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COMPUTATIONAL FLUID DYNAMICS TECHNIQUE

Computational fiuid dynamics { CFD ) is the art of replacing the governing
equations of fluid dynamics with discretized algebraic forms , which in turn are

solved to obtain numbers for the flow field values at discrete points in time

and/or space.

The end product of CFD is indeed a collection of numbers , in contrast to a
closed-form analytical solution. ( Anderson , 1995‘)

in this study , integration of differential equations over the finite volume of
a computational cell is applied with fully-implicit approach. Within each cell , a

grid point is supposed to be located ; and each cell communicates with its

neighbors across the intervening cell fabes.

Figure A.1 illustrates the six links between grid point P and its six

neighbors N, S, E, W, Hand L.

............. The grid points shown are:-

/.. P, the central point

: ! .1 1. N, the north neighbour
W=sm , mmmmmeePoee === ~—=E ' §, the south neighbour
the east neighbour
W, the west neighbour
H, the high neighbour
L, the low neighbour

~
“~
(o)

~
¢ mmmmmmmm

LY

=

Figure A.1 A control volume.
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A.1 THE STRUCTURE OF THE DISCRETIZATION EQUATION
The general conservation equation contains four basic terms : the

unsteady term , the convection term , the diffusion term and the source term

respectively as below

1)
e .

|

a &

®

)

olee) olpup) %[r ] £ S (A1)
where ¢ | is the general depéndent variable.
and I' is the diffusion coefficient of ¢ .

A discretization equation is an algebraic relation connecting the values of
¢ for a group of grid points. Such an equation is derived from the differential
equation govéming ¢ and thus express the same physical information as the
differential equation.

That only a few grid points participate in a given discretization equation is
a consequénce of the piecewise nature of the profiles chosen. The value of ¢
" at a grid point thereby influences the distribution of ¢ only in its immediate
neighborhood.

As the number of grid points becomes very large , the solution of the
discretization equations is expected to approach the ‘exact solution of the
corresponding differential equation. This follows from the consideration.that .
as the grid points get closer together , the change in ¢ between neighboring
grid points becomes small , and then the actual details of the profile

assumption become unimportant.
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A.1.1 SCHEME
In case of a steady one-dimensional flow in which only the convection and

diffusion terms are present , the governing differential equation is

d(pus) _ df d)
dx N a_x-[r&) | (A-2)

- where u represents the velocity in the x direction.

Also , the continuity equation (4.1) becomes

d{pu)

dx = 0 or pu = constant (A.3)

Using the three-grid-point cluster shown in figure A.2 to derive the

discretization equation.

Control volume

w 4 P ©F

O o
w e

l—— (Sxbyy ——I-——- (8¢ ————l

Figure A.2 Typical grid-point cluster for the one-dimensional problem.

Although the actual location of the control-volume face e and w would not

influence the final formulation , it is convenient to assume that e is located
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midway between P and E , and w midway between W and P.

Integration of equation (A.2) over the contro! volume shown in figure A.2

gives

(pup), - (o), = [r%] - (r2) e

w

The diffusion term ( G d¢/dx) can be interpolated by piecewise-lingar profile

assumption between the grid points. For the convection term ( pu¢) , the

same choice of profile would at first seem natural. The result is

' Iyl de- 6o o U dp- bw
%( pu ).( bg + ¢P) r %(.pu )w( ¢p + ¢W) 3 ((‘;';x):b ) i ((':;X)wd) )
' (A.5)

1 .
The factor 2 arises from the assumption of the interfaces being midway ,

where

1 1 <
6o = F(ec+6) —and o, = (6% 0n) (A6)

The values of (pu), , ( pu), . T, and T, can be obtained by appropriate

interpolation as described later in subsection A.2.1.
To arrange the equation in a more compact form , two new symbols F and

D are defined as foliows
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F = pu , D = = (A7)

Both have the same dimensions ; F indicates the strength of the convection
(or flbw) , while D is the diffusion conductance. Note that , whereas D
always remains positive , F can take either positive or negative values .
depending on the direction of the flow field.

With the new defenitions , the discretization equation becomes

app F agde: t+  andw (A.8)
. F.

where ag = D, - > (A.9a)
hd

aw = D, + ) {(A.9b)

a, = a. + a, + [F, - F,) (A.9¢)

The discretization equation (A.8) represents the implications of the
piecewise-linear profile for ¢ . This form is also known as the central-difference
scheme and is the natural outcome of a Taylor-series expansion.

However , the central-difference scheme was limited to low Reynolds
.number flow ( i.e., to low values of | F / D | ) because if out of this range , the
unrealistic result will occur due to equations (A.9) indicate that the coefficients
could , at times , become negative when IIF] exceeds 2 D. This violates the

four basic rules which state that any discretization equations should be obeyed
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, to ensure physical realism and overall balance. The details of these rules will

be presented in the next subsection.

Since the foregoing preliminary formulation has resulted in an
unacceptable discretization equation , the better formulations was required. A
well—knbwn remedy for the difficulties encountered is the upwind-difference
scheme. This scheme i'ecognizes that the weak pqint in the preliminary
formulation is the assumption of the cohvected property ¢, at the interface is
the average of ¢ and ¢, . Therefore , & better pre#cription is proposed. The
formulation of the diffusion term is left unchanged , but the convection term is

calculated from the following assumption.

The value of ¢ at an interface is equal to the value of ¢ at the grid point

on the upwind side of the face.
Thus, o, = bp if F, > 0 (A.10a)

be if F, < 0 (A.10b)

and | o,

The value of ¢, can be definded similarly.

The conditional statements (A.10) can be written in a more compact form
if a new operator | A, B | is defined. This is equivalent to AMAX1 (A, B)
in the computer language FORTRAN | to denote the greaterof A and B.

Then , the upwind-difference scheme implies

F,.ofl - ¢c]-F..0] (A.11)

;ﬂ
=
*

[}

-
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. when equation (A.6) is replaced by this concept , the discretization equation

becomes
8pbp = agbe +  andw (A12)
where az. = D, + |-F,0f (A.132)
aw = D, + 1IF,, 0]  (A13b)
ap = a; + a, + (F, - Fw) - (A.13c)

However , for a high Reynolds number flow ( i.e., high values ofl F/D | )
, the diffusion is almost absent or the term  d¢/dx is nearly zero but the
upwind-difference scheme always 6alculates the diffusion term from the
piecewise-linear profile and thus overestimates diffusion at large values of
|F/D]

In this study , the adopted scheme is the hybrid-difference scheme. The .
name hybrid is indicative of a combination .of the central-difference and

upwind-difference schemes. This scheme was developed to give a reasonable

approximation to the exact solution according to conditions

for F, < -2D, then a = -F (A.14a)

for -2D, < F, < 2D, ten a = D, - — (A.14b)

I
o

for F > 2D, then & (A.14c)
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The significance of the hybrid-difference scheme can be appreciated by

recognizing that it is identical to the centrai-difference scheme for

< 2D, and outside this range it reduces to the upwind-difference

|F.

scheme in which the diffusion is set to zero.
The convection-diffusion discretization equation for the hybrid-difference

scheme can be written as

abp = agd, +  apdw (A.15)
, F,

where ag = -F,, D, - 2 0 (A.16a)
Fy

Ay = F, . D, + > 0 (A.16b)

a, on a. + a, + (F, - F,) (A.16¢)

This formutation is valid for any arbitrary location of the interfaces between the

grid points and is not limited to midway interfaces.

A.1.2 THE FOUR BASIC RULES

Rule 1 : Consistency at control-volume faces.
When a face is common to two adjacent control volumes , the flux across it
must be represented By same expression in the discretization equaﬁons for

the two control volumes.
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Rule 2 : Positive coefficients.

All coefficients ( the center-point coefficient a, and the neighbor coefficients
a,, } must always be positive.

Rule 3 : Negative-slope linearization of the source term.
The source term’ S is linearizedas S = S, + .Syp, -, where S,
stands for the constant part of the average value S , while S, is the coefficient
of ¢, and must be less than or equal to zerc.

Rule 4 : Sum of the neighbor coefficients.

The center-point coefficient a, must equal to the sum of the neighbor

1]

coefficients a.,. Thus , a; 2 a,. However, when the source term

depends on ¢ , this case will be inapplicability of Rule 4. But if S; is set to

zero , this rule becomes applicab|é and is indeed obeyed.

A.1.3 DISCRETIZATION EQUATION FOR THREE DIMENSIONS

The three-dimensional form of equation (A.1) can be written as

o{pb) 24, 0d, 9
ot ax Y oz

It
w

(A.17)

where J, , J, and J, are the total of convection and diffusion fluxes defined by

J, = pup - r%’ (A.18a)
J, = pvhp - r 2o (A.18b)

2|




184

and J, pw¢ - T % (A.18¢c)

where u , v and w denote the velocity components in the x , y and z
directions respectivély. The integration of equation (A.17) over the control

volume give

(pebs - pE02) AxayAz
At

J,=d, +J =d, +d -J, = (S.+ S.0,) AxAyAz

(A.19)

For the unsteady term , p, and ¢, aré assumed to prevail over the whole
control volume. The old values ( i.e., the values at the beginning of the time
step ) are denoted by pp and ¢3. In confirmity with the fully-implicit approach ,
all other values { i.e., those without a superscript ) are to be regarded as the
new values. |

The quantities J, , J, , J; .+ ¢+ J; and J, are the integrated total fluxes
~ over the control-volume faces ; that is , J, stands for I J, dydz over the

interface e , and so on.
In a similar manner , the continuity equation (4.1) can be integrated over

the control volume to give

( Pe - p:) AxAyAz
At

+F, -F,+F, -F, +F -F 0 (A.20)

Where F, , F,, , F, , F, , F, and F, are the mass fiow rates through the

n
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faces bf the control volurne. if pu at point e is taken to prevail over the whole

interface e,

thus F, = (pu), ayaz (A.21a)

similarly Fo o = {pu ), AyAz ~ (A21b)
F,oo=  (ov), oz (A21c)
F, = (pv), Axaz - (A.21d)
F = (ow) aay (A21e)
F. = {pw), axty (A211

By multiplying' equation (A.20) by ¢, and subtracting it from equation

(A.19) ;

2 AxAyAZ |
(4 - 08) B2 + (0, - Fuge) - (4 - Rute) + (4, - Fte)

(o - Fupp) # (= Fop) < (3 = Fade) 0 = | (8¢ + Spbe) AayAz

(A.22)

The term such as J, - F,0, can be expressed and rearranged to be

ac (0p - 0c).

Similarly . J, - F,0 A (0w - 65 ) (A23a)
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LR = adee- )  (A2)
- Fbe = ag(ds- o) (A.23c)
S Fhe = alb-a) (A.23d)
and - Fde = a{6u- ¢) | (A23e)

Finally , the discretization equation based on the general differential

equation (A.1) with the hybrid-difference scheme can be written as

80p = 8gbe * Budw * by * Bgbs + 80, + 80y * b (A24)

where
F, '

8 = -F, , D, - 2 i 0 (A.252)
F,

a, = F, . D, + e . (A.25b) -
F,

a, = AR U 05 4510 Lo " (A.25¢)

. | F,
asg = F, . D, + > 0 " - (A.25d)

o
K.
H
1
-
O
)
N | -
o

(A.25¢)



F »
8y = "Fh,'Dh*'_éﬁ',O”

o]
-
i

pS AXAYAZ
At

L)
2]
1l

b = S AXAyAZ

+ 3ps.

The diffusion conductances are defined as

D,

i

1]

T, AyAz
(8x),

I, AyAz
(&x),,

T, AxAz
( 8y ),
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(A.25f)

(A.25g)

(A.25h)

-~ (A.250)

(A.26a)

(A.26b)

(A.26¢)

(A.26d)

(A.26€)

(A.26f)

As At —» « , equation (A.24) reduces to the steady-state discretization

equation.
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A.2 CALCULATION OF THE FLOW FIELD

The procedure for solving the Qeneral differential equation for ¢ in
the presence of a given flow field has been formulated. The velocity
componenfs are governed by the momentum equations , which are special
cases of the general differential equation for ¢ (with$ =uortd , I =p OF Hyr
, and soon).

The pressure gradient forms a part of the source term for a momentum
equation and also the velocity field lies in this unknown pressure field. There
are some difficulties when using the control volume as shown in figure A.2 ,
the pressure field is calcuiated from the momentum equations then give zero
pressuré gradients or a uni.form pressure field. A similar kind arises when the
‘veiocity components satisfied the continuity equation thén alsoc give the
unrealistic solutions. ( Patankar , 1980 )

However , there is a remedy by stagger of the grid. The key feature is that
pressures and velocities are calculated at different grid points. In the case of
the velocity components , there is a significant béneﬁt to be obtained by
arranging them on grids that are different from the grid used for all other

variables.

A.2.1 THE MOMENTUM EQUATIONS

A staggered control volume for the x-momentum equation is shown in
figure A.3. If focué attention on the locations for u only by short arrows , there
is nothing unusual about this control volume. Its faces lie between the point e

and the corresponding locations for the neighbor u's.
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Figure A.é Control volume for u.

The control volume is , however , staggered in relation to the ndrmal
control volume around the main grid point P. The staggering is in the x
direction only , such that the faces ﬁoi'mal to that direction pass through the
main grid points P and E. This layout rea‘lizes one of the main advantages of
the staggered grid : the pressure difference P. - P, (or P. - P. ) can bé used
to calculate the pressure force acting on the control volume for the velocity u.

The calculation of the diffusion coefficient and the mass flow rate at the
faces of the .u-control-\'rolume shown  in figure A.3 requires an appropriate
interpolation. In this study , the upwind side interpolation is adopted.

The same formulation as described in subsection A.1.3 is applicable. The

resulting discretization equation can be written as

Sau, + b + (P -P)A, (A27)

a,u

Here the number of neighbor terms depends on the dimensionality of the
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problem. The pressure gradient is not included in the source-term S, and S;
but rise to the last term in equation (A.27). Since the pressure field is aiso to
be ultimately calculated , it is inconvenient to absorb the pressures in the

momentum source term.

A, is the area on which the pressure difference acts and equals to AyAz

in the three-dimensional case. Then the momentum equations .for the other
directions are handied |n a similar manner.

The momentum eguations can be solved only.when the pressure field is
given or is somehow estimated. Unless the c'orrect pressure field is employed ,
the resulting velocity field will not satisfy the continuity equation. Such an
imperfect velocity field based on a guessed pressure field P* will be denoted
by u*, v', w*. This starred velocity field can be calculated from the following

discretization equations.

au; = Zayu, + b + (P -P)A, (A.28)
avi = Zay, + b + (P-PI)A, (A.29)
aw’ = Ta,w, + b + [P -P)A (A.30)

A.2.2 THE PRESSURE AND VELOCITY CORRECTIONS
The next aim is to find a way of improving the guessed pressure P” such

that the resulting starred velocity field will progressively get closer to satisfying
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the continuity equation. The proposai of the correct pressure P is obtained

from

P = P* + P (A.31)

where P’ will be called the pressure correction. |

The corresponding velocity corrections u’ , v' , w’ ¢an be introduced in a

similar manner :

u = ¢ o+ (A.32a)
Vv = vioo+ v (A.32b)
W = woo+w (A.32¢)

If subtract equation (A.28) from equation (A.27) , then obtain

a,u, Tagu, + (P-Pr)A, (A.33)

Foliowing Patankar ( 1980 ) , set the term X a_u), equal to zero and

the result is

au, = (R-P)A, (A34)
or vl ow o= d (P -P) (A.35)
where _ | d, = :' (A.36)

Equation (A.SS) is called the velocity—éorrection formula , which can also

be written as -



192

u, = u + d,(P-P) (A37)

This shows how the starred velocity u, is to be corrected in response to the

pressure corrections to produce u, .

The correction formuiae for the velocity components in other directions

can be written similarly

v, = v + d(P-P) (A.38) °
w, = -w + d(r-r) | | (A.39)

Returning to the continuity eguation

ap 3 pu) olpv) . alew) _
= =~ % 3 0 (A.40)

Integrate this over the same control volume which was used for deriving
the discretization equation for the general variable ¢ as described in
subsection A.1.3, then the integrated fc;rm of equation (A.40) becomes same
as equation {A.20).

If substitute for all the ve!pcity components the expressions given by the
velocity-correction formulae such as equations (A.37) - (A.39) into equation

(A.20) , after rearrangement , obtain the following discretization equation for P’
a.Py = aft + aPy + abf + afy + aP + apP, + b (Ad1)

where a, = p.d, AyAz (A.428)
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a, .=  p.d,AyAz : (A.42b)
ay = Pad, AXAZ (A.42c)
ag = p.d, AxAZ (A.42d)
a, = pd Axdy |  (A42e)
a, = pndy AxAY (A.42f)
&p = a, + a, + a, + a; + a + a, (A.429)

(02 - p) AxAyAz
AL

o
]|

+ [ (put), - (pu"), | ayaz

w [(ov),- (v), [axaz + [low),- (ow"), |y (Ad2h)

From equation {(A.42h) , if the term b is zero, it means that the starred
velocities , in conjunction with the available value of ( Pe - p,,) , do satisfy the

continuity equation , and no pressure correction is needed. The term b thus
represents a mass source which the pressure corrections ( through their

associated velocity corrections ) must annihilate.

A.2,3 THE NUMERICAL PROCEDURE
The procedure that was developed for the calculation of the flow field

‘calied SIMPLE , which stands for Semi-/mplicit Method for Pressure-Linked
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Equations. The words semi-implicit have been used to acknowledge the
omission of the term 2 a,\y,  in equation (A.33). This term represents an

indirect or implicit influence of the pressure correction on velocity ; pressure
corrections at nearby locations can alter the neighboring velocities and thus
cause a velocity correction at the point under consideration. When this
influence is not included , thus work with a scheme that is only partially , and
not totally , implicit.. |

If expressions such as  a,u; were retained , they would have to be
expressed in terms of the pressure corrections and the velocity corrections at
the neighbors of u_,. These neighbors would , in turn., bring their neighbors ,
and so on. Ultimately , the velocity-correction formula would invoive the
pressure correction at all grid points.in the calculation domain , and the
resulting pressure-correction equation would become unmanageable. The
omission of the term X au,, enables the same form as the general ¢
equation to be applied to cast the P equation.

' Moreovef , it 80 happens that the convérged solution given by SIMPLE
does not contain any error resulting from the omission of the term 2 a_u/,.
The details of the construction of the pressure-correction equation then
become irrelevant to the correctness of the converged solution. ( Patankar ,
1980 )

The step-by-step procedure for the SIMPLE algorithm is as follows :
1. Guess the pressure field P*.
2. Solve the momentum equation , such as equations (A.28) - (A.30),

L

to obtain U™, V", w".
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3. Solve the pressure-correction equation (A.41) to obtain P’.

4. Calculate P from equation (A.31) by adding P’ to P".

5. Calculate u, v, w from their starred values using the velocity-
correction formulae (A.37) - (A.39).

6. Solve the discretization equation for other ¢ 's such as turbulence
quantities.

7. Treat the corrected pressure P as a new guessed pressure P*
return to step 2. , and repeat the whole procedure until a converged

solution is obtained.

A.3 SOLUTION OF THE ALGEBRAIC EQUATIONS

The solution of the discretization equations for the one-dimensional
situation can be obtained‘ by the standard Gaussian-elimination method ,
because of the particularly simple form of the equations , this is sometimes
called the Thomas algorithm or TDMA ( TriDiagonal-Matrix Algorithm ).

For convenience in presenting the algorithm , it is necessary to use
somewhat different nomenclature. Suppose the grid points were numbered 1,
2,3, .., N, with points 1 and N denoting the boundary points. The

discretization equations can be written as

1l
O

Ly  + Mo+ Udy, (A.43)

fori=1,2,3,..,N.

The designation TDMA refers to the fact that when the matrix of the
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coefficients of these equations is written , all the nonzero coefficients align
themselves along three diagonals of the matrix. Consider a system of N linear

| simultaneous algebraic equations with N unknowns , ¢, , ¢, , 5 , .., bn

given in the form as belows.

Mo, + U, = D, (A.44é)
| Lo, + My, + U, = D, (A.44b)
= D, (A.44c)

L3¢2 * M3¢3 ,+ U3¢4

Liabnz + Mygdys + Uwby = Dy (Ad4d)
Lydns + My = Dy (Adde)

This is a tridiagonal system , i.e., a system of equations with finite
coefficients only on the main diagonal { the M,'s ) , the lower diagonal (the L,'s
) and the upper diagonal ( the U;'s ). |

In summary of TDMA , this system will be changed at first into an upper
bidiagonal form by dropping the first term in each equation ( involving the L;'s )

, replacing the coefficient of the main diagonal term by following equation.

’ — LiL’i-1
M; = Moo (A.45)

fori=2,3, ..., N.
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And also replacing the right-hand side with following equation.

D
D! D. . -I:M

| i A.46
M, (A49)

fori=2,3, ..., N.
This results in the last equation in the system in having only one unknown
» hamely ¢,,. Solve for ¢, from the equation below.

Dy

On - My, (A.47)

Then , all other unknowns are found in sequence from the equation

below.,
b, = ELV?Q& (A.48)
Starting with ¢, = ¢y, and ending with ¢, = 6.

For solution of the multidimensionat discretization equations | using direct
methods such as TDMA for solving the aigebraic equations in two- or three-
dimensional problems are much more complicated and require rather large
amounts of computer storage and time.

The alternative , then , is iterative methods for the solution of algebraic
equations. These start from a guéssed- field of ¢ ( the dependent variable )
and use the algebraic equations in some manner to obtain an improved field.
Successive fepetitions of the algorithm finally lead to a solution that is
sufficiently close to the correct solution of the algebraic equ.ations. iterative

methods usually require very small additional storage in the computer.
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The simplest of ali iterative methods is the Gauss—Seidél point-by-point
method in which the values of the variable are calculated by visiting each grid
point in a certain order. Only one set of ¢ 's is held in computer storage. In the
beginning , these represent the initial guess or values from the previous
iteration.

As each grid point is visited , the corresponding value of ¢ in the
computer storage is altered as follows : if the discretization equation is written

as

8:0p 7 Zayhe, + b _ - (A49)
then ¢, at the visited grid point is calculated from

Y a,0. b
¢ = & ¢";P . | (A.50)

where ¢, is the neighbor-point value in the computer storage.
| For neighb_ors that hav'e already been visited during the current iteration ,
¢, is the current value ; for yet-to-be-visited neighbors , ¢, is the value from
the previous iteration. In ‘any case , ¢, is the latest available value for the
neighbor-point dependent variable. When all grid points have been visited in
this manner , one iteration of the Gauss-Seidel method is complete.
However , a major disadvantage of the otherwise attractive Gauss-Seidel
method is that its convergence is too slow , especially when a large number of
grid points are iﬁvolved. This is because the method transmits the boundary-

condition information at a rate of one grid interval per iteration.
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The convergence of the line-by-line method is faster , because the

boundary-condition information from the ends of the line is transmitted at once

to the interior of the domain , no matter how many grid points lie along the line.
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COMPUTER CODE

TALK=T;RUN( 1, 1);VDU=VGAMOUSE
IRUNN = 1 ;LIBREF = 0
e e g Fe e K F Fe do K e do e e Fe de e I e ek e e e ok g ek e de ok e e Kok e e e ke e de e dode ke de ke e e ke ki dededede de e de ke ke
Group 1. Run Title
TEXT(3-BLADE , 30 DEGREE ANGLE )
gk hkhkhkkhkhhkhkhkhhhkhhkrofkhhkhkhhhhkhkhhhhdhhhhhhkhkhhhdhdkhihhkihkhkikhiki
Group 2. Transience
STEADY = T
hhkhkkkhkhkhkhkkhkkhkhkhkrkhhkrikhhhkhkhhkhkhhkhkhhkkhbhhhhkhhhhhhtkhkihkhkhkhkhkdkkik
. Groups 3, 4, 5 Grid Information
* Overall number of cells, RSET{M,NX,NY,NZ,tolerance)

; RSET(M,5,30,50)
‘ * Set overall domain extent:
* xulast yvlast zwlast name

XSI= 1.524E-01;Y¥SI= 1.524E~01;ZSI= 7.620E+00;RSET(D,DUCT )
% e e e e e e ok ok e ok ke e ok ok e e e o ok ke o ok ok o o e ok ok o ok ok ok e e ok R o ke R ke e e o e ok ok ol e ke e ok ke ok e ke e ek
Group 6. Body-Fitted coordinates

BFC=T

* Copy/Transfer/Block grid planes

GSET(T,K1,F,K10,1,5,1,30,5.85)
GSET(C,J24,F,J28,1,5,10,50,+,0,0,0,INC,1)
GSET(C,J14,F,J18,1,5,10,50,+,0,0,0,INC,1)
GSET(C,J4,¥,J8,1,5,10,50,+,0,0,0,INC,1)

GSET(T, J4,F,J1,1,5,10,50,1)

GSET(T,J14,F,J4,1,5,10,50,1)

GSET(T,J24,F,J14,1,5,10,50,1)

GSET(T,J31,F,J24,1,5,10,50,1)
! GSET(T,K5,F,K10,1,5,1,30,1)
: GSET(T,K1,F,K5,1,5,1,30,3.63)

r GSET(T,KS51,F,K10,1,5,1,30,2.35)

; GSET(T,J31,F,J1,1,5,15,50,1)

| GSET(T,K15,F,K10,1,5,1,30,1)
GSET(T,K51,F,K15,1,5,1,30,1.83)

| ik ke Rk gk ek ke ok

‘ NONORT = T

* X-cyclic boundaries switched
AR AR A A AR AR R A AE R AR A A AR T A AR A AT RRETAALE A AR A AR A A AR AR A R A Ak khkhkhk
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Group 7. Variables: STOREd,SOLVEd,NAMEd

ONEFHS

T

* Non-default variable
NAME(45) =NPOR ; NAME(46)

names
=ENUT

NAME(47) =WCRT ; NAME(48) =VCRT

NAME(49) =DEN1 ; NBME(50) =UCRT
* Solved variables list

SOLVE(P1T ,Ul1 ,Vvl ,Wi1 ,KE ,EP )
* Stored variables list

STORE (UCRT, DEN1,VCRT,WCRT, ENUT,NPOR)
* Additional solver options

SOLUTN(P1 ,Y,Y,Y,N,N,N)
SOLUTN(U1l ,Y,Y,N,N,N,N)
SOLUTN(V1. ,Y,Y,N,N,N,N)
SOLUTN(W1 ,Y,Y¥,N,N,N,N)
SOLUTN(KE ,Y,Y,N,N,N,6N)
SOLUTN(EP ,[Y,Y,N,N,N,N)
e 5 e e e e e e e e e e e e o e e e o o ¢ e e e ek ¢ e e e e e ok o ek e ke o e e o e e ke ok e ok ok o e e
Group 8. Terms & Devices
TERMS (P1 ,Y,Y,Y,N,Y,N)
TERMS (U1 ,LY,Y,Y,N,Y,N)
TERMS (V1 ,Y,Y,Y,N,Y,N)
TERMS (W1 ,Y,Y,Y¥,N,Y,6N)
TERMS (KE ,N,Y,Y,N,Y,N)
TERMS (EP ,N,Y,Y,N,Y,N)
NEWENT . = T :

************************************************************
Group 9. Properties

RHO1 = 1.185E+00

PRESSO = 1.013E+05

CP1 = 1.005E+03

EL1 = GRND4

ENUL = 1.555E~05 ;ENUT = = GRND3

PRT (EP - ) = 1.314E+00
e L R R b e e Y T L T T S S T S R T S 2 s

Group 10.Inter-Phase Transfer Processes
kkkdkkkhkhdkhkhkhhkhhhhkhkdhhhdhhhhhkhhhhhdhhhkhkhhhkhkkkhktkhkhkhkhkkkkhbhhhkhk

Group ll.Initialise Var/Porosity Fields

RESTRT (ALL)

CONPOR(PLT1 + 0.00,NORTH ,—#l,-#l,—#l,-#l,-#Z,"#Z)
CONPOR(PLT2 , 0.00,NORTH ,-#1,-#1,-#3,-#3,-#2,-%2)
CONPOR(PLT3  O0.00,NORTH ,-#1,-#1,-#5,-#5,-#2,-#2)
RSTGRD = .F

INIADD = F

kA AAEIRAERRARAARARAAR AR T ARk AR AR A AR A kR hdhhkhhhhhkhbkhkhkhikihkhrkxd
Group 12. Convection and diffusion adjustments

CRRANAFA kAR Ak b hkhkbhk kb Rk Ak Rk hhhkhAhhkhhhkhhkhhhkhbhhkhdhhhhhhhhhhhhhhid




Group 13. Boundary & Special Sources

PATCH (KESOURCE,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP)
COVAL (KESQURCE,KE , GRND4 , GRND4 )
COVAL (KESOURCE,EP , GRND4 , GRND4 )

INLET (BFCIN . LOW JHL UL, HY, 87,81, 81,481, 4#1)

VALUE (BFCIN +P1 , GRND1 )
VALUE (BFCIN  ,Ul , GRND1l )
VALUE (BFCIN V1 , GRND1l )
VALUE (BFCIN (Wl , GRND1 )
VALUE (BFCIN JKE , 2.000E-02)

VALUE (BFCIN (EP , 2.315E-01)
VALUE (BFCIN +WCRT, 4.000E+00)
VALUE (BFCIN DEN1, 1.185E+00)

PATCH (OUT JHIGH %1, #1, 81, #7, 84, 84, #1,4#1)
COVAL (OUT ,P1 , FIXVAL , 0.000E+00)
COVAL (OUT ,KE , 0.000E+00, SAME )
COVAL (OUT ,EP , 0.000E+00, SAME )

PATCH (WALL1 +SWALL ,#1,81,8#1,%1,#%1,4#4,#1,§#1)
COVAL (WALL1 (Ul , GRND2 + 0.000E+00)

COVAL (WALLL ,Wl , GRND2 , 0.000E+00)
COVAL (WALL1 ,KE , GRND2 , GRND2 )
COVAL (WALL1 ,EP , GRND2 , GRND2 )
PATCH (WALL2  ,NWALL ,#1,#1,#7,87,#1,44,81,41)
COVAL (WALL2 ,Ul , GRND2 , 0.000E+00)
COVAL (WALL2Z ,Wl , GRND2 , 0.000E+00)
COVAL (WALL2Z ,KE , GRND2 , GRND2 )
_COVAL (WALLZ ,EP , GRND2 , GRND2 )

PATCH (WALL3 » WWALL ,#1,#1,#1,#7,#1,#4,#1,#1)

COVAL (WALL3 ,Vl , GRND2 , 0.000E+00)
COVAL (WALL3 ,Wl , GRND2 , 0.000E+00)
COVAL (WALL3 ,KE _, GRND2 , GRND2 )
COVAL (WALL3 =~ ,EP , GRND2 , GRND2 )
PATCH (WALL4 ,EWALL ,#1,#1,#1,#7,41,44,#%1,41)
COVAL (WALL4 ,V1 , GRND2 , 0.000E+00)
COVAL (WALL4 Wl -, GRND2 ,0.000E+00)
COVAL (WALL4 ,KE , GRND2 . , GRND2 )
COVAL (WALL4 ,EP , GRNDZ , GRND2 )

BFCA = 1.185E+00
Wkdkhhhkkkrkkdhhhhhhhdhhhkhhhhhhhhhhrkhhhhhhdhhdhhdnknd®khikkkikhks

Group 14. Downstream Pressure For PARAB
hkdokokkhhhokdhkddkhhdkhkdokk ki hhdhkhkhkhhhkdhhhikkdkkkdkd ks hkkk gk ik

Group 15. Terminate Sweeps

LSWEEP = 10000
SELREF = T
RESFAC = 1.000E-06

khkhkhkhhkhhhdkhhhhhhhhhhkhRhhh kA hrhhhxA A kiR hhhdhrkhhkhrhhkhhkhhs
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Group 16. Terminate Iterations
************************************************************
Group 17. Relaxation

RELAX(P1 ,LINRLX, 3.000E-01)

RELAX(U1l ,LINRLX, 3.000E-01)

RELAX(V1l ,LINRLX, 3.000E-01)

RELAX(W1 ,LINRLX, 3.000E-01)

RELAX(KE ,LINRLX, 3.000E-01)

RELAX(EP ,LINRLX, 3.000E-01)

KELIN = 0 ,
*************************************************#**********

Group 18. Limits
et Fe % 7 g T Fe e Fe oo e ke ke e e e e e ok o e ok e e e ek e e ok e e e o e e e e e e e e e e e vk ke e e ke e e ok e e e

Group 19. EARTH Calls To GROUND Station

GENK = T
e de e T Fe e e e e o e ko e ek e ok o ok e ok ok e e e e ok ok ok ko o e e ok e e ek e e ek ok ke e e e de e e e e ok

Group 20. Preliminary Printout

ECHO = F
dekkdeikkhhhdhhdhkhhk ik kkhihdhhhkhhhkikhkkikiohdkhhhhhhhkhkdddkdkkk

Group 21. Print-out of Variables
QUTPUT(P1 ,N,N,N,N,N,N}

OUTPUT(Ul ,N,N,N,N,N,N)
OUTPUT(V1 ,N,N,N,N,N,N)
OUTPUT(KE ,N,N,N,N,N,N)
OUTPUT(EP ,N,N,N,N,N,N)
OUTPUT (NPOR,N,N,N,N,N,N)
OUTPUT (ENUT,N,N,N,N,N,N)
OUTPUT (WCRT,N,N,N,N,N,N)
OUTPUT (VCRT,N,N,N,N,N,N)
OUTPUT (DEN1,N,N,N,N,N,N)

OUTPUT (UCRT,N,N,N,N,N,N)

O g e P T T T T T P T YT P TSR TEIR IS S LSS LT SR L b Rk
Group 22. Monitor Print-Out

IXMON = 3 ;IYMON = . 15 ;IZMON = 45

TSTSWP = -1
hhkkdkhdhhhhkhkhkhhkhkhkkhhhhhhdhdkhhhddhhhkhkhkhkkhhhhhhhhhkhhhhhhhkhrhk

Group 23.Field Print-Out & Plot Control
NXPRIN
IXPRF
NYPRIN
IYPRF
NZPRIN
IZPRF
ITABL

No PATCHes used for this Group
hhkhk ki rdhkhkkhkrkhrhhdhhhhkhhdhhhhhhbhhhbkhhkhkhhkhbhkhkhkhkhkhhkdkhkhhhdik

Group 24. Dumps For Restarts
hkkkhkhkhhkrhhbbAhbdrrkhkihrhkrhhrhhhkhkhkhrrRRhhkthhbhhkhhhhkkhhkhhhrdkhkiiik

MENSAV(S,RELX,DEF,5.0800E-03,3,3.0000E-01)
MENSAV (S, PHSPROP,DEF,200,298,1.1850E+00,1.5550E-05)
MENSAV (S, FLPRP,DEF, K-E, CONSTANT , AIR-CONSTANT)

STOP -

; IXPRL = 5

; IYPRL 30

;IZPRL = 10

R =N SRS N
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