro2a cells that were seeded on various PHB substrates for 4 h, days 1, and 3. The viability of the cultured cells that were seeded on the unmodified PHB film for 4 h was used as the reference to arrive at the viability of the cultured cells shown in the figure. *,[#] Significantly different at p < 0.05.

CHAPTER V

5.1	Summarizes the chemical pathway for the immobilization of	
	laminin on the surface of the electrospun PHB fibrous	
	scaffolds; a) aminolysis reaction and b) hydrolysis reaction.	118
5.2	Selected SEM image of neat electrospun PHB fibrous	
	scaffold (a) and histogram represent angular distributions of	
	electrospun fibers (b).	119

PAGE

86

- 5.3 Selected SEM images of neat electrospun PHB fibrous membrane (a), Aminolysis PHB fibrous scaffold (A-PHB) (0.04 g/ml of HMD/IPA solution for 15 min at room temperature) (b), hydrolysis PHB fibrous scaffold (H-PHB) (1.0 M NaOH solution for 15 min at room temperature) (c), laminin immobilized on aminolyzed PHB fibrous scaffold (LA-PHB) (d), and laminin immobilized on hydrolyzed PHB fibrous scaffold (LH-PHB) (e).
- 5.4 Indirect cytotoxicity evaluation of various electrospun fibrous scaffolds based on the viability of Neuro 2a and mNSCs that were cultured with the extraction media from these materials for 24 h. The viability of the cells that were cultured with fresh culture medium (SFM) (i.e., control) was used as the reference to arrive at the viability of the attached cells shown in the figure.
- 5.5 Attachment and proliferation of Neuro2a cells that were seeded on various electrospun fibrous for 4 h, days 1, and 3. The viability of the cultured cells that were seeded on the neat PHB fibrous scaffold for 4 h was used as the reference to arrive at the viability of the cultured cells shown in the figure. *,[#] Significantly different at p < 0.05.</p>
- 5.6 Attachment and proliferation of mNSCs that were seeded on various electrospun fibrous for 4 h, days 1, and 3. The viability of the cultured cells that were seeded on the neat PHB fibrous scaffold for 4 h was used as the reference to arrive at the viability of the cultured cells shown in the figure. *,[#] Significantly different at p < 0.05.</p>

xvi

120

121

FI	G	UR	RE
	U		

5.7 Representative fluorescence microscope of mNSCs that were seeded on neat PHB (a), A-PHB (b), LA-PHB (c), H-PHB
(d) and LH-PHB) (e) at 10x Magnification. The observation was performed on the cell cultured scaffolds at day 2.

CHAPTER VI

6.1	Summarizes the pathway for the preparation of PHB-Fe $_3O_4$	
	composite nanofibers by using electrospinning technique	
	combination with the ammonia gas-enhancing in situ co-	
	precipitation method.	148
6.2	Viscosity and conductivity of the as-prepared PHB solution	
	as a function of aqueous iron ion concentration. The as-	
	prepared solution prepared from 20% w/v PHB in	
	chloroform mixed with 1% w/v aqueous deoxygenated PEO	
	solution containing various amounts of iron ion $(Fe^{3+}$ and	
	Fe^{2+} with a fixed ratio at 2:1) with the weight ratio of 1:9.	149
6.3	Wide-angle X-ray diffraction patterns of Fe ₃ O ₄ nanoparticles	
	(a), pristine PHB (b), PHB-Fe ₃ O ₄ composite nanofibers	
	using 0.05 M (c), 0.10 M (d) and 0.20 M (e) of aqueous iron	
	ion solutions.	150
6.4	The EDX pattern of Fe_3O_4 nanoparticles that presented on	
	the surface of composite nanofibers using 0.10 M of aqueous	
	iron ion solution.	151
6.5	TGA thermograms of pristine PHB (a) and PHB-Fe $_3O_4$	
	composite nanofibers using 0.05 M (b), 0.10 M (c) and 0.20 M	
	M (d) of aqueous iron ion solutions.	152
6.6	Magnetization versus applied magnetic field and magnified	
	view of its hysteresis loop at room temperature of PHB-	
	Fe_3O_4 composite nanofibers using 0.05 M (a), 0.10 M (b)	
	and 0.20 M (c) of aqueous iron ion solutions.	153

FIGURE

6.7 Indirect cytotoxicity evaluation of PHB-Fe₃O₄ composite nanofibers on the viability of mouse fibroblasts (L929) and murine neuroblastoma (Neuro2a) that were cultured with the extraction media from these materials for 1 d, 3 d and 5 d. The viability of the cells that were cultured with fresh culture medium (SFM) (i.e., control) was used as the reference to arrive at the viability of the attached cells shown in the figure.

PAGE

ABBREVIATIONS

A-PHB	Aminolysis PHB fibrous scaffold
BHK21(C13)	Baby hamster kidney cells
DCM	Dichloromethane
DMEM	Dulbecco's modified Eagle's medium
DMSO	Dimethyl sulfoxide
ECM	Extracellular matrix
EDAC	N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide
	hydrochloride
EDTA	Ethylenediaminetetraacetic acid
EDX	Energy dispersive X-ray
FBS	Fetal bovine serum
GAGs	Glycosaminoglycans
НаСаТ	Human keratinocytes
HB	d,l-β-hydroxybutyrate
hESFs	human embryo skin fibroblasts
HFF	Human foreskin fibroblasts
HFP	1,1,1,3,3,3-hexafluoro-2-propanol
HMD	1,6-hexamethylenediamine
HMDS	Hexamethyldisilazane
H-PHB	Hydrolysis PHB fibrous scaffold
IPA	Isopropyl alcohol
LA-PHB	Laminin immobilized on aminolyzed PHB fibrous
	scaffold
LH-PHB	Laminin immobilized on hydrolyzed PHB fibrous
	scaffold
L929	Mouse fibroblasts
MC3T3-E1	Mouse calvaria-derived preosteoblastic cells
MES	(N-morpholino) ethanesulfonic acid
mNSCs	Mouse brain-derived neural stem cells

MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium	
	bromide assay	
NAHDF	Normal adult human dermal fibroblasts	
Neuro2a	Murine neuroblastoma Neuro 2a cell line	
NHS	N-Hydroxysuccinimide	
PAAm	Polyacrylamide	
PBS	Phosphate-buffered saline	
PCLA	Poly(chitosan-g-DL-lactic acid)	
PEO	Poly(ethylene oxide)	
PET	Poly(ethylene terephthalate)	
PHAs	Polyhydroxyalkanoates	
PHB	Poly(3-hydroxybutyrate)	
PLA	Poly(lactic acid)	
PVA	Poly(vinyl alcohol)	
PVP	Poly(vinyl pyrrolidone)	
RT4-D6P2T	Schwannoma cell line derived from a N-ethyl-N-	
	nitrosourea (ENU)-induced rat peripheral neurotumor	
SEM	Scanning electron microscopy	
SFM	Serum-free medium	
TCPS	Tissue culture polystyrene plate	
TFA	Trifluoroacetic acid	
TGA	Thermogravimetric analysis	
XRD	X-ray diffraction	
XPS	X-ray photoelectron spectroscopy	

LIST OF SYMBOLS

°C	Degree celsius
сP	Centipoise
%DD	The degree of deacetylation
%DDA	The degrees of acetylation
emu	Electromagnetic unit
G	Gauss
H _c	Coercive field
М	Magnetization
M _r	Remnant magnetization
M_n	Number average molecular weight
M_w	Weight average molecular weight
M_{ν}	Viscosity average molecular weight
nm	Nanometer
μm	Micrometer
μS	Microsiemens
ppm	Part per million
w/v	Weight by volume