CHAPTER i

LITERATURE REVIEW ' .

Before the details of the present study are given , a brief r'eview of the
previous works on experimental study and numerical approach for the flow
past an obstacle with infinite extent and also for the flow separation of internal

flow are first made.

2.1 FLOW PAST AN OBSTACLE WITH INFINITE EXTENT

The genefal form of the flow past an obstacle especially the flat plate in
fiuid stream of infinite extent has been known for many years past. Various
theories for calculating or explanation the resistance of the plate have also

been advanced rom time to time.

Rayleigh ( 1876 ) presented the theory of discontinuous motion to predict
a drag coefficient for an inclined flat plate in an infinite flow field at an angle o

to the main stream

27 sin o '
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This classical free-streamline theory does describe some of the general
features of the mean flow such as the free-vortex layer and the constant
pressure behind _the plate.

Karmann ( 1811 )_ proposed a formula for the resistance of a.ﬂat plate

moving normat to the stream , in terms of the dimensions of the vortex system



behind the plate ( see.figure 2.1 ). This formula ,"given in the‘symbols of the

paper , is

V Vv, ¥
Co 0.281 (alb)[2.83[1 - V:'] . 1.12(1 - -\-/:J } (22)

If the second term be neglected the formula reduces to the approximate form

Co 0.795 (a/b) (1 ! !?-J | . (2.3)

Vo
which be shown the drag is then proportional to the strength of the individual

vortices.
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Figure 2.1 Vortex street.

where V, is velocity of the undisturbed air relative to the plate.
V, is downstream velocity of the individual vortices { V, = f.a).
f is frequency per second with which the individual vortices leave

each edge of the plate.



.a is longitudinal spacing between two consecutive vortices in the
same row.

b is breadth of plate.

Fage and Johansen ( 1927 ) investigated the experiments of air flow
behind an inclined fiat plate of infinite span. A comparison was made between

the measured values of drag and those obtained from two Karmann's formulae

, when the wind tunnel values of (a/b) and ( Vs [V, ) are substitued , is given

in table 2.1.
Wind-tunnel. : kg
e | Wirmin's| Kirmin's )i Col. B Col. C
- kp, formula. | approx. Cel. A Col. A
(afb) (V,y/Va) . . formula,
(A} (B) (G

90 5:25 0765 | 1665 | 0.895 | 0-030 0-84 0.92
70 483 5+155 0-975 0853 0:945 0-43 097
60 4-44 Q- 760 0-850 0570 0850 6-91 © 100
5 i-08 0-79G 0620 0:6325 0-68) 0-91 099
10 3-55 6813 | 0505 0-485 | 0.320 0-43 1403
30 2.76 0840 0:325 0-333 I 0-3%0 1-03 1-03

Table 2,1 Comparison of drag coefficient.
{ Xp Is equivalent to Cp)

With summary , the vortices generated at each edge pass downstream with a

frequency which increases as the inclination ‘of the plate decreases. The



frequency is proportional to the wind speed , at a constant :inclination. The
longitudinal spacing of the vortices decreases as the inclination of the platé
decreases.

Abernathy (. 1962 ) extended the modified free-streamline theory to
include an inciined flat pléte in an inﬁhite flow field. At an arbitrary angle of
attack , and with an experimental investigation of the behavior of the flow field
in the vicinity of an inclined plate in a constricting flow channel. There is

excellent agreement between theory and experiment regarding the pressure

 distribution for the case of relatively littie lateral restriction of flow when K=

14.0 ; ( K is dimensionless constriction ratio between height of tunnel test-
section and plate chord ) ; the agreement is only fair when K = 5.27 as shown

in figure 2.2.
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Figure 2.2 Calculated and experimental pressure coefficients
on inclined sharp-edged plates for K = 5,27,
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. where C, is local pressure coefficient and defined as

_ P - P, .
C T ) v ' 24)

where P is local static pressure.

and P, is free-stream static pressure.
. Furthermore , the location of the free streamlines also was calculated and -

compared with the experimental results as shown in figure 2.3 for the location

- of-the outer and inner boundaries of the free-vortex layers emanating from the' '

leading and trailing edges of the flat plates of different chord 'Iength at varying

incidences.
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Figure 2.3 Free-vortex layers from inclined sharp-edged plates
with lateral flow constriction : K= 13.98 and 6.99. .
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The solid circles are the points of either maximum or n:ninimum ‘mean
velocity. The broken line is simply the locus of points midway between the
outer and inner boundaries of the free-vortex layers. The length D is simply
referred to as separation distance , measured perpendicularly to the free-
stream direction , between the median lines in both free-vortex layers where
the two median lines have become parallel. It is apparent that the separation
distance is essentially inde.pendént of the constriction ratio from at least 14 to
5.27 , and is approximately equal to J2.c.sina.

Chen and Cheng ( 1987 ) studied on finite analytic numerical solutions of
‘incompressible flow past inclined axisymmefric bodies. The Navier-Stokes
equations are solved by FANS-3DEF program which is based on the finite
analytic method on the body-fitted coordinate system with modified SIMPLER
algorithm. Some example of flow prediction is presented as shown in figure
2.4 gives the so|ufion of a 10 degree angle of attack for Re = 248 x 10°. One
| finds that a very small separation exists at the leading edge , also a strong

separation around the trailing edge on the upper side of the plate.
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Figure 2.4 Streamline distribution at 10 degree angle of attack.
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Ramamurthy , Balachandar and Vo (. 1988 ) undertook to develop a semi-
empirical retation for the drag force experienced by constrained bluff bodies
with separating edges. The governing equations are derived on the basis of a
simple momentum balance with following assumptions.

1) For a given blockage , the pressure Pg at the separating point is
independent of Reynolds number Re = Ub/v. Here b is the width of the bluff
body and v is the fluid .kinematic viscosity.

2) The back pressure P, immediately behind the body is essentially the
same as the separation pressure P;.

3) The boundary friction is negligible along the control surfaces.

A control volume is chosen , denoted by the line joining points £, F, G,

H.!,J, Kand L as shown in figure 2.5

Figure 2.5 Constricted flow past fiat plate.

where B s test-section width.
b is width of bluff body.

P s free-stream pressure.
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P, is wake pressure. .

P; is contracting jet pressure.

U is mean velocity upstream of the body.

U, is mean velocity at the vena contracta.

U, is velocity at separation.
After deriving and simplifying , the formula to calculate the drag coefficient was

obtained
- B . | 1 K 2)
Co = H|20-Ca-ip (1.0 - Cp. - K?) - 28K, (2.5)

where B is defined to be momentum coefficient as

B = t1+¢ (2.6)
with s MaKMUMVEREL, o~ g (2.7a)
: mean velocity
U,
or € = —= - 1.0 (2.7b)
U;
and aiso K ; was defined as
U;
Ky = i (2.8)

For the separation pressure coefficient C., , they recommended an empirical

relation that was fitted curve from various approaches as shown in figure 2.6.
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And then progressed to compare the result of developed formula ( the curve

line )with many previous workers in figure 2.7.

From figure 2.7 , a reasonably good agreement is found -between the

experimental values and equation (2.5).
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Figure 2.7 Variation of C, withb /B ( 0.20 <Re x 10° <3.0).
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2.2 FLOW SEPARATION OF INTERNAL FLOWS

The phenomenon of flow separation of internal flows caused by abrupt
and sudden changes in the flow area has been studied extensively because of
its technical importance.

Cherdron , Durst and Whitelaw ( 1978 ) observed e*periments on
asymmetric separation of internal laminar flows ( or low Reynolds number
sudden-expansion fiows ). This asymmetry occurs in spite of symmetric inlet

profiles and the symmetry of the test-section geometry. The results suggest

that the origin of the asymmetry is related to the shear layers and to coherent

flow structures embedded in the random velocity fluctuation. Such structures
exist in shear layers and can interact with each other , yielding phenomena
that dominate the flow characteristics:

Figure 2.8 presents , in isometric projection , the development of thg
- velocity profiles for two Reynolds numbers that correspond to the range in
which asymmetric flow patierns were cbserved by fiow-visualization
techniques : the asymmetry about -th,e X , z plane at y = 0 is confirmed by the
measured velocity profiles. With boundary conditions ‘of this type , a symmetric
flow is usually expected and presumed in flow predictions , where half a test—
section is considered for the solution domain. Calculations performed with
presumed symmetric boundary conditions would lead to erroneous results for
the present flows. ]

Figﬁre 2.9 presents the velocity profiles at z = 0 and allows the
recirculation to be identified more readily. It also shows that the lowerReynolds

number flow has returned to a symmetric velocity distribution at avalue of x / H
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of 16. The higher Reynolds number flow , on the other hand , still has a very
asymmetric velocity distribution at x / H = 16 and has almost maintained the

initial maximum velocity over the range of measurements.
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Figure 2.8 Velocity profiles in the symmetry ( x, y ) plane for an aspect ratio of 2 ,
an expansion ratio of 2 and a Reynolds number of (a) 287 and (b) 615.
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Durst and Rastogi ( 1972 ) .invested the flow visuaiization:experiments of
turbulent flows with separation and also used the finite difference solution
procedures for calculating in the -redevelopment region by the computer
program GENMIX. The two-dimensional form of the continuity and the time-
averaged Navier-Stokes equations were carried out to solve with both k-g and
the three-equation k-€ -u'v' turbulence model. The calculations are compared
with the measurements and demonstrate clearly that use of the three-equation
model improves the calcﬁlated profiles further but not significantly and not
offer worthwhile advantages over the two-equation k-¢ turbulence model as

shown in figure 2.10.
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Figure 2,10 Measured and calculated U or U profiles
in the boundary-layer region,

Armaly , Durst , Pereira and Schoénung ( 1983 ) invested the experiment

of laminar , transitional and turbulent flows with regions of separation behind a

two-dimensional backward-facing step were carried out , and confirmed that
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laser-doppler measurements can provide detailed information on the flow
structure in the entire flow regime. The length of the recirculating-flow region in
-~ the immediate vicinity‘ ﬁof the backWard-facin’g step was measured and its‘
strong dependence on Reynolds number was quantified as shown in figure
- 2.11. In the laminar-flow regime the separatibn length increased with
increasing Reynolds number. A further increase in Reynolds number caused
the velocity fluctuations to increase , indicating tﬁe beginning of transition to
turbulent flow. It is shown that transition from laminar to turbulent flow is
characterized by an initially strong decrease in the main separation region
attached to the step. Moreover , a reéirculating-ﬂow region was also observed

on the test-éection wall opposite to the step which initially increased and
thendecreased in size with increasing Reynolds number and decayed when

the flow became fully turbulent.

AXy

. <y
oXy
& T3\ present data
axg

4

B 5. A_A/

-
i

‘ : 3 Rex107t 4 s 6

Figure 2.11 Location of detachment and reattachment of the fiow at the centre
of ihe test-section ; variation of locations with Reynolds number.
{ where § is the step height )
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Nallasamy ( 1986 ) studied on the steady separated ﬁow due to an
obstruction in a two-dimensional channel by the numerical solution of the
Navier-Stokes equations from finite difference techniques. The effect of the
- inlet veiodty profile on the separated region behind the obstruction was -
investigated at a Reynolds number of 100. A notable feature is that the
separated regions have the same length for both uniform and parabolic inlet
velocity profiles. This is due to the accelerating nature of the flow at the
sec_:tion of the constriction resulting in nearly the same velocity profiles there
for the two cases ( see figure 2.12 ). That is , due to the constriction , the
separating layers have the same strength. This is in contrast to the flow over
abackward-facing step where the separated region behind the step is a

distinctfunction of the inlet velocity profile.
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Figure 2.12 Effect of inlet velocity profile,
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