SILVER INCLUSION POLYBENZOXAZINE XEROGEL MEMBRANE FOR CO₂/CH₄ SEPARATION

Apiradee Nicharat

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University

2012

1290711.007

Thesis Title:	Silver Inclusion Polybenzoxazine Xerogel Membrane for
	CO ₂ /CH ₄ Separation
By:	Apiradee Nicharat
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Thanyalak Chaisuwan
	Assoc. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Thanyalak Claisuwa (Asst. Prof. Thanyalak Ghaisuwan) Mon An m (Assoc. Prof. Sujitra Wonkasemjit) (Asst. Prof. Mahit Nithitanakul) B. Mr

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5372001063: Polymer Science Program
Apiradee Nicharat : Silver Inclusion Polybenzoxazine Xerogel
Membrane for CO₂/CH₄ Separation.
Thesis Advisors: Asst. Prof. Thanyalak Chaisuwan and Assoc. Prof.
Sujitra Wongkasemjit 52 pp.
Keywords: Carbon membrane/ Polybenzoxazine/ Flue gas separation/ Silver inclusion

The effect of silver ion incorporated with a novel organic polybenzoxazine xerogel (PBZ) was investigated as a membrane for flue gas separation. The fully cured interconnected polybenzoxazine xerogel was impregnated with silver nitrate solution. The exothermic peak of polybenzoxazine disappeared after being fully polymerized as observed by DSC. FT-IR results indicated the chemical reaction between the N-Ag. The char yield of Ag⁺-included in the polybenzoxazine membrane increased rapidly with the increasing of the metal salt concentrations which might be due to the complex formation between metal ions and polybenzoxazine, resulting in more stable cyclic compounds that could form char during the heat treatment. However, the BET results and SEM micrographs showed no change in physical properties of PBZ after Ag⁺ inclusion. (The ideal separation of flue gas (CO₂, N₂ and CH₄) has been investigated). Interestingly, the CO₂ /CH₄ selectivity was also increased with the incorporation of Ag⁺ ion since CO₂ molecules containing double bonds could react reversibly with these noble metal ions to form the π -bonded complex, thus obtaining good separation performance.

บทคัดย่อ

อภิรดี นิชรัตน์ : การแยกก๊าซคาร์บอนไดออกไซ์โดยใช้คาร์บอนแมมเบรนที่เตรียมจาก พอลิเบนซอกซาซีน (Silver Inclusion Polybenzoxazine Xerogel Membrane for CO₂/CH₄ Separation) อ.ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร.ธัญญลักษณ์ ฉายสุวรรณ์ และ รองศาสตราจารย์ คร.สุจิตรา วงศ์เกษมจิตต์ 52 หน้า

ในงานวิจัยนี้ได้ทำการศึกษาการแยกก๊าซการ์บอนไดอ๊อกไซด์, มีเทน และในโตรเจน ้โดยการใช้การ์บอนซีโรเจลที่เตรียมจากพอลิเบนซอกซาซีนซึ่งเป็นฟีนอลิกเรซินชนิดหนึ่ง นอก จากนี้ยังมีการเพิ่มประสิทธิภาพในการแยกแก๊ซ โดยทำแช่พอลิเบนซอกซาซีนที่ fully- cured ลงในสารละลายซิลเวอร์ในเตรท โดย lone pair electrons ของในโตรเจนสามารถสร้างพันธะกับ Ag ้ ได้ พันธะระหว่าง Ag-N ได้ทำการพิสูจน์เอกลักษณ์โดยใช้ FT-IR จากนั้นนำไปเผา ภายใต้ในโตรเจนจนใค้การ์บอนซีโรเจล ซิลเวอร์ที่ใส่เข้าไปยังสามารถสร้างพันธะโคออดิเนชั่นกับ พันธะคู่ของก๊าซคาร์บอนไดอ๊อกไซด์ ซึ่งจะช่วยเพิ่มประสิทธิภาพในการแยกก๊าซซิลเวอร์ยังช่วย เพิ่มค่า char yield การวิเคราะห์โครงสร้างจุลภาคโดย SEM และ การวัดพื้นที่ผิวของคาร์บอน ซีโรเจลโดยใช้ BET แสดงให้เห็นว่าการมีซิลเวอร์ในโครงสร้างไม่ได้ส่งผลกระทบต่อค่าดังกล่าว การศึกษาการแพร่ผ่านของก๊าซการ์บอนใดออกไซด์, มีเทน และ ในโตรเจนแสดงให้เห็นว่าการ์บอน ซีโรเจลที่ทำจากพอลิเบนซอกซาซีนสามารถแยกแก๊ซคังกล่าวได้ โดยการแพร่ผ่านของก๊าซการ์-บอนไดอ๊อกไซด์ลดลงเมื่อความเข้มข้นของสารละลายซิลเวอร์ในเตรทเพิ่มขึ้น ตรงกันข้ามกับการ ้เลือกผ่านของก๊าซการ์บอนไดออกไซด์และก๊าซมีเทนซึ่งเพิ่มขึ้น ซึ่งสามารถอธิบายได้จากการสร้าง π-bonded complex ระหว่างซิลเวอร์กับพันธะคู่ของก๊าซ คาร์บอนไดอ๊อกไซด์

ACKNOWLEDGEMENTS

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical, and Materials Technology, Thailand.

The author would like to thank Assistant Professor Thanyalak Chaisuwan, her advisor and Associate Professor Sujitra Wongkasemjit, her co-advisor, who do not only originated this work, but also gave her continuous support, good suggestion, intensive recommendation and for the help, patience, encouragement they have shown during her one year in their research group.

She wishes to thank her thesis committee Assistant Professor Manit Nithitanakul and Assistant Professor Bussarin Ksapabutr for their suggestions and invaluable guidance.

Special thanks are to all of the Petroleum and Petrochemical College's professors who have given valuable knowledge to her at PPC and to the college staff who willingly gave support and encouragement.

Her thanks are also to all her seniors and her friends for their helps, good suggestion, friendship and all the good memories.

Last, but not least, she thanks her family for giving her life, for educating her and unconditional support to pursue her interests and also for their love and encouragement.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abstr	ract (in English)	iii
Abstr	ract (in Thai)	iv
Ackn	owledgements	v
Table	e of Contents	vi
List c	of Tables	ix
List c	of Figures	х
Ι	INTRODUCTION	1
		2
11	LIIERAIURE REVIEW	3
III	EXPERIMENTAL	17
	3.1 Materials	17
	3.2 Measurements	17
	3.3 Gas Permeability Apparatus	18
	3.4 Experimental	
	3.4.1 Synthesis of Polybenzoxazine Precursor	19
	3.4.2 Preparation of Polybenxozazine Xerogel	19
	3.4.3 Preparation of Polybenxozazine Xerogel Membrane	20
	3.4.4 Characteristics of the Polybenzoxazine Xerogel	20
	3.4.5 Preparation of Silver-Polybenzoxazine based Xerogel	20
	3.4.6 Preparation of Polybenzoxazine and	21
	Silver-Polybenzoxazine based Xerogel Carbon	
	3.4.7 Gas Permeation Measurement	21

CHAPTER

PAGE

IV	RESULTS AND DISCUSSION	23
	4.1 Abstract	23
	4.2 Introduction	24
	4.3 Experimental	25
	4.3.1 Materials	25
	4.3.2 Measurements	25
	4.3.3 Methodology	27
	4.4 Results and Discussion	30
	4.4.1 Thermal Behaviors of Polybenzoxazine Precursors	30
	4.4.2 The Chemical Structure of Polybenzoxazine	
	Precursors	32
	4.4.3 Polybenzoxazine Xerogel Impregnated with AgNO ₃	
	Characterizations	33
	4.4.4 Morphology of Carbon- and Activated Carbon	
	Aerogels	35
	4.4.5 Microstructure of Polybenzoxazine-based	
	Carbon Xerogel	37
	4.4.6 Gas Permeability	39
	4.4.6.1 The Effect of Silver Inclusion on the	
	CO_2 , CH_4 and N_2 Permeability	39
	4.4.6.2 The Effect of Silver Inclusion	
	on the Selectivity	42
	4.4.5.3 Electrochemical Impedance Characteristics	
	4.5 Conclusions	43
	4.6 Acknowledgements	43
	4.7 References	43

CHAPTER	PAGE
V CONCLUSIONS AND RECOMMENDATIONS	47
REFERENCES	48
CURRICULUM VITAE	52

LIST OF TABLES

TABLE

2.1	Definition about porous solids	11
4.1	EDX measurements of the surface of 0.5PBZX-Ag and	36
	1.0PBZX-Ag	
4.2	Pore structure of PBZX and PBZ-based carbon xerogels	40

PAGE

LIST OF FIGURES

FIGU	FIGURE	
2.1	The schematic diagram of various nanoscale morphology of	
	the mixed matrix structure.	7
2.2	Schematic diagram for the preparation of carbon membranes	
	derived from a polymer blend.	8
2.3	Chemical structure of polybenzoxazine derived from	
	bisphenol-A, aniline, and formaldehyde.	13
2.4	Synthesis of 3,4-dihydro-2H-1,3-benzoxazines	
	prepolymer.	[4
2.5	Chemical structure of benzoxazine (B-m) monomer.	15
2.6	Preparation of AB- <i>p</i> -aminophenol (AB-PAP) as a	
	benzoxazine prepolymer.	16
3.1	Experimental set up for the gas permeability.	19
3.2	Preparation of polybenzoxazine precursor.	20
3.3	Schematic of a step of curing	21
4.1	Experimental set up for the gas permeability.	24
4.2	Preparation of polybenzoxazine precursor.	29
4.3	Silver inclusion polybenzoxazine structure.	30
4.4	The formation of carbon-silver membrane.	31
4.5	DSC thermograms of (a) the polybenzoxazine precursor	32
	after drying at 80° C (pre-cured) and (b) after heat treatment	
	at 200 °C (fully-cured).	
4.6	TGA thermogram of PBZ xerogels (), PBZ xerogels	32
	impregnated with 0.5M AgNO ₃ () and PBZ xerogels	
	impregnated with 1.0 M AgNO3 ().	
4.7	FTIR spectra of (a) polybenzoxazine precursors and (b)	34
	fully-cured polybenzoxazine.	

LIST OF FIGURES

FIGURE		PAGE
4.8	FTIR spectra of (a) polybenzoxazine, 0.5PBZX-Ag and (c) 1.0PBZ-Ag.	35
4.9	EDX spectrum of 1.0PBZX-Ag	36
4.10	SEM micrographs of synthesized PBZ xerogel with a magnification of 5.0 k (a) and 100.0 k (b), PBZ xerogel impregnated with 1.0M AgNO ₃ with a magnification 5.0 k	
	(c) and 100.0 k (d), carbon xerogel with a magnification of	
	5.0 k (e) and 100.0 k (f) and carbon based silver impregnated with a magnification of 5.0 k (g) and 100.0 k	
	(h).	38
4.11	Adsorption isotherms of PBZ xerogels (\mathbf{O}) and PBZ	
	xerogels impregnated with 1.0M AgNO ₃ (■) prepared from	
	benzoxazine precursor.	39
4.12	Adsorption isotherms of CX (\mathbf{O}) and 1.0CX-Ag(\blacksquare)	
	prepared from benzoxazine precursor.	39
4.13	Effects of Silver Nitrate concentration on CO_2 , CH_4 and N_2 permeability.	41
4.14	Pathway of gases depending on molecular kinetic diameter	
	(a), complex formation between CO_2 and silver (b) and	
	formation of π -bonded between CO ₂ and double bond (c)	42
4.15	Effects of silver inclusion on CO_2/CH_4 , CH_4/N_2 and N_2/CO_2	
	selectivity.	43