CHAPTER IV

MATHEMATICAL MODELS OF FLUID FLOW IN DUCTS ™ b

The general governing equations of fluid dynamics for three-dimensional

flow in rectangular coordinates
- The mass conservation or continuity equation is given by

op

2t 4.1)

H
o

+ V(pV)

where V is the vector velocity field in cartesian space and given by
Vv = ul + vj + wk
where i,jand k are the unit vectors along the x , y and z axes respectively.

- The three momentum conservation equations are given by

x-component :
a(pu) oP or, 0%, ot
+ e — —=
= V- ( puv) ——=— > * ot pf, (4.2)
y-component :
0 7, 7
3 (afv ) + V ( pvv ) - _ g + Txy + atyyy + Iy " pfy (4-3)
z-component :
af pw) _ 8P odt, Ot, dt,

equations (4.2) - (4.4) are called the compressible Navier-Stokes equations.
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4.1 ASSUMPTIONS OF THE MODEL

1. The system is steady state.

2. The fluid is Newtonian.

Newton stated that shear stress in a fluid is proportional to the time rate of
strain. Such fluids are called Newfonian fluids. Thus, thé expressions of the

various stresses in terms of velocity gradients and fluid properties are

T, = A(V.V) + 2].1%)% {4.5)
t, =  A(vV) + 2;%;’- (4.6)
i, =  A(vv) + 2 p%” 4.7)
1. e = p( %—E— + %-yl-'l- J (4.8)
Ty T Ty = u( %}v! + %) ~ (4.10)

where u is the molecular viscosily coefficient and 2 is the second

viscosity coefficient. Stokes made the hypothesis that

2 = = |
T3 M (4.11)
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The further assumption of 1 is to be constant throughout the flow.

3. The densiiy of fluid ( p ) is constant.

Thus , equation {(4.1) becomes

H
<

V-V (4.12)

4. Body forces are negligible.

Thus , the terms f, , f, and f, in equations (4.2) - (4.4) which stand for the
body forces per unit mass acting on ﬂuid element as its component ( such as
gravitational , electric , magnetic forces. ) are set to zero. |

With these assumptions , the general govemning equations are reduced to

the specific governing equations-for this study as follows

continuity : V-V = 0 (4.13)
oP 2

x-momentum : pv.(uw}) = - —~l u Ve (4.14)
oP 2

y-momentum : pv- (W) = - > + uViy (4.15)
oP 2

z-momentum :- pv-{(wv) = - r + uVw (4.16)

equations (4.14) - (4.16) are called the incbmpressible Navier-Stokes

equations.
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4.2 TURBULENCE MODEL

One source of turbulence generating eddies is found in surfaces of flow:
discontinuity which occur whenever two fluid streams come together in such a
way as to leave a sharp jump in velocity between adjacent layers. Such as at
the tips of sharp projections , at the edges of bluff bodies , at zones of
boundary-iayer separation. { Daily and Harleman , 1966 ) Because of turbulent
motion has a random nature , so it can be_described by a set of statistical
properties.

For this purpose , it is convenient to set the instantaneous value equal to
the sum of a mean value plus a fluctuating component.

Thus , for the xyz-coordinate directions :

U= o + v (4.178)
v = ¥ 4+ v - (4.17b)
wo= W o+ ow  (4.47¢)

cl

1
where = T ,Eu dt etc. forv, w (4.18)

with. T being a long time in comparison to the time scale of the turbulence
that is examined. Due to the fluctuations are both plus and minus , the mean
of u'is

— 1T
v’ = 0 _Lu' dt 0 (4.18)

it

and similarly for the y- and z-components.




Continuity must be satisfied for turbulent as for.laminar motion. For
incompressible fluids , the divergence of the velocity equals zero. Using the

relations of equations (4.17) onto equation (4.13) , then obtain

oV W ow  dv AW o
— + + + + = 0 ,
YT Tx Ty T & (4.20)

au
ax
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. Taking averages of each term and using the relations such as equation (4.19)

, then obtain

X
oz

)
i
o.

(4.21a)

1
o

or V.V {(4.21b)

au oV aw' -
and also F" + Y + P = 0 (4.22)

Thus , both the means and the fluctuations must satisfy the continuity

condition.

The equations of motion in the incompressible form of equations (4.14) -
(4.16) can also be used the relations of equations (4.17) and including

additional relations.

P! © (4.23)

o
n
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+

1 [7 :
3 Jo P dt (4.24)
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and T L P’ dt
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o

(4.25)
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. After rearrangement , then the three momentum equations are converted..

for application to turbulence as following equations.

x-component :
— 3P ” duu  auv | duw |
. = e — - + .26
pv-(TV) =+ Vi p( oy = ] (4.26)
y-component .
= aP //1 v BVV' . VW
v = - — - + 4.2
pV(W) Y + uve p[ o + Py pe ] (4.27)
z-component
_—\_ 9P RV, dWL WV DWW
pvV{W )--az+va-p[ oy " e J (4.28)

In the equations of motion , u, v, w and P are everywhere replaced by u.
.V, wandP : but, in addition , new terms arise in equations (4.26) - (4.28) ,
which are associated with the turbulent ve!oci{y fluctuations. For conveniehce ,

the notation are introduced

(4.29a)

Al
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=4

(4.29b)
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and etc.

These terms are the components of the turbulent momentum flux T ; they are




. usually referred to as the Reynolds stresses. ( Bird , Stewari and Lightfoot ,

1960 )
In order to adopts equations (4.26) - (4.28) to get the velocity profiles ,

some expression for T has to be inserted. In this study , the semiempirical

relation of Boussinesq's eddy viscosity is applied.

This proposai was that one write ( Boussinesq , 1877 )

du
=t —=
xy ut dy

(4.30)

By analogy with Newton's law of viscosity ; p, is a turbulent viscosity
coefficient or eddy viscosity and usually depends strongly on position.

Thus , equations (4.26) - (4.28) become

‘ o( uu) 2P 9 ou )
- : — . — + — — .
X-momentum p & = o Ko " J (4.31)
5(o¥) oP o [ av)
-momentum ! = - +t — | M 432
5\ uw) 5P o (o aw
-mom : = Y — . < _
z entum p o = o Lu,,, o (4.33)
ou; _ —
where — is equivalentto V.V,
2
X, is coordinate direction.

!

U, is mean velocity component in x; direction.
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and . p s the effactive viscosity coefficient { Hjertager and Magnussen , -

1981 ) which is expressed as

He | (4.34)

1
=
+

) off

The next aim is to find some expression for ,. In this study , the two
transport equations model of turbulence kinetic energy ( k )i and rate of
dissipation of turbulence kinetic enérgy ( £ ) is adopted to determine the
turbutent viscosity as following relations. { Launder and Spalding , 1974 )

pC, k?
€

My (4.35)

where C, is an empirical constant,

k and € are obtained by solving the following differential equations.

o( uk) 6 [(u, ]aﬂ

p e e == = ="l (4.36)
a>.(5 ox; Oy axJ.J

and

o( ue) 8 (ue ]68 € €2

P T a Ve T eI kS e B

where C, ., G, are coefficients in approximated turbulent transport

equation.

are effective turbulent Prandtl numbers for transport of

k and € respectively.

(2
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and .G is the rate of production of turbulence from the mean motion. -

This is given by

[ (au)z ‘ [av)’ (aw]’] [av U ]’
2l |—| + |—| + |— + | — + —
ax o oz | x oy |
G = p,f > (4.38)
[aw au T [aw av ]“
+ —+ — + —_— —
| x oz oy oz

After extensive examination of free turbulent flows , Launder , Morse ,
"Rodi and Spalding ( 1972 ) suggested to follow values of the constants

appearing in equations (4.35) - (4.37) as given in table 4.1.

C

C,

C.

T

G,

"
0.09

1.44

1.92

1.0

1.3

Table 4.1 The vatues of the cbnstants inthe k ~ £ mode!,

4.3 THE WALL FUNCTION METHOD

The form of the mode! which has been presented in section 4.2 is valid
only for fully turbulent flows. Close to solid walls and some other interfaces ,
there are inevitably regions that viscous effects dominate.

To be able to account for the large gradients of the dependent variables
near the walls in a coarse grid computation , special schemes must be

employed. The method used in this study is the wall function method proposed
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by Launder and Spalding (- 1972 ). In this method the variation of ithe
dependent variables in near wall regions is taken to be similar to that found in
two-dimensional turbulent boundary-layers. This means that the wall shear.

stresses in x; direction which appear .in the momentum equations are

calculated from

" n(Eyi ) - AYn

(4.39)

where K is the Von Karmann constant.
E is aroughness parameter.

u.

jow

is the absolute value of the resultant velocity paralie! to the wall
at the first grid node in x; direction. |
Ay, is the normal distance of the first grid point from the wall.

yr, is normalized-coordinate near a wall , which is expressed as

+ o€, ku) - Ay,

Y o
1

]

(4.40)

where C_ equalsto 0.09 as in the standard k ~ & model.

Equation {4.39) is the well-known logarithmic law of the wall , and strictly

this law should be applied to a point whose y;, value is in the range

30 < vy, < 130




K., . the value of k for the grid point , can be caiculated from the regular

balance equation with the diffusion of turbulence kinetic energy being set to
zero. When calculéting K, . it is necessary to assign a value for the average

turbulence kinetic energy-dissipation rate over the control volume between the

wall and near wall point.
. 5 1 .
fre oy = (VCr k) - —(Eva) (4
For the rate of dissipation of turbulence kinetic energy , the following
assumption is made in the wall region.

00.75 k1.5
L i ™
Erv b x. Ay, (4.42)
For a smooth wall , the constants in the wall functions are given by

kK = 041andE = 8.6.
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