CHAPTER VI SYNTHESIS AND ELECTRICAL PROPERTY STUDY OF $La_3Ni_2MO_9$ (M = Nb AND Ta)

6.1 Abstract

Synthesis of La₃Ni₂NbO₉ and La₃Ni₂TaO₉ double perovskite materials were successfully carried out both by the solid state reaction and sol-gel processes. Crystal structures of the compound have been studied using XRD analysis. Both isostructural niobates and tantalates exhibited the monoclinic space group P2₁/n(14). The solid state reaction yielded the single phase only in La₃Ni₂NbO₉, while the higher purities were obtained by the sol-gel process. La₃Ni₂NbO₉ has more possible ordered arrangements than La₃Ni₂TaO₉. Nb and Ta substitution in La₃Ni₂MO₉ had effect on the sintering behavior which caused the clear grain boundary of La₃Ni₂TaO₉ more than La₃Ni₂NbO₉. The electrical conductivities of La₃Ni₂NbO₉ were found to significantly increase with increase of temperature. But the electrical conductivities of La₃Ni₂TaO₉ decreased with temperatures when the temperature is lower than 300°C then slightly increased again at higher temperature.

(Keywords: Cathode, Solid oxide fuel cell, Double perovskite)

1

6.2 Introduction

Solid oxide fuel cells (SOFCs) are believed to be promising as generation power systems with their high energy conversion efficiency, environmental compatibility. and ability to use hydrocarbon fuels directly without external reforming. However, the Achilles'heel of SOFC is due to its high operating temperature leading to short term stability and high component costs. It has been desirable in the research community to reduce the operating temperature to intermediate at 400-600°C (IT-SOFCs) while still maintaining high efficiency as high temperature. New electrode and electrolyte materials have been investigated to achieve such operating temperature target [1-4].

Oxides with perovskite structures have been used in and studied for many applications including magnetoresistance, superconductor, ferroelectric, piezoelectric, magnetic and ion conducting applications. Perovskite structures with the general formula ABO₃are highly flexible which almost all elements in the periodic table can be accommodated on the A and/or B sites [2]. Perovskite compounds such as Sr doped lanthanum iron cobalt oxide (LSCF) have been identified as potential cathodes for IT-SOFC [5-7]. They exhibit very good conductivity, but exhibit large thermal expansion mismatch with the other cell components, causing thermomechanical failure [4].

Materials with Ruddlesden-Popper structure (A₂BO₄) which is comprised of alternating perovskite blocks with a rock-salt intergrowth have been attractive due to their mixed conducting properties while maintaining high electrical conductivity in the targeted temperature range [8–11]. These materials, particularly the nickelate series ($La_{n+1}Ni_nO_{3n+1}$). have caught much attentions because of the relatively open structural framework supported by the rock-salt intergrowth in its structure. Such an opened structure allows excess oxide-ions to be accommodated in the rock-salt layer resulting in improvements in ion conductivity [12-13]. La₂NiO₄ (n = 1) is a mixed ionic and electronic conductor with high oxygen diffusivity due to its high oxygen vacancy concentration [8-9, 14]. In addition, the higher-order Ruddlesden-Popper phases (n > 1, La₃Ni₂O₇ and La₄Ni₃O₁₀) were found to exhibit good long-term stability, and thus they are potentially more suitable than the n = 1 compound in solid oxide fuel cell (SOFC) devices [12]. However, the higher-order RP phases (n > 1) have been found to be difficult to synthesize directly, lengthy processing times (4-5 days) and are energy intensive [15-16].

Because of almost all elements in the periodic table can be accommodated on the A and/or B sites, perovskite structures with the general formula ABO₃ are highly useful structures. [2,17]. If two atoms, B and B', are placed on the two crystallographic different B-sites, a layered perovskite is formed with the general formula $A_2BB'O_6$. B and B' can be completely or partially ordered depending on the size and charge differences between the B ions and the degree of ordering also strongly affected on the properties of these materials.

One variation of pervoskite structure is a double perovskite with the general formulation $A_3B_2B'O_9$ when the B and B' ratio is 2:1 [17]. Such structure could have the ordering in a rock salt pattern with different cations occupying alternating BC_6 octahedra. The B-site ordered perovskites should be similar to the relatively open structural framework as Ruddlesden-Popper structure which allows for the accommodation of hyper-stoichiometric oxide-ions in the rock-salt layer resulting improvement of ion conductivity. Because of its wide range of properties, the double perovskites is interesting to be the new candidate of IT-SOFC cathode [17-19].

Recently, Kim *et al.* studied a family of double perovskite oxides, NdBa₁. $_xSr_xCo_2O_{5+\delta}$ (x = 0 and 0.5) [20]. They found that the substitution of Co by Ni in GdBaCo_{2-x}Ni_xO_{5+ δ} leads to slightly improved performance in SOFC with an important advantage of lower TEC because the TEC value decreases with increasing Ni content and reaches 16.7×10^{-6} K⁻¹ for the x = 0.6, which is ~13% lower than the TEC of the x = 0 sample. Moreover, Hu *et al.* successfully synthesized GdBaCo₂₋ $_xNi_xO_{5+\delta}$ (x = C-0.8) synthesized by a citrate-gel modified chemical route, by which we have achieved a high level of substitution up to x = 0.8 and resulted that the TEC value was also reduced [21]. Although the electrical conductivity decreases with increasing Ni content, all Ni compositions still show conductivity more than 300 S/cm up to 900°C, which is adequate for employing them as cathodes in SOFC [20]. Not only the electrical conductivity which is significant property of SOFC cathode, but the ionic conductivity is also concerned. Tao *et al.* reported in 2002 that in perovskites with the formulation $A_3B_2B'O_{9-\delta}$, when B' was the valance +5 elements such as Nb and Ta, could exhibit high proton and oxygen ion conductivity [12]. So, the improvement of ionic conductivity should be found in the B-site ordered perovskites. However, there are still very few reports on the electrical conductivity in the double perovskites with the formulation $A_3B_2B'O_{9-\delta}$, particularly with B-site as Nb and Ta substitution on Ni, while the ionic transport property seems to never study before. In this work, we studied the synthesis and characterization of the new triple perovskites family: $La_3Ni_2MO_9$ with M = Nb or Ta. These new compounds have been synthesized simply by both solid–state reaction and sol-gel process. The effects of synthesis routes and B–site dopants (Nb and Ta) on phase and morphology were examined, while the electrical conductivity was investigated as the primary result.

6.3 Experimental

6.3.1 Preparation of La₃Ni₂MO₉

6.3.1.1 Solid State Reaction

La₃Ni₂MO₉ (M = Nb and Ta) compounds were prepared by adding the stoichiometric amounts of Lanthanum oxide (La₂O₃, 99.9%, REacton[®]), Nickel oxide (NiO, 99%, Alfa Aesar) and Niobium (V) oxide (Nb₂O₅, 99.5%, Alfa Aesar) and tantalum (V) oxide (Ta₂O₅, 99%, Hopkin & Williams Ltd.) into a polypropylene bottle filled with ZrO₂ balls. The mixture was ball milled for 24 hr. The powder was, afterwards. ground and calcined at 1400°C with the heating rate 300° C/hr for 24 hrs in air.

6.3.1.2 Sol-Gel Process

Synthesis of La₃Ni₂NbO₉: The first precursor solution was prepared using lanthanum acetate ((CH₃COO)₃ La•1.5H₂O, 99.9%, Alfa Aesar) and nickel acetate ((CH₃COO)₂Ni•4H₂O, 98+%, Alfa Aesar). The two compounds were stoichiometrically mixed and were dissolved in acetic acid (99.7+%, ACS, Alfa Aesar). Deionized water was added afterwards and the solution was stirred and heated up to 80°C until a clear green solution was obtained. The second precursor solution was prepared in a separated beaker. Citric acid (HOCOCH₂C(OH)(COOH)

CH₂COOH, 99.5%, anhydrous. Alfa Aesar) was dissolved in 40 ml of water. Niobium (V) oxalate hydrate ($C_{10}H_5NbO_{20}$ •xH₂O. ACS, Alfa Aesar) was then added before the mixture was stirred and heated up to 80°C to obtain a white solution. The precursor solutions prepared above were mixed together until homogenous. Additional citric acid and ammonia solution (NH₄OH, 28.0-30.0%, ACS, Alfa Aesar) were added into the mixture afterwards to prevent the precipitation (the solution was clear and blue colour). The mixture was stirred continuously at 80°C until a green gel was formed. The gel was fired at 300°C for 12 hrs with heating rate 5°C /min to obtain dark olive green almost black powder. The resulting powder was ground and then fired again at 600°C for 12 hrs with the heating rate of 5°C/min to remove organic components. The calcined powder was then ground again and was fired at 1400°C for 24 hr with a heating rate of 5°C/min.

Synthesis of La₃Ni₂TaO₉: The first precursor solution was prepared using lanthanum acetate ((CH₃COO)₃La•xH₂O, 99.9%, Sigma-Aldrich Co.) and Nickel acetate ((CH₃COO)₂Ni•4H₂O, 98%, Sigma-Aldrich Co.). The two compounds were stoichiometrically dissolved in the solution of ethylene glycol (HO-CH₂CH₂-OH, \geq 98%, Sigma-Aldrich Co.) and acetic acid (glacial, 100%, Merck) and stirred until a clear green solution was obtained. The second part of the precursor was prepared by dissolving tantalum (V) ethoxide (Ta(OC₂H₅)₅, 99.98%, Sigma-Aldrich Co.) in a solution of 2-methoxyethanol (CH₃OCH₂ CH₂OH, anhydrous, 99.8%, Sigma-Aldrich Co.) and acetic acid (glacial. 100%, Merck). Acetylacetone (\geq 99%, Merck) was then added followed by heating to 150°C for 30 min and then left to room temperature. To obtain the desired gel, the two precursor solution was mixed heated at 60°C. Triethanolamine (C₆H₁₅NO₃, 99%, Merck) was added until the pH was measured to be in the range of 5-6. The mixture was stirred for 15 hrs and the gel was formed. The gel was fired at 300°C for 12 h with heating rate 5°C /min to obtain dark green powder. The powder was ground and fired again at 600°C for 12 h with heating rate 5°C/min to remove the organic solvent and ground and calcined again at 1400°C for 24 h with heating rate 5°C/min.

6.3.2 Characterization

Phase analysis was performed on all samples. The samples were analyzed using a Philips PW 1700 Series x-ray diffractometer with Cu K α source (λ = 1.5418 Å) over 20-80° 2 θ range. Graphite secondary crystal monochromator was used with at a generator of 40 kV and 40 mA. Full profile fitting and refinement was performed to confirm the crystal structure along with the corresponding lattice parameters using JADE 9 X-ray analysis software (MDI, CA, USA). The morphologies were studied by using a JEOL 5610 SEM.

6.3.3 Electrical Conductivity

As prepared powder of La₃Ni₂NbO₉ and La₃Ni₂TaO₉ was uniaxial pressure at 120 MPa bars followed by isostatic pressing at 300 MPa. The samples were sintered at 1500°C for 24 hrs with a heating rate of 300°C/hr. The sintered samples were cut into 15 mm length and were polished. Pt wire and Pt paste was used as the conducting wire and conductive paste for wire attachment respectively. The curing of the sample before the measurement was done at 800°C for 1 hr with heating rate 300°C/hr. The conductivities of the bar specimens were measured as a function of temperature by using the four-point direct current conductivity technique under static air conditions. The measurement intervals with heating rate 300°C/hr. In order to achieve equilibration at each measured temperature, a prolonged dwell time (15 min) was used to ensure stable readings. Conversely, the measurements also were measured starting from 850°C to room temperature with 50°C measurement intervals with cooling rate 300°C/hr.

6.4 Results and Discussion

6.4.1 Phase Formation

Fig. 6.1 shows the XRD patterns of $La_3Ni_2NbO_9$ samples prepared by (a) the solid state reaction and (b) the sol-gel process. The double perovskite structure of the $La_2Mg_{1,33}Nb_{0.67}O_6$ crystal structure (JCPDS 04-014-9726) was taken as the model for $La_3Ni_2NbO_9$ compounds. $La_3Ni_2NbO_9$ could be well described with the monoclinic space group P2₁/n(14) and was found to be the dominant phase in both samples. La₃Ni₂NbO₉ prepared by the solid state reaction was identified to be a single phase, while some impurity phases such as La₂O₃ ($2\theta = 27.94^{\circ}$) could be detected in La₃Ni₂NbO₉ samples prepared by the sol-gel process. Fig. 6.2 shows XRD patterns of the La₃Ni₂TaO₉ samples prepared by (a) solid state reaction and (b) sol-gel process. In the case of La₃Ni₂TaO₉ prepared by solid state reaction, the double perovskite phase was also identified with the monoclinic space group P2₁/n(14), while the minor phases appeared to be La₂O₃ with XRD peaks at $2\theta =$ 28.45 and 29.95°, and NiO at $2\theta = 43.33^{\circ}$. Even though, the double perovskite La₃Ni₂TaO₉ structure prepared by sol-gel process also was identified same as in prepared by solid state reaction, the minor phase was found to be different. La₃TaO₇ was found at $2\theta = 27.99^{\circ}$, 28.33°, 32.93°, 46.59°, 55.63° and 56.22° (JCPDS 04-010-0643), while La₂O₃ and NiO were almost undetectable.

Because of almost undetectable of impurities in La₃Ni₂NbO₉, this can imply that La₃Ni₂NbO₉ compound shows the possible ordered arrangement more than La₃Ni₂TaO₉, especially as shown the single phase of La₃Ni₂NbO₉ double perovskite as shown in Fig. 6.1(a). An ionic radius of Nb⁵⁺ (0.64 Å) is almost the same as that of Ta⁵⁺ (0.64 Å) resulting in the presence of isostructural niobates and tantalates [23], but there are the slight differences in the phase formation of Nb⁵⁺ and Ta⁵⁺ dopants. In 2004, Lufaso studied the crystal structures of 2:1 ordered $Ba_3MM'_2O_9$ (M = Mg, Ni, Zn; M' = Nb, Ta) perovskites [24]. He indicated that the bond valence sums calculated from the bond distances indicate Ba-O bonds are compressed, while the M-O and M'-O₆ bonds are expanded from ideal lengths caused by a shift of Ta^{5+} and Nb^{5+} out of center of the [M'O₆] octahedral. The octahedral distortion is driven by the asymmetry in the O bonding network and aided by the second-order Jahn-Teller distortion of the d⁰ of Nb⁵⁺ and Ta⁵⁺ cations. These can be explained the slight differences in covalent bonding between Nb^{5+} and Ta^{5+} in which Nb^{5+} is expected to be higher the degree of overlap between the low lying empty d orbitals and the filled O 2p orbitals than Ta⁵⁺. Such overlap is the reason for Nb^{5+} to be more covalent than Ta^{5+} . Thus, Nb^{5+} has a higher preference for occupying a more distorted coordination environment, while Ta⁵⁺ typically

crystallizes with a more symmetric coordination environment [24]. These may be the reason why La₃Ni₂NbO₉ compound shows the more possible ordered arrangement than La₃Ni₂TaO₉.

Comparing between the two synthesized methods, it was found that the samples synthesized via the sol-gel process have a small difference in slightly more detectable impurity phases than the samples synthesized via the solid state reaction. La₂O₃, NiO and La₃TaO₇ were found in the samples produced via the solgel process, while the impurity phases are almost undetectable in the samples synthesized by the solid state reaction. This may be due to the higher ordered materials generally proceed via the initial formation of intermediate phases which then undergo further reactions and the sol-gel process involves several reactions which is more difficult to control than the solid state reaction [15]. Therefore, the samples synthesizes by solid state reaction were chosen to further characterization.

6.4.2 Morphological Observation

Fig. 6.3 shows SEM images of La₃Ni₂MO₉ powder (M = Nb and Ta) prepared by the solid state method after being fired at 1400°C for 24 h. For the La₃Ni₂NbO₉ samples, slightly smaller particle size was observed (left) comparing to the La₃Ni₂TaO₉ samples (right), La₃Ni₂TaO₉ particles exhibit a less facetted particle morphology than the La₃Ni₂NbO₉ samples. Moreover, adding of Nb and Ta in La₃Ni₂MO₉ is not only influence on the phases, but also exhibits an impact on the microstructure, especially in sintering behavior. Fig. 6.4 shows the SEM images at different magnifications of La₃Ni₂MO₉ powder (M = Nb and Ta) prepared by the solid state reaction after being sintered at 1500°C for 24 h. The micrographs show the sintered La₃Ni₂NbO₉ samples (left) which have less porosity than the sintered La₃Ni₂TaO₉ samples maybe explained by the lower melting temperature of Nb₂O₅ vs. Ta₂O₅ at 1485°C and 1800°C, respectively [15]. Such lower melting temperature of the oxide could indicate the lower melting point and lower sintering temperature of the Nb substituted compound.

6.4.3 Electrical Conductivity

Fig. 6.5 shows the electrical conductivity results of the sintered $La_3Ni_2MO_9$ (M = Nb and Ta) samples produced by the solid state reaction as a function of temperature in both heated up and cooled down measurements. In the case of La₃Ni₂TaO₉, a small hysteresis behavior was observed upon heating and cooling. This was explained by Kammer [26] who proposed that the perovskite phase can re-organize when the perovskite is heated or cooled. However, for La₃Ni₂NbO₉, a hysteresis was almost unseen. In addition, it is clearly seen that the electrical conductivities of La₃Ni₂NbO₉ significantly increase with increase of temperature. But the electrical conductivities of La₃Ni₂TaO₉ decreased with temperatures when the temperature is lower than 300°C then slightly increased again at higher temperature. This is also found by Xu et al. [27] who explained that Nb and Ta doping influence the conductivity mainly in following two aspects: one is changing the carrier concentration and the other is introducing scattering centers in conducting plane. At low doping level, the change of carrier concentration dominates the conducting behavior, so a transition from semiconductor to metal takes place. At high doping level, however, the strong scattering may dominate the conducting behavior; thus, a metal-nonmetal transition occurs [27]. That means that the conductivity behaviour of $La_3Ni_2MO_9$ (M = Nb and Ta) depends on the suitable amounts of each dopants. These may be the results that why the conductivities of La₃Ni₂NbO₉ are lower than La₃Ni₂TaO₉. Moreover, the different conductivities of both compounds may be also explained by Palanduz et al. [28] who proposed why $SrBi_2Ta_2O_9$ (SBT) and $SrBi_2Nb_2O_9$ (SBN) behave so differently when Ta^{+5} and Nb^{+5} have very similar chemical behaviors. Because of their structures consist of perovskite-like layers and metal oxide layers, when Ta⁺⁵ and Nb⁺⁵ were added, the different layers dominate the conductivity depending on the easier reducibility of Nb^{+5} and Ta^{+5} . Although, the electrical conductivities of $La_3Ni_2NbO_9$ and La₃Ni₂TaO₉ are not high enough to be IT-SOFCs cathode, the further studies including the appropriate amounts of Nb and Ta, the thermal stability and ionic conductivity are interesting to understand their materials.

6.5 Conclusions

The synthesis of La₃Ni₂NbO₉ and La₃Ni₂TaO₉ double perovskite materials was successfully carried out both by the solid state reaction and sol-gel process. The solid state reaction was shown to yield a single phase of La₃Ni₂NbO₉, while the higher purities were obtained by the sol-gel process. La₃Ni₂NbO₉ has more possible ordered arrangement than La₃Ni₂TaO₉ because Nb⁵⁺ is expected to be higher the degree of overlap between the low lying empty d orbitals and the filled O 2p orbitals than Ta⁵⁺ resulting Nb⁵⁺ is more covalent than Ta⁵⁺. Thus, Nb⁵⁺ has a higher preference for occupying a more distorted coordination environment, while Ta⁵⁺ typically crystallizes with a more symmetric coordination environment. Adding of Nb and Ta in La₃Ni₂MO₉ does not only influence on the phases, but also has an impact on the microstructure, especially in sintering behaviour. A hysteresis of electrical conductivity of La₃Ni₂TaO₉ was observed on heating and cooling, while La₃Ni₂NbO₉ was almost not observed. The electrical conductivities of La₃Ni₂NbO₉ significantly increase with increase of temperature. But the electrical conductivities of La₃Ni₂TaO₉ decreased with temperatures when the temperature is lower than 300°C then slightly increased again at higher temperature. However, the La₃Ni₂NbO₉ and La₃Ni₂TaO₉ materials need further improvement because the electrical conductivities are not yet suitable for use as IT-SOFCs cathode.

6.6 Acknowledgements

This work was partially funded by the postgraduate education and research programs in Petroleum and Petrochemical Technology (PPT Consortium), Rachadapisake Sompote fund, Chulalongkorn University, the Development and Promotion of Science and Technology, Thailand project (DPST), and the National Metal and Materials Technology Center (MTEC), Thailand for financial support. I would like to thank Dr. Sumittra Charojrochkul from MTEC, Thailand and staff at the Department of Materials, Imperial College London. This research was also supported by a Marie Curie Intra European Fellowship within the seventh European Community Framework Programme (PIEF-GA-2009-252711).

6.7 References

- [1] Minh, N.Q. (1993) Ceramics fuel cells. J. Am. Cerum. Soc., 76 (3), 563-588.
- [2] Ormerod, R.M. (2003) Solid oxide fuel cell. <u>Chem. Soc. Rev.</u>, 32, 17-28.
- [3] Ralph, J.M., Schoeler, A.C., and Krumpelt, M. (2001) Materials for lower temperature solid oxide fuel cells. <u>J. Mater. Sci.</u>, 36, 1161-1172.
- [4] Chiba, R., Yoshimura, F., and Sakurai, Y. (1999) An investigation of LaNi_{1-x}Fe_xO₃ as a cathode material for solid oxide fuel cells. <u>Solid State Ionics</u>, 124, 281-288.
- [5] Tai, L.-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R. (1995) Structure and electrical properties of La_{1-x}Sr_xCo_{1-y}Fe_yO₃. Part 1. The system La_{0.8}Sr_{0.2}Co_{1-y}Fe_yO₃. Solid State Ionics, 76, 259-271.
- [6] Sekido, S., Tachibana, H., Yamamura, Y., and Kambara, T. (1990) Electricionic conductivity in perovskite-type oxides, Sr_xLa_{1-x}Co_{1-ν}Fe_νO_{3-δ}. <u>Solid State</u> <u>Ionics</u>, 37, 253-259.
- [7] Wang, S., Katsuki, M., Dokiya, M., and Hashimoto, T. (2003) High temperature properties of La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3.δ} phase structure and electrical conductivity. <u>Solid State Ionics</u>, 159, 71-78.
- [8] Greenblatt, M. (1997) Ruddlesden-Popper Ln_{n+1}Ni_nO_{3n+1} nickelates: Structure and properties. <u>Solid State & Mater. Sci.</u>, 2, 174-183.
- [9] Vashook, V.V., Yushkevich, I.I., Kokhanovsky, L.V., Makhnach, L.V., Tolochko, S.P., Kononyuk, I.F., Ullmann, H., and Altenburg, H. (1999) Composition and conductivity of some nickelates. <u>Solid State Ionics</u>, 119, 23-30.
- [10] Tang, J.P., Dass, R.I., and Manthiram, A. (2000) Comparison of the crystal chemistry and electrical properties of La_{2-x}A_xNiO₄ (A = Ca, Sr, and Ba). <u>Mater.</u> <u>Res. Bull.</u>, 35, 411-424.
- [11] Hui, Z., Qiang, L., and LiPing, S. (2011) Ln₂MO₄ Cathode materials for solid oxide fuel cells. <u>Sci. China Chem.</u>, 54, 898-910.

- [12] Amow, G. and Skinner, S.J. (2006) Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. <u>J. Solid State</u> <u>Electrochem.</u>, 10, 538-546.
- [13] Routbort, J.L., Doshi, R., and Krumpelt, M. (1996) Oxygen tracer diffusion in La_{1-x}Sr_xCoO₃. <u>Solid State Ionics</u>, 90, 21-27.
- [14] Fontaine, M.L., Laberty-Robert, C., Ansart, F., and Tailhades, P. (2006)
 Composition and porosity graded La_{2-x}NiO_{4+δ} (x ≥ 0) interlayers for SOFC: control of the microstructure via a sol-gel Process. J. Power Source, 156, 33-38.
- [15] Weng, X., Boldrin, P., Abrahams, I., Skinner, S.J., and Darr, J. A. (2007) Direct syntheses of mixed ion and electronic conductors La₄Ni₃O₁₀ and La₃Ni₂O₇ from nanosized coprecipitates. <u>Chem. Mater.</u>, 19, 4382-4384
- [16] Zhang, Z. and Greenblatt, M. (1995) Synthesis, structure and properties of Ln₄Ni₃O_{10-δ}. J. Solid State Chem., 117, 236-246.
- [17] Fuertes, V.C., Blanco, M.C., Franco, D.G., De Paoli, J.M., Sa'nchez, R.D., and Carbonio, R.E. (2011) Influence of the B-site ordering on the magnetic properties of the new La₃Co₂MO₉ double perovskites with M = Nb or Ta. <u>Mater. Res. Bull.</u>, 46, 62-69.
- [18] Nowick, A.S., Du, Y., and Liang, K.C. (1999) Some factors that determine proton conductivity in nonstoichiometric complex perovskites. <u>Solid State</u> <u>Ionics</u>, 125, 303-311.
- [19] Nowick, A.S. and Liang, K.C. (2000) Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr₂(ScNb)O₆ : a complex perovskite. <u>Solid State Ionics</u>, 129, 201-207.
- [20] Kim, J.-H. and Manthiram, A. (2009) Layered NdBaCo_{2-x}Ni_xO_{5+ δ} perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. <u>Electrochim. Acta</u>, 54, 7551-7557.
- [21] Hu, Y., Bogicevic, C., Bouffanais, Y., Giot, M., Hernandez, O., and Dezanneau, G. (2013) Synthesis, physical-chemical characterization and electrochemical performance of $GdBaCo_{2-x}Ni_xO_{5-\delta}$ (x = 0-0.8) as cathode materials for IT-SOFC application. J. Power Sources, 242, 50-56.

- [22] Tao, S. and Irvine, J.T.S. (2002) Structure and properties of nonstoichiometric mixed perovskites A₃B'_{1+x}B''_{2-x}O_{9-δ}. <u>Solid State Ionics</u>, 154-155, 659-667.
- [23] Kudo, A., Kato, H., and Nakagawa, S. (2000) Water splitting into H₂ and O₂ on new Sr₂M₂O₇ (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. <u>J. Phys. Chem. B</u>, 104, 571-575.
- [24] Lufaso, M.W. (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba₃MM'₂O₉ (M = Mg, Ni, Zn; M' = Nb, Ta) perovskites. <u>Chem. Mater.</u>, 16, 2148-2156.
- [25] Verma, V., Gairola, S.P., Pandey, V., Kotanala, R.K., and Su, H. (2008) Permeability of Nb and Ta doped lithium ferrite in high frequency range. <u>Solid</u> <u>State Commun.</u>, 148, 117-121.
- [26] Kammer, K. (2006) Studies of Fe-Co based perovskite cathodes. <u>Solid State</u> <u>Ionics</u>, 177, 1047-1051.
- [27] Xu, G., Funahashi, R., Pu, Q., Liu, B., Tao, R., Wang, G., and Ding, Z. (2004) High-temperature transport properties of Nb and Ta substituted CaMnO₃ system. <u>Solid State Ionics</u>, 171, 147-151.
- [28] Palanduz, C.A. and Smyth, D.M. (1999) The effect of cation place exchange on the electrical conductivity of SrBi₂M₂O₉ (M = Ta, Nb). J. Eur. Ceram. Soc., 19, 731-735.

.

Figure 6.1 XRD patterns of La₃Ni₂NbO₉ samples prepared by (a) the solid state reaction and (b) the sol-gel process. (• = La₂Mg_{1,33}Nb_{0,67}O₆ and ∇ La₂O₃).

Figure 6.2 XRD patterns of La₃Ni₂TaO₉ samples prepared by (a) the solid state reaction and (b) the sol-gel process (\circ La₂Mg_{1.33}Ta_{0.67}O₆, \checkmark La₃TaO₇, \blacksquare La₂O₃ and \bigstar NiO).

Figure 6.3 SEM images at different magnifications of the samples prepared by the solid state reaction after calcination at 1400°C for 24 h when $La_3Ni_2NbO_9$ is (a) and (c) and $La_3Ni_2TaO_9$ is (b) and (d).

Figure 6.4 SEM images at different magnifications of the samples prepared by the solid state reaction after sintered at 1500° C for 24 h when La₃Ni₂NbO₉ is (a) and (c) and La₃Ni₂TaO₉ is (b) and (d).

Figure 6.5 Electrical conductivity vs temperature plot of $La_3Ni_2NbO_9$ and $La_3Ni_2TaO_9$ samples prepared by the solid-state reaction measured in the temperature range (25°C-850°C) (• = $La_3Ni_2NbO_9$ and $\triangle = La_3Ni_2TaO_9$ (closed symbols are values when heating up) and $\circ = La_3Ni_2NbO_9$ and $\triangle = La_3Ni_2TaO_9$ (opened symbols when cooling down)).