DEVELOPMENT AND IMPROVEMENT OF DUAL-LEACHED POLYESTER POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING

Napaphat Thadavirul

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

0

2014

128369646

0

÷

Development and Improvement of Dual-leached Polyester
Porous Scaffolds for Bone Tissue Engineering
Napaphat Thadavirul
Polymer Science
Prof. Pitt Supaphol

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

PL-

(Asst. Prof. Pomthong Malakul)

Prasit Pavast.

(Prof. Prasit Pavasant)

(Dr.Orawan Suwantong)

4902.2

(Prof. Pitt Supaphol)

Hathailiam Manspiss

(Asst. Prof. Hathaikarn Manuspiya)

) Sumting Pigachat Chugsinvan

(Dr.Piyachat Chuysinuan)

ABSTRACT

5082001063: Polymer Science Program

Napaphat Thadavirul: Development and Improvement of Dualleached Polyester Porous Scaffolds for Bone Tissue Engineering Thesis Advisor: Prof. Pitt Supaphol 195 pp.

Keywords:

Ø

Scaffold/ Polycaprolactone/ Solvent casting/ Particulate leaching
method/ Polymer leaching/ Poly(hydroxybutyrate)/ Poly(3hydroxybutyrate-co-3-hydroxyvalerate) / Hydroxyapatite

Sodium chloride and polyethylene glycol (PEG) were used as water-soluble porogens for the formation of porous polycaprolactone (PCL) and their blends scaffolds. The main purpose was to prepare and evaluate in vitro efficacy of highly interconnected, three-dimensional, porous polymeric scaffolds, as obtained from the combined solvent casting and particulate-polymer leaching techniques. Evidently, the use of PEG as the secondary porogen not only improved the interconnectivity of the pore structures but also resulted in the scaffolds that exhibited much better support for the proliferation and differentiation of the cultured bone cells. Although increased porosity and interconnected network facilitate bone ingrowth, the result is a reduction in mechanical properties of scaffold. For these reason, the another purpose of this study was to improve the mechanical properties of the dual-leached PCL scaffold by the addition of hydroxyapatite and improve the hydrophilicity of dual-leached scaffolds by alkaline treatment. The potential for PCL-PHB, PCL-PHBV, PCL-PHB/HA, and PCL-PHBV/HA dual-leached scaffolds use as bone scaffolding materials were also evaluated in vitro mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results indicate that NaOH treated PCL/HA dual-leached scaffold possesses improvement in mechanical properties and hydrophilicity, and PCL-PHB, PCL-PHBV, PCL-PHB/HA, and PCL-PHBV/HA dual-leached scaffolds possess improvement in mechanical properties, degradation. All dual-leached scaffolds show their ability to support MC3T3-E1 cell attachment, proliferation, and mineralization for used as bone scaffolding materials.

iii

บทคัดย่อ

ณปภัช ธาคาวิรุฬห์ : การพัฒนาการขึ้นรูปวัสคุโครงร่างพอลิเอสเทอร์ที่มีความเป็นรู พรุนสูงสำหรับใช้ในงานทางวิศวกรรมเนื้อเยื่อกระดูก (Development and Improvement of Dualleached Polyester Porous Scaffolds for Bone Tissue Engineering) อ. ที่ปรึกษา: ศาสตราจารย์ คร. พิชญ์ ศุภผล 195 หน้า

การพัฒนากรรมวิธีการขึ้นรูปวัสคุโครงร่างโดยการนำกรรมวิธีการหล่อขึ้นรูปด้วยตัวทำ ละลาย (solvent casting), การชะล้างอนุภาคเกลือ (salt leaching) และการชะล้างพอลิเมอร์ (polymer leaching) มาประกอบกันเพื่อสร้างความเป็นรูพรุนสูงในวัสดุโครงร่างสำหรับกระดูกที่มี ความเป็นรูพรุนสูง คุณสมบัติความเป็นรูพรุนสูงในวัสดุโครงร่างสำหรับกระดูกเป็นคุณสมบัติที่ดี ้สำหรับการเจริญของเนื้อเยื่อเพื่อที่เซลล์กระดูกจะสามารถแทรกซึมเจริญเข้าไปในโครงร่าง รวมทั้ง รูพรุนสามารถเป็นทางถ่ายเทอาหารและของเสียสำหรับเซลล์กระดูก ในงานวิจัยนี้ อนุภาคเกลือ ์โซเคียมคลอไรค์ และพอลิเอททิลีนไกลคอล ถูกใช้เพื่อสร้างความเป็นรูพรุนในวัสคุโครงร่างของ พอลิคาโปรแลคโทน จากการศึกษาวัสดุโครงร่างโดยกล้องจุลทรรศน์อิเล็คครอนแบบส่องกราค ้วัสคุโครงร่างนี้มีความเป็นรูพรุนและความเชื่อมโยงของรูพรุนสูง และยังมีการกระจายตัวของรู พรุนและขนาคของรูพรุนที่สม่ำเสมอ ถึงแม้ว่าความเป็นรูพรุนสูงเป็นคุณสมบัติที่คีของโครงร่าง สำหรับการเจริญของเนื้อเยื่อเซลล์กระคูก แต่คุณสมบัติเชิงกลก็ยังคงเป็นคุณสมบัติที่สำคัญเช่นกัน ในงานวิจัยนี้ จึงได้ทำการพัฒนาสมบัติเชิงกลของโครงร่างโดยการเติมผงไฮดรอกซีอะพาไทต์เข้า ไปในโครงร่าง และ ทำการผสมพอลิไฮครอกซีบิวทีเรต หรือ พอลิไฮครอกซีบิวทีเรตโควารีเรตเข้า ้ไปในเนื้อโครงร่างพอลิคาโปรแลคโทน นอกจากนี้ในงานวิจัยนี้ยังได้วิเคราะห์ความเป็นไปได้ใน การใช้วัสคุโครงร่างในทางวิศวกรรมเนื้อเยื่อกระคูก โคยจากใช้เซลล์ MC3T3-E1 จากการทดสอบ ้ความเป็นพิษของวัสคุกับเซลล์ พบว่า ไม่มีสารที่ก่อให้เกิดความเป็นพิษกับเซลล์จากวัสดุโครงร่าง นี้ และ เซลล์MC3T3-E1 สามารถเจริญเติบโตและแผ่ขยายได้คืบนวัสดุโครงร่างชนิดนี้ จากผลการ ทคสอบ โดยวัสดุดังกล่าวสามารถใช้เป็นโครงร่างเลี้ยงเซลล์กระดูกได้ดี วัสดุทั้งหมดสามารถ ้นำไปใช้เป็นวัสดุเพื่อนำไปใช้ทางการแพทย์ที่มีประสิทธิภาพ

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisor, Prof. Pitt Supaphol, for giving her invaluable knowledge, meaningful guidance and encouragement all along the way. She also would like give her sincere thanks to Prof. Prasit Pavasant for giving her useful advises, invaluable knowledge, suggestions, and and technical knowledge in cell culture and providing her the instruments and the convenient laboratory room. She also would like to express her sincere thanks to Dr. Ansgar Petersen and colleagues from Charite Universitaetsmedizin Berlin and Prof. Christoph Weder and colleagues from Adolphe Merkle Institute, University of Fribourg for giving her opportunities to learn new research experiences while she did a short research at Charite Universitaetsmedizin Berlin and Adolphe Merkle Institute, University of Fribourg. She gratefully acknowledges all faculty members and staff at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover, she would like to give her special thanks to all members in her research group, her friends at Department of Anatomy, Faculty of Dentistry, Chulalongkorn University and all of her friends for their kind assistance, continual encouragement and wonderful friendship.

Asst. Prof. Pomthong Malakul, Prof. Pitt Supaphol, Asst. Prof. Hathaikarn Manuspiya, Dr. Orawan Suwantong, and Dr. Piyachat Chuysinuan are further acknowledged for being her dissertation committee, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for her Ph.D. study. Finally, she is grateful for the partial fund by The Petroleum and Petrochemical College; The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand; The Thailand Research Fund (through a grant: DBG5280015); and a doctoral scholarship received from The Royal Golden Jubilee Ph.D. Program (through The Thailand Research Fund: PHD/0100/2551). This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xiv
Abbreviations	xxiv
List of Symbols	xxvii

CHAPTER

.

I	INTRODUCTION	1
II	LITERATURE REVIEW	11
	2.1 Tissue Engineering .	11
	2.2 Basic Bone Biology	15
	2.2.1 Bone Cells	15
	2.2.2 Extracellular Matrix	16
	2.3 Bone Remodeling	17
	2.3.1 Process of Bone Remodeling	18
	2.3.2 Bone Remodeling, and the Osteoclast	19
	2.3.3 Bone Remodeling, and the Osteoblast	19
	2.4 Ossification	19
	2.5 Scaffold Preparation Method	21
	2.5.1 Gas Foaming	21
	2.5.2 Gas Foaming/Salt Leaching Method	22
	2.5.3 Freeze Drying	23

2.5.4 Emulsification/Freeze-Drying 23

0

2.5.5 Thermally Induced Phase Separation	23
2.5.6 Phase Separation/Emulsification	24
2.5.7 Solid Freeform Fabrication	24
2.5.8 Electrospinning	25
2.5.9 Solvent Casting	25
2.5.10 Solvent Casting/Particulate-Leaching	26
Tissue Engineering Scaffold Materials	27
Biomaterials Applied for Tissue Engineering	28
2.7.1 Polycaprolactone	28
2.7.2 Polyhydroxybutyrate	29
2.7.3 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)	30
2.7.4 Biodegradation of Polymer	31
B Hydroxyapatite (HA)	32
	 2.5.5 Thermally Induced Phase Separation 2.5.6 Phase Separation/Emulsification 2.5.7 Solid Freeform Fabrication 2.5.8 Electrospinning 2.5.9 Solvent Casting 2.5.10 Solvent Casting/Particulate-Leaching Tissue Engineering Scaffold Materials Biomaterials Applied for Tissue Engineering 2.7.1 Polycaprolactone 2.7.2 Polyhydroxybutyrate 2.7.3 Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) 2.7.4 Biodegradation of Polymer Hydroxyapatite (HA)

Ш **DEVELOPMENT OF POLYCAPROLACTONE POROUS** SCAFFOLDS BY COMBINING SOLVENT CASTING, PARTICULATE LEACHING, AND POLYMER LEACHING **TECNIQUES FOR BONE TISSUE ENGINEERING** 34 4.1 Abstract 34 4.2 Introduction 34 4.3 Experimental 37 4.4 Results 44 4.5 Discussion 62 4.6 Conclusions 65 4.7 Acknowledgements 65 4.8 References 66

ο

4

IV	IMPROVEMENT OF DUAL-LEACHED	
	POLYCAPROLACTONE POROUS SCAFFOLDS BY	
	INCORPORATED WITH HYDROXYAPATITE FOR	
	BONE TISSUE REGENERATION	70
	4.1 Abstract	70
	4.2 Introduction	71
	4.3 Experimental	73
	4.4 Results and Discussion	81
	4.5 Conclusions	101
	4.6 Acknowledgements	102
	4.7 References	102

V

. .

FABRICATION AND EVALUATION OF		
POLYCAPROLACTONE-POLY(HYDROXYBUTYRATE))	
OR POLY(3-HYDROXYBUTYRATE-CO-3-		
HYDROXYVALERATE) DUAL-LEACHED POROUS		
SCAFFOLDS FOR BONE TISSUE ENGINEERING		
APPLICATIONS	108	
5.1 Abstract	108	
5.2 Introduction	109	
5.3 Experimental	111	
5.4 Results and Discussion	118	
5.5 Conclusions	138	
5.6 Acknowledgements	139	

5.7	References	139

-

Ø

- -

VI	PREPARATION OF DUAL-LEACHED	
	POLYCAPROLACTONE-POLY(HYDROXYBUTYRATE)	
	OR POLY(3-HYDROXYBUTYRATE-CO-3-	
	HYDROXYVALERATE)/HYDROXYAPATITE POROUS	
	SCAFFOLDS FOR BONE TISSUE ENGINEERING	144
	6.1 Abstract	144
	6.2 Introduction	145
	6.3 Experimental	147
	6.4 Results and Discussion	155
	6.5 Conclusions	176
	6.6 Acknowledgements	177
	6.7 References	177
VII	CONCLUSIONS AND RECOMMENDATIONS	183
	REFERENCES	188
	CURRICULUM VITAE	194

ix

PAGE

and desired the

LIST OF TABLES

TABLE PAGE

CHAPTER II

.

•

-

2.1	Polyester-type polymer in many type of forms and	
	preparation methods used for tissue engineering application	14

CHAPTER III

3.1	Viscosities of the PCL and the PCL-PEG blend solutions	44
3.2	Density, percentage of porosity, pore volume, and pore size	
	of the scaffolds. The superscripts a, b, c, and d in dicate	
	significant differences, with $p < 0.05$, for an individual	
	feature, as determined by one-way ANOVA with Tukey's	
	honestly significant difference (HSD) test ($n = 5$ for	
	porosity and pore volume, and $n = 30$ for pore size)	48
3.3	Attachment of the MC3T3-E1 cells grown on the glass or	
	on the PCL scaffolds for 2, 4, or 6 h. Selected SEM images	
	are presented for the cells on the glass (i.e., the control) and	
	the salt leached, salt-PEG 200 leached, salt-PEG 600	
	leached, and salt-PEG 1000 leached PCL scaffolds at three	
	different times after cell seeding on the surfaces	
	(magnification = $3500x$; scale bar = 5 μ m)	57
3.4	Proliferation of the MC3T3-E1 cells grown on the glass	
	and on the PCL scaffolds for 1, 2, or 3 days. Selected SEM	
	images are presented for the cells on the glass (i.e., the	
	control) and the salt leached, salt-PEG 200 leached, salt-	
	PEG 600 leached, and salt-PEG 1000 leached PCL	
	scaffolds at three different times after cell seeding on the	
	surfaces (magnification = $3500x$; scale bar = $5 \mu m$)	58

.

.

.

PAGE

CHAPTER IV

4.1	Crystallite size of hydroxyapatite powder	83
4.2	SEM images at 50x, 200x, and 750x magnification	
	illustrating the microstructures of the PCL, PCL/HA, NaOH	
	treated PCL/HA dual-leached scaffolds	85
4.3	Pore size of the PCL and PCL/HA dual-leached scaffolds:	
	a,b,c are significantly different at $p < 0.05$ for an	
	individual feature; *one way ANOVA with Tukey HSD,	
	and $n = 30$ for pore size	85
4.4	Density, percentage of porosity, pore volume, and	
	compressive modulus of the PCL and PCL/HA dual-	
	leached scaffolds: a,b,c,d, e, f are significantly different at	
	p < 0.05 for an individual feature; *one way	
	ANOVA with Tukey HSD, and $n = 10$ for porosity	
	pore volume. $n = 30$ for pore size	87
4.5	Attachment of MC3T3-E1 that had been seeded or cultured	
	on the surfaces of glass and the PCL dual-leached scaffolds	
	for 4, 8, or 16 h. Selected SEM images of cultured	
	specimens, i.e., glass (i.e., control), PCL, PCL/HA, and	
	NaOH treated PCL/HA dual-leached scaffolds at three	
	different time points after MC3T3-E1 were seeded or	
	cultured on their surfaces (magnification = 3500X; scale bar	
	$= 5 \ \mu m$)	96

TABLE

÷.

PAGE

CHAPTER IV

4.6	Proliferation of MC3T3-E1 that had been seeded or cultured	
	on the surfaces of TCPS and the PCL dual-leached scaffolds	
	for 1, 2, or 3d. Selected SEM images of cultured specimens,	
	i.e., glass (i.e., control), PCL, PCL/HA, and NaOH treated	
	PCL/HA dual-leached scaffolds at three different time points	
	after MC3T3-E1 were seeded or cultured on their surfaces	
	(magnification = $3500X$; scale bar = $5 \mu m$)	97
4.7	Images of Alizarin Red-S staining for the mineralization in	
	MC3T3-E1 on the TCPS, the PCL, the PCL/HA and the	
	NaOH treated PCL/HA dual-leached scaffolds at 14 and 21	
	day	100

CHAPTER V

5.1	SEM images at 50x, and 200x magnification illustrating the	
	microstructures of the PCL-PHB, and PCL-PHBV dual-	
	leached scaffolds	119
5.2	Density, percentage of porosity, pore volume, and	
	compressive modulus of the PCL, PCL-PHB and PCL-	
	PHBV dual-leached scaffolds: a,b,c,d, e.f,g are	
	significantly different at p < 0.05 for an individual feature;	
	*one way ANOVA with Tukey HSD, and $n = 10$ for	
	porosity pore volume. $n = 30$ for pore size	120

- 5.3 Attachment of MC3T3-E1 that had been seeded or cultured on the surfaces of glass, the PCL, the PCL-PHB and the PCL-PHBV dual-leached scaffolds for 4, 8, or 16 h. Selected SEM images of cultured specimens, i.e., glass (i.e., control), PCL, PCL-PHB, and PCL-PHBV dual-leached scaffolds at three different time points after MC3T3-E1 were seeded or cultured on their surfaces (magnification = 3500X; scale bar = 5 μm)
 5.4 Proliferation of MC3T3-E1 that had been seeded or cultured on the surfaces of the glass, the PCL, the PCL-PHB and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and the PCL PHDV dual herebod sufficient for 1.2 and 21.5 μm and 1.5 μ
- PCL-PHBV dual-leached scaffolds for 1, 2, or 3d. Selected SEM images of cultured specimens, i.e., glass (i.e., control), PCL, PCL-PHB, and PCL-PHBV dual-leached scaffolds at three different time points after MC3T3-E1 were seeded or cultured on their surfaces (magnification = 3500X; scale bar = $5 \mu m$)
- 5.5 Images of Alizarin Red-S staining for the mineralization in MC3T3-E1 on the TCPS, the PCL, the PCL-PHB, and the PCL-PHBV dual-leached scaffolds at 14 and 21 day

CHAPTER VI

6.1 SEM images at 50x, and 200x magnification illustrating the microstructures of the PCL/HA, PCL-PHB/HA, and PCL-PHBV/HA dual-leached scaffolds
 156

σ

PAGE

133

134

137

.

6.2	Actual HA, density, percentage of porosity, pore volume,	
	and compressive modulus of the PCL/HA, PCL-PHB/HA	
	and PCL-PHBV/HA dual-leached scaffolds: a,b,c,d, e, f are	
	significantly different at $p \le 0.05$ for an individual feature;	
	*one way ANOVA with Tukey HSD, and $n = 10$ for	
	porosity pore volume. $n = 30$ for pore size	157
6.3	Attachment of MC3T3-E1 that had been seeded or cultured	
	on the surfaces of glass, the PCL-PHB/HA and the PCL-	
	PHBV/HA dual-leached scaffolds for 4, 8, or 16 h. Selected	
	SEM images of cultured specimens, i.e., glass (i.e., control),	
	PCL-PHB/HA, and PCL-PHBV/HA dual-leached scaffolds	
	at three different time points after MC3T3-E1 were seeded	
	or cultured on their surfaces (magnification = 3500X; scale	
	$bar = 5 \ \mu m$)	170
6.4	Proliferation of MC3T3-E1 that had been seeded or cultured	
	on the surfaces of TCPS, the PCL-PHB/HA, and the PCL-	
	PHBV/HA dual-leached scaffolds for 1, 2, or 3d. Selected	
	SEM images of cultured specimens, i.e., glass (i.e., control),	
	PCL/HA, PCL-PHB/HA, and PCL-PHBV/HA dual-leached	
	scaffolds at three different time points after MC3T3-E1 were	
	seeded or cultured on their surfaces (magnification = 3500X;	
	scale bar = 5 μ m)	171
6.5	Images of Alizarin Red-S staining for the mineralization in	
	MC3T3-E1 on the TCPS, the PCL/HA, the PCL-PHB/HA,	
	and the PCL-PHBV/HA dual-leached scaffolds at 14 and 21	
	day	175

-

o

é

LIST OF FIGURES

FIGURE

o

-

CHAPTER II

2.1	Scaffold-guided tissue regeneration.	11
2.2	Bone matrix.	17
2.3	Three distinctly different bone cell types.	17
2.4	Bone remodeling mechanism.	19
2.5	Polymer film fabrication using solvent cast film.	26
2.6	The structure of polycaprolactone.	28
2.7	Ring opening polymerization of ε -caprolactone to	
	polycaprolactone.	29
2.8	The structure of Polyhydroxybutyrate (PHB).	30
2.9	The structure of Poly(3-hydroxybutyrate-co-3-	
	hydroxyvalerate (PHBV).	31

CHAPTER III

Stereomicroscope images of the (a) salt leached, (b) salt	
PEG 200 leached, (c) salt-PEG 600 leached, and (d) salt-	
PEG 1000 leached PCL scaffolds.	45
A Visual slide microscope images at 5x magnification of	
the(a) salt leached, (b) salt-PEG 200 leached, (c) salt-PEG	
600 leached, and (d) salt-PEG 1000 leached PCL	
scaffolds.	46
Visual slide microscope images at 10x magnification of	
the (a) salt leached, (b) salt-PEG 200 leached, (c) salt-	
PEG 600 leached, and (d) salt-PEG 1000 leached PCL	
scaffolds.	46
	Stereomicroscope images of the (a) salt leached, (b) salt PEG 200 leached, (c) salt-PEG 600 leached, and (d) salt- PEG 1000 leached PCL scaffolds. A Visual slide microscope images at 5x magnification of the(a) salt leached, (b) salt-PEG 200 leached, (c) salt-PEG 600 leached, and (d) salt-PEG 1000 leached PCL scaffolds. Visual slide microscope images at 10x magnification of the (a) salt leached, (b) salt-PEG 200 leached, (c) salt- PEG 600 leached, and (d) salt-PEG 1000 leached PCL scaffolds.

•

3.4	SEM images at 75x magnification illustrating the	
	microstructures of the (a) salt leached, (b) salt-PEG 200	
	leached, (c) salt-PEG 600 leached, and (d) salt-PEG 1000	
	leached PCL scaffolds.	47
3.5	SEM images at 200x magnification illustrating the	
	microstructures of the (a) salt leached, (b) salt-PEG 200	
	leached, (c) salt-PEG 600 leached, and (d) salt-PEG 1000	
	leached PCL scaffolds.	47
3.6	(a)Water absorption capacity of the salt leached and salt-	
	PEG leached PCL scaffolds in 0.1 M PBS at room	
	temperature over 30 min. (b)Water absorption capacity of	
	the salt leached and salt-PEG leached PCL scaffolds in	
	0.1 M PBS at room temperature over 7 days.	50
3.7	Flow resistance of the salt leached and salt-PEG leached	
	PCL scaffolds.	51
3.8	Indirect cytotoxic evaluation of the PCL scaffolds based	
	on the viability of (a) mouse fibroblasts (L929) and (b)	Ŧ
	pre-osteoblast cells (MC3T3-E1) cultured with the	
	extraction medium from each of these materials,	
	expressed relative to the viability of the cells cultured on	
	the TCPS for 1 day, as a function of the incubation time	
	of the extraction or culture media prior to cell exposure	
	(1, 3, or 7 days). Statistical significance: $*p < 0.05$	
	compared with the control and $p^{\#} < 0.05$ compared with	
	the salt leached scaffolds at any given time.	54

PAGE

3.9 Proliferation of the MC3T3-E1 cells cultured on the TCPS surface or seeded on the salt leached and salt-PEG leached PCL scaffolds for 1, 2, or 3 days. Statistical significance: *p < 0.05 compared with the control and #p < 0.05 compared with the salt leached PCL scaffolds at any given time point.

- 3.10 ALP activity of the MC3T3-E1 cells cultured on the TCPS surface or seeded on the salt leached and the salt-PEG leached PCL scaffolds for 3, 5, or 7 days. Statistical significance: *p < 0.05 compared with the control and #p< 0.05 compared with the salt leached PCL scaffolds at any given time point.
- 3.11 (a) Images of Alizarin Red S staining for the mineral deposition by the MC3T3-E1 cells on day 16 after seeding for the (a)TCPS, (b) salt leached PCL scaffold, (c) salt-PEG 200 leached PCL scaffold, (d) salt-PEG 600 leached PCL scaffold, and (e) salt-PEG 1000 leached PCL scaffold. (b)Quantification of the mineral deposition by the MC3T3-E1 cells based on Alizarin Red S staining. Statistical significance: *p < 0.05 compared with the control and *p < 0.05 compared with the salt leached PCL scaffolds at any given time point. 61

CHAPTER IV

4.1	TEM images of hydroxyaptite powder at	
	(a)10000x magnification (b)20000x magnification.	82

PAGE

55

xviii

o

FIGURE

.

PAGE

4.2	(a) XRD pattern of hydroxyapatite powder (b) Diffraction	
	pattern of HA corresponding to JCPDS card no. 9-432.	83
4.3	(a) Water absorption capacity of PCL and PCL/HA	
	scaffolds in 0.1 M PBS at room temperature over 12 h.	
	(b) Water absorption capacity of PCL and PCL/HA	
	scaffolds in 0.1 M PBS at room temperature over 3 days.	88
4.4	Flow resistance of the PCL, PCL/HA, and NaOH treated	
	PCL/HA dual-leached scaffolds.	90
4.5	Indirect cytotoxic evaluation of TCPS, the PCL, the	
	PCL/HA, the NaOH treated PCL/HA dual-leached	
	scaffolds and HA based on viability of (a) mouse	
	fibroblasts (L929) and (b) pre-osteoblast (MC3T3-E1)	
	that had been cultured with the extraction media from	
	each of these materials against the viability of the cells	
	that had been cultured with the respective culture media	
	for each day as a function of the incubation time of the	
	extraction and the culture media of 1, 3, or 7 d. Statistical	
	significance: $p < 0.05$ compared with control and $p < 100$	
	0.05 compared to the PCL scaffolds at any given time	
	point.	92
4.6	Attachment of MC3T3-E1 that had been seeded or	
	cultured on the surfaces of TCPS, the PCL, the PCL/HA	
	and the NaOH treated PCL/HA dual-leached scaffolds for	
	4, 8, or 16h. Statistical significance: $p < 0.05$ compared	
	with control and $p^{\#} < 0.05$ compared to the PCL scaffolds	
	at any given time.	94

4.7 Proliferation of MC3T3-E1 that had been seeded or cultured on the surfaces of TCPS, the PCL, the PCL/HA and the NaOH treated PCL/HA dual-leached scaffolds for 1, 2, or 3d. Statistical significance: *p < 0.05 compared with control and #p < 0.05 compared to the PCL scaffolds at any given time.

- 4.8 Alkaline phosphatase (ALP) activity of MC3T3-E1 that were cultured on the surfaces of TCPS, the PCL, PCL/HA and the NaOH treated PCL/HA dual-leached scaffolds for 3, 5, or 7 d. Statistical significance: *p <0.05 compared with control and #p < 0.05 compared to the PCL scaffolds at any given time.
- 4.9 Quantification of mineral deposition in MC3T3-E1 by the method of Alizarin Red-S staining. Statistical significance: *p < 0.05 compared with control and #p < 0.05 compared to the PCL scaffolds at any given time point.

CHAPTER V

5.1 Water absorption capacity of PCL, PCL-PHB, and PCL-PHBV dual-leached scaffolds in 0.1 M PBS at room temperature over 12 hours. (b) Water absorption capacity of PCL, PCL-PHB, and PCL-PHBV dual-leached. scaffolds in 0.1 M PBS at room temperature over 3 days.
5.2 Remaining weight of the scaffolds after 13 weeks degradation in 0.1 M PBS containing (a) without lipase, (b) with lipase.

o

95

98

99

123

5.3 Indirect cytotoxic evaluation of TCPS, PCL PCL-10%PHB, PCL-20%PHB, PCL-30%PHB, PCL-10%PHBV, PCL-20%PHBV, and PCL-30%PHBV dualleached scaffolds based on the viability of (a) mouse fibroblasts (L929) and (b) pre-osteoblasts (MC3T3-E1) that were cultured with the extraction medium from each scaffold. Cell viability was tested using cells that had been cultured with their respective culture media each day as a function of the incubation time of the extraction and the culture media of 1, 3, or 7 days. Statistical significance: p < 0.05 compared with control and p < 0.050.05 compared to the PCL scaffolds at any given time point. 5.4 Attachment of MC3T3-E1 cells that were seeded or

- cultured on the surfaces of TCPS, PCL, PCL-10%PHB, PCL-20%PHB, PCL-30%PHB, PCL-10%PHBV, PCL-20%PHBV and PCL-30%PHBV dual-leached scaffolds for 4, 8, or 16 hours. Statistical significance: *p < 0.05compared with control and *p < 0.05 compared to the PCL scaffolds at any given time.
- 5.5 Proliferation of MC3T3-E1 cells that were seeded or cultured on the surfaces of TCPS, PCL, PCL-10%PHB, PCL-20%PHB, PCL-30%PHB, PCL-10%PHBV, PCL-20%PHBV and PCL-30%PHBV dual-leached scaffolds for 1, 2, or 3 days. Statistical significance: *p < 0.05compared with control and #p < 0.05 compared to the PCL scaffolds at any given time.

σ

128

130

XX

o

4

PAGE

5.6	Alkaline phosphatase (ALP) activity of MC3T3-E1 cells	
	that were cultured on the surfaces of TCPS, PCL, PCL-	
	10%PHB, PCL-20%PHB, PCL-30%PHB, PCL-	
	10%PHBV, PCL-20%PHBV and PCL-30%PHBV dual-	
	leached scaffolds for 3, 5, or 7 days. Statistical	
	significance: * $p < 0.05$ compared with control and $p^{\#} < 0.05$	
	0.05 compared to the PCL scaffolds at any given time.	135
5.7	Quantification of mineral deposition in MC3T3-E1 cells	
	by Alizarin Red-S staining. Statistical significance: $*p <$	
	0.05 compared with control and $p^{*} < 0.05$ compared to	
	the PCL scaffolds at any given time point.	136

CHAPTER VI

6.1	Water absorption capacity of PCL/HA, PCL-PHB/HA,	
	and PCL-PHBV/HA dual-leached scaffolds in 0.1 M PBS	
	at room temperature over 12 hours. (b) Water absorption	
	capacity of PCL/HA, PCL-PHB/HA, and PCL-PHBV/HA	
	dual-leached scaffolds in 0.1 M PBS at room	
	temperature over 3 days.	160
6.2	Remaining weight of the scaffolds after 13 weeks	
	degradation in 0.1 M PBS containing (a) without lipase,	
	(b) with lipase.	163

PAGE

6.3	Indirect cytotoxic evaluation of TCPS, PCL/HA, PCL-	
	10%PHB/HA, PCL-20%PHB/HA, PCL-30%PHB/HA,	
	PCL-10%PHBV/HA, PCL-20%PHBV/HA and PCL-	
	30%PHBV/HA dual-leached scaffolds, based on the	
	viability of (a) mouse fibroblasts (L929) and (b) pre-	
	osteoblasts (MC3T3-E1) that were cultured with the	
	extraction medium from each scaffold. Cell viability was	
	tested using cells that had been cultured with their	
	respective culture media each day as a function of the	
	incubation time of the extraction and the culture media of	
	1, 3, or 7 days. Statistical significance: $p < 0.05$	
	compared with control and $p^{\#} < 0.05$ compared to the	
	PCL/HA scaffolds at any given time point.	165
6.4	Attachment of MC3T3-E1 cells that were seeded or	
	cultured on the surfaces of TCPS, PCL/HA, PCL-	
	10%PHB/HA, PCL-20%PHB/HA, PCL-30%PHB/HA,	
	PCL-10%PHBV/HA, PCL-20%PHBV/HA and PCL-	4
	30%PHBV/HA dual-leached scaffolds for 4, 8, or 16	
	hours. Statistical significance: $p < 0.05$ compared with	
	control and ${}^{\#}p$ < 0.05 compared to the PCL/HA scaffolds	
	at any given time.	167

xxii

6.5 Proliferation of MC3T3-E1 cells that were seeded or cultured on the surfaces of TCPS, PCL/HA, PCL-10%PHB/HA, PCL-20%PHB/HA, PCL-30%PHB/HA, PCL-10%PHBV/HA, PCL-20%PHBV/HA and PCL-30%PHBV/HA dual-leached scaffolds for 1, 2, or 3 days. Statistical significance: *p < 0.05 compared with control and ${}^{\#}p < 0.05$ compared to the PCL/HA scaffolds at any given time.

- 6.6 Alkaline phosphatase (ALP) activity of MC3T3-E1 cells that were cultured on the surfaces of TCPS, PCL/HA, PCL-10%PHB/HA, PCL-20%PHB/HA, PCL-30%PHB/HA, PCL-10%PHBV/HA, PCL-20%PHBV/HA and PCL-30%PHBV/HA dual-leached scaffolds for 3, 5, or 7 days. Statistical significance: *p < 0.05 compared with control and $p^{\#} < 0.05$ compared to the PCL/HA scaffolds at any given time.
- 6.7 Quantification of mineral deposition in MC3T3-E1 cells by Alizarin Red-S staining. Statistical significance: *p <0.05 compared with control and $p^{\#} < 0.05$ compared to the PCL/HA scaffolds at any given time point.

173

174

168

PAGE

ABBREVIATIONS

3D	Three dimensional
ANOVA	One-Way Analysis of Variance
ALP	Alkaline phosphatase
BCA	Bicinchoninic acid
BMP	Bone Morphogenetic Protein
BMSCs	Bone Marrow Stem Cells
BMUs	Basic multicellular units
BV	butyrate-co- hydroxyvalerate
cm	Centrimeter
CAD	Computer aided design
CAM	Computer aided manufacturing
CaCO ₃	Calcium carbonate
$CaOH_2$	Calcium hydroxide
CO ₂	Carbon dioxide
d	Day
DI	Deionized water
DMEM	Dulbecco's modified Eagle's medium
DMSO	Dimethyl sulfoxide
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
EDS	Energy dispersive spectrophotometer
FBS	Fetal bovine serum
FDA	Food and Drug Administration
FHA	Fluridated hydroxyapatite
h	Hour
НА	Hydroxyapaatite
HMDS	Hexamethyldisilazane
hMSC	Human bone marrow stem cell
H_3PO_4	Phophoric acid

14

o

HSD	Honestly significant difference
L929	Murine dermal fibroblasts
LSD	Least-significant difference
MC3T3-E1	Mouse calvaria-derived pre-osteoblastic cells
MEM	Minimum Essential Medium
MgCl ₂	Magnesium chloride
MRI	Magnetic resonance Imaging
MTT	3-(4,5-Dimethyl-2-thiazolyl)-2, 5-
	diphenyltetrazolium bromide
NaCl	Sodium chloride
NaOH	Sodium hydroxide
Pa	Pascal
PBS	Phosphate buffer saline
PEG	Polyethylene glycol
PCL	Polycaprolactone
PGA	Polyglycolic acid
P4HB	poly-4-hydroxybutyrate
PHB	Poly(3-hydroxybutyrate)
PHBV	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PHH	polyhydroxyhexanoate *
РНО	polyhydroxyoctanoate
PHV	polyhydroxyvalerate
PLA	Polylactic acid
PLGA	Poly(lactide-co-glycolide)
PLLA	Poly(l-lactide)
pNPP	<i>p</i> -nitrophenyl phosphate
sec	Second
SEM	Scanning electron microscopy
SFF	Solid freeforming fabricatiion
SFM	Serum-free medium
ТСР	Tricalcium phosphate

Ø

÷.

TCPS	Tissue-culture polystyrene plate
TEM	Trasmission electron microscopy
TGA	Thermogravimetric analysis
Tris-HCl	Tris(hydroxymethyl)aminomethane
	hydrochloride
XRD	X-ray diffraction
UTM	Universal testing machine
UV-vis	UV-visible spectrophotometer

•

-

.

Ø

xxvi

.

LIST OF SYMBOLS

	D	Average crystallite size	
	β	Peak at half width	
ŝ	θ	Bragg angle of the peak	
	λ	X-ray wavelength	
	K	Shape factor	
	$ ho_{\it PCL}$	Density of PCL film	
	$ ho_{ m polymer}$	Density of the polymer from which the scaffolds we	re
		fabricated	
	$ ho_{ m scaffold}$	Apparent density of the scaffolds	
	W_0	Initial weight	
	W_d	Weight of the specimen before submersion in the med	dium
	W_t	Weight of scaffold at single degradation time point	
	W_w	Weight of the specimen after submersion in the medi	um

0

40

xxvii