POLYBENZOXAZINE-BASED CARBON AEROGELS FOR CARBON DIOXIDE CAPTURE

Nittada Jungsawat

.

C

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2015

Thesis Title:	Polybenzoxazine-based Carbon Aerogels for Carbon Dioxide	
	Capture	
By:	Nittada Jungsawat	
Program:	Petroleum Technology	
Thesis Advisors:	Dr. Uthaiporn Suriyapraphadilok	, a
	Asst. Prof. Thanyalak Chaisuwan	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

K.S.

(Dr. Uthaiporn Suriyapraphadilok)

Thanyalak Chaisuwan

(Asst. Prof. Thanyalak Chaisuwan) Jujiha Derekany

(Assoc. Prof. Sujitra Wongkasemjit)

Patchigon Wcoathanghed

(Assoc. Prof. Patcharin Worathanakul)

0

0

ABSTRACT

5673016063 : Petroleum Technology Program

Nittada Jungsawat: Polybenzoxazine-based Carbon Aerogels for CO₂ Capture.

Thesis Advisors: Dr. Uthaiporn Suriyapraphadilok, and Asst. Prof. Thanyalak Chaisuwan 209 pp.

Keywords : Benzoxazine/ Polybenzoxazine aerogel/ Carbon aerogel/ CO₂ capture

Carbon aerogels developed from a new type of phenolic resin, called polybenzoazine, was considered to be used as an adsorbent for CO₂ adsorption application. In particular, phenol-based PBZs from two different types of amine precursors (i.e., diethylenetriamine (DETA) and pentaethylenehexamine (PEHA)) were synthesized by a sol-gel technique, followed by carbonization in nitrogen and activation with CO₂. Several techniques such as FTIR, DSC, TGA, sorptomatic analyser, CHN, and XPS have been employed to characterize the textural properties, porosity, nitrogen content, and other adsorbent properties on the adsorption performance. The CO₂ adsorption capacity of these adsorbents was measured using a simultaneous thermal analyzer (STA) at atmospheric pressure and adsorption temperatures of 40 °C, 75 °C, and 110 °C. The concentrations of benzoxazine monomer were varied at 30, 35, and 40 wt% in order to tune the surface properties of these porous PBZ aerogels. The effects of different amine chain lengths and loading PEG-PPG-PEG block copolymer as non-ionic surfactant on aerogel materials were investigated. The CO₂ adsorption performance at all adsorption conditions of DETA-derived PBZ carbon aerogels performed higher than PEHA-derived PBZ carbon aerogels due to a larger surface area and a higher pore volume; moreover, both types of carbon aerogels exhibited higher CO₂ adsorption capacity compared to those activated carbons from PBZ prepared by bulk polymerization. Furthermore, 30 wt% DETA-based carbon aerogel at activating temperature of 900 °C provided the highest CO₂ uptake at 1.79 mmol_{CO2}/g_{adsorbent} at adsorption condition of 40 °C and 1 bar.

O

บทคัดย่อ

นิตดา จึงสวัสดิ์: พอลิเบนซอกซาซีนการ์ บอนแอโรเจลสำหรับการดูดซับก๊าซการ์ บอนไดออกไซด์ (Polybenzoxazine-based Carbon Aerogels for Carbon Dioxide Capture) อ.ที่ปรึกษา: ดร. อุทัยพร สุริยประภาดิลก และผู้ช่วยศาสตราจารย์ ดร. ธัญญลักษณ์ ฉายสุวรรณ์ 209 หน้า

้คาร์บอนแอโรเจลพัฒนามาจากเรซินชนิคใหม่ของฟีนอลลิกเรซิน ที่เรียกว่าพอลิเบน-้ได้รับการพิจารณาให้เป็นตัวดูดซับ สำหรับการประยุกต์ใช้ในการดูดซับก๊าซ ซอกซาซีน ้คาร์บอนใดออกไซด์ โดยเฉพาะอย่างยิ่งพอลิเบนซอกซาซีนสังเคราะห์จากฟีนอล ที่ใช้เอมีนสอง ้ชนิดที่ต่างกัน (อันใด้แก่ ไดเอทิลีนไตรเอมีน และเพนตะเอทิลีนเฮกชมึน) ถกสังเคราะห์ด้วยวิธี ์โซลเจล ต่อจากนั้นจะถูกเปลี่ยนรูปให้เป็นคาร์บอนภายใต้อุณหภูมิสูงในสภาวะบรรยากาศของ ในโตรเจนและถูกกระตุ้นภายใต้สภาวะบรรยากาศของการ์บอนไดออกไซด์ เทกนิกหลายอย่าง อันได้แก่ ฟูเรียร์ทรานฟอร์มอินฟาเรคสเปคโตรมิเตอร์ ดิฟเฟอเรนเทียลสแกนนิ่งแคลอรี่มิเตอร์ เครื่องมือวิเคราะห์พื้นที่ผิวของวัสดุที่มีความพรุน เทคนิคเทอร์โมกราวิเมตริกอะนาไลซิส เครื่องมือวิเคราะห์องคประกอบของธาตุ (อันได้แก่ การ์บอน ไฮโดรเจน และไนโตรเจน) และ เอ็กซเรย์โฟโด้อิเล็กตรอนสเปคโตรสโคปี ได้ถูกใช้ในการวิเคราะห์กุณสมบัติต่างๆที่เกี่ยวข้องกับ ความสามารถในการดูดซับ สมรรถนะภาพของตัวดูดซับทั้งหลายถูกวิเคราะห์ผ่านเครื่องมือ ้วิเคราะห์เทอร์โมกราวิเมตริกอะนาไลซิสที่ความคันบรรยากาศและอุณหภูมิต่างๆ อันได้แก่ 40.75 และ 110 องศาเซลเซียส ในงานวิจัยนี้ความเข้มข้นของเบนซอกซาซีนโมโนเมอร์ถูกศึกษาที่ความ เข้มข้น 30 35 และ 40 เปอร์เซ็นด์โดยน้ำหนัก เพื่อปรับเปลี่ยนดามขนาดพื้นที่ผิวและสมบัติทางรู พรุนต่างๆ ของพอลิเบนซอกซาซึนที่มีรูพรุน รวมถึงการศึกษาอิทธิพลของความยาวของสายโซ่ เอมีน และการเดิมสารลดแรงดึงผิวชนิดไม่มีใอออนต่อวัสดุแอโรเจล ประสิทธิภาพของการดูดซับ คาร์บอนใดออกไซด์ในทุกสภาวะของการดูดซับของคาร์บอนแอโรเจลจากสารตั้งต้นของไดเอ ้ทิลีนไตรเอมีนแสดงค่าสูงกว่าแอโรเจลจากสารตั้งต้นของเพนตะเอทีลีนเฮกซะมีน เนื่องจากพื้นที่ ้ผิวที่มากกว่าและปริมาณรูพรุนที่เยอะกว่า นอกจากนี้คาร์บอนแอโรเจลจากเอมีนทั้งสองชนิค ้แสดงถึงประสิทธิภาพของการดูดซับคาร์บอนไดออกไซด์ที่สูงกว่าเมื่อเทียบกับถ่านกัมมันต์จาก พอลิเบนซอกซาซีนที่เตรียมโดยวิธีบัลค์พอลิเมอไรเซชั่น ยิ่งกว่านั้นการ์บอนแอโรเจลจากสารตั้ง ้ต้นของไดเอทิลีนไตรเอมีนที่เตรียมจากโมโนเมอร์ทึกวามเข็มข้น 30 เปอร์เซ็นต์โดยน้ำหนักแสดง ้ ก่าความสามารถในการดูคซับก๊าซคาร์บอนใดออกไซด์สูงที่สุดที่ 1.79 มิลลิโมลของก๊าซ ้ การ์บอนไดออกไซด์ต่อกรัมของตัวดูดซับ ภายใต้สภาวะการดูดซับที่ 40 องศาเซลเซียสและ 1 บาร์

o

ACKNOWLEDGEMENTS

I would like to express my special appreciation and deep appreciation to my advisor and co advisor, Dr. Uthaiporn Suriyapraphadilok and Asst. Prof. Thanyalak Chaisuwan, for their kindness, valuable guidance, and encouragement throughout this research.

I would also like to thank my committee members, Assoc. Prof. Sujitra Wongkasemjit and Assoc. Prof. Patcharin Worathanakul for serving as my committee members even at hardship.

I would like to thank Assoc. Prof. Boonyarach Kitiyanan for supporting the carbonization reactor.

This thesis work is funded by The Petroleum and Petrochemical College; and The Nation Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to thank the entire faculty and staff at The Petroleum and Petrochemical College, Chulalongkorn University for their kind assistance and cooperation. This research work was partially supported by the Ratchadaphisek Somphot Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC), Thailand Research Fund (IRG5780012).

Finally, it is also a pleasure to acknowledge my family for their love, understanding, encouragement, and the constant inspiration throughout my study.

0

TABLE OF CONTENTS

	PAG	E
Title Page	i	
Abstract (in English)	iii	
Abstract (in Thai)	iv	
Acknowledgements	v	
Table of Contents	vi	
List of Tables	xi	
List of Figures	xiii	

CHAPTER

•

I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Carbon Dioxide (CO ₂) and Climate Change	4
	2.2 CO ₂ Capture and Separation	6
	2.2.1 Post-combustion	6
	2.2.2 Pre-combustion	7
	2.2.3 Oxy-combustion	8
	2.3 Adsorption	8
	2.3.1 Thermal Swing Adsorption (TSA)	9
	2.3.2 Vacuum Swing Adsorption (VSA)	9
	2.3.3 Pressure Swing Adsorption (PSA)	9
	2.3.4 Electrical Swing Adsorption (ESA)	9
	2.4 Porous Materials	11
	2.5 Adsorbent	16
	2.5.1 Silica	17
	2.5.2 Activated Carbon	19
	2.5.3 Polymer-Based Compounds	23
	2.6 Polybenzoxazine	25

-

.

CHAPTER

•

		2.6.1 Foaming Technique	28
		2.6.2 A Sol-gel Technique	32
	2.7	Adsorption Measurement	35
		2.7.1 Gravimetric Method	35
		2.7.2 Temperature Programmed Desorption (TPD)	35
		2.7.3 Volumetric Method	36
III	EX	PERIMENTAL	41
	3.1	Materials and Equipment	41
		3.1.1 Materials and Chemicals	41
		3.1.2 Equipment	41
	3.2	Experimental Procedures	42
		3.2.1 Preparation of Benzoxazine Monomer	42
		3.2.2 Preparation of Polybenzoxazine Aerogel	42
		3.2.3 Preparation of PBZ Aerogel Loading with	
		Non-ionic Surfactant	43
		3.2.4 Preparation of Carbon Aerogel or Activated Carbon	
	т.С.	from PBZ	43
	3.3	Characterizations of Benzoxazine and Adsorbents-derived	
		from PBZ	43
		3.3.1 Fourier Transform Infrared Spectrometer (FTIR)	43
		3.3.2 Differential Scanning Calorimeter (DSC)	44
		3.3.3 Thermogravimetric Aanalysis (TGA)	44
		3.3.4 Surface Area Analyzer (Sorptomatic)	44
		3.3.5 CHN Analyzer	45
		3.3.6 X-ray Photoelectron Spectroscopy (XPS)	45
		3.3.7 Scanning Electron Microscope (SEM)	45
	3.4	Adsorption Measurement	47
		3.4.1 Pressure Decay Method	47
		3.4.2 Gravimetric Method	49

CHAPTER

0

-

IV	RESULTS AND DISCUSSION (SYNTHESIS AND	
	CHARACTERIZATION OF POLYBENZOXAZINE)	50
	4.1 Characterization of Materials	50
	4.1.1 Characterization of Benzoxazine Monomer	50
	4.1.2 Characterization of Polybenzoxazine	54
	4.2 Effect of Preparation Method on Polybenzoxazine-	
	based Carbon	66
	4.3 Effect of Benzoxazine Monomer Concentrations on	
	Polybenzoxazine-based Organic Aerogels and	
	Carbon Aerogels	68
	4.4 Effect of Chain Lengths of Amine Precursors on Activated	1
	Carbons from Polybenzoxazine and Polybenzoxazine-base	ed
	Carbon Aerogels	73
	4.5 Effect of Activation Temperatures on Activated Carbon	
	from Polybenzoxazine and Polybenzoxazine-based	
	Carbon Aerogel	74
	4.6 Effect of Non-Ionic Surfactant (PEG-PPG-PEG Block	
	Copolymer) on Polybenzoxazine-based Carbon Aerogel	76
V	RESULTS AND DISCUSSION (CARBON MATERIALS	
	FROM POLYBENZOXAZINE FOR CARBON DIOXIDE	
	ADSORPTION APPLICATION)	78
	5.1 Characterization of Adsorbents	78
	5.1.1 Adsorbents Characterization	78
	5.1.2 Ultimate Analysis	83
	5.1.3 Surface Analysis by XPS	85
	5.2 Effect of Preparation Method on CO ₂ Adsorption	
	Performance	93
	5.3 Effect of Benzoxazine Concentrations on CO ₂ Adsorption	
	Performance	95

σ

VI

o

.

PAGE

îx

5.4. Effect of Chain Longths of Aming Dressurgers on CO	
5.4 Effect of Chain Lengths of Amine Precursors on CO_2	
Adsorption Performance	97
5.5 Effect of Activation Temperatures of Carbon Aerogels on	
CO ₂ Adsorption Performance	99
5.6 Effect of Non-ionic Surfactant (PEG-PPG-PEG Block	
Copolymer) in Polybenzoxazine-based Carbon Aerogel	
on CO ₂ Adsorption Performance	100
5.7 Effect of Adsorption Temperatures on CO ₂ Adsorption	
Performance	102
5.8 Effect of Regenerations on Carbon Materials	104
CONCLUSIONS AND RECOMMENDATIONS	111
6.1 Conclusions (Synthesis and Characterization of	
Polybenzoxazine)	111
6.2 Conclusions (Carbon Materials from Polybenzoxazine for	
Carbon Dioxide Adsorption Application)	112
6.3 Recommendations	113
DEEEDENCES	114
KEFERENCES	114
APPENDICES	122
Appendix A Calculation for Benzoxazine Synthesis Ratio	122
Appendix B FTIR Spectra of Benzoxazine Monomers and	
Polybenzoxazines	124
Appendix C DSC Thermograms of all Materials	126
Appendix D TGA Thermograms of all Materials	130
Appendix E Calculation for Residual Weight of Polybenzo-	
xazine	133
Appendix F %Burn Off of Carbon Aerogels from Polybenzo-	
xazine	135

1

. . .

4.1

ø

.

σ

Appendix G	XPS Spectra of all Materials	136
Appendix H	Isotherm, BJH Pore Size Distribution, and HK	
	Pore Size Distribution of all Adsorbents	169
Appendix I	Adsorption/Desorption Isotherms of all Materials	198
Appendix J	SEM Images of all Materials	205

CURRICULUM VITAE

209

LIST OF TABLES

÷ •

TABLE

.

PAGE

2.1	Global warming potential over 100 years on a per molecule basis	4
2.2	Advantages and disadvantages of post-combustion	7
2.3	Advantages and disadvantages of pre-combustion	7
2.4	Comparison between physisorption and chemisorptions	11
2.5	Representative properties of commercial porous adsorbents	17
2.6	The synthesis and pore size diameter of polybenzoxazine foam	31
2.7	The synthesis and pore size diameter of porous polybenzoxazine	34
4.1	The surface property of organic PBZ aerogels derived from DETA	
	and PEHA at different PBZ concentration and their carbon aerogels	
	obtaining at activation temperature of 800 °C	64
4.2	The surface property of activated carbon from polybenzoxazine,	
	carbon aerogels, and carbon aerogels containing with non-organic	
	surfactant (P_{123}) at activation temperature of 900 °C	65
5.1	The surface property of activated carbon from polybenzoxazine,	
	a series of organic aerogels and carbon aerogels at activation	
	temperature of 800 °C	81
5.2	The surface property of activated carbon from polybenzoxazine,	
	carbon aerogels, and carbon aerogels containing with non-organic	
	surfactant (P ₁₂₃) at activation temperature of 900 $^{\circ}$ C	82
5.3	Ultimate analysis of all materials	84
5.4	Deconvolution results of polybenzoxazine and PBZ-based organic	
	aerogels by DETA as precursor	87
5.5	Deconvolution results of polybenzoxazine and PBZ-based organic	
	aerogels by PEHA as precursor	88
5.6	Deconvolution results of activated carbon from PBZ and carbon	
	aerogels from derived PBZ by DETA as precursor	89
5.7	Deconvolution results of activated carbon from PBZ and carbon	
	aerogels from derived PBZ by PEHA as precursor	90

. 0

TABLE

.

5.8 ·	Deconvolution results of carbon materials by DETA as precursor		
	at activation temperature of 900 °C	91	
5.9	Deconvolution results of carbon materials by PEHA as precursor		
	at activation temperature of 900 °C	92	
5.10	Assignments of deconvoluted peaks as characterized by XPS	93	
5.11	The CO ₂ adsorption performances of activated carbons and organic		
	acrogels from PBZ at different adsorption temperatures of 40, 75,		
	and 110 °C and 1 bar	103	
5.12	The CO_2 adsorption performances of carbon materials from PBZ		
	at different adsorption temperatures of 40, 75, and 110 °C and		
	l bar	103	
5.13	The regeneration percentages of activated carbons from PBZ,		
	carbon aerrogels at different monomer concentrations of 30, 35,		
	and 40 wt% by DETA and PEHA as amine precursors at desorption		
	temperatures of 40 and 75 $^{\circ}\mathrm{C}$ (all these carbon materials were		
	activated at 800 °C)	105	
5.14	The regeneration percentages of activated carbons from PBZ,		
	carbon aerrogels at different monomer concentrations of 30, 35,		
	and 40 wt% by DETA and PEHA as amine precursors at desorption		
	temperature of 110 °C (all these carbon ma-terials were activated at		
	800 °C)	106	
5.15	The regeneration percentages of activated carbons from PBZ,		
	carbon aerrogels from 30 wt% of benzoxazine solution, and carbon		
	aerogels from 30 wt% of benzoxazine solution with non-ionic		
	surfactant by DETA and PEHA as reactants at desorption tempera-		
	tures of 40, 75, and 110 °C (all these carbon materials were acti-		
	vated at 900 °C)	107	
F1	Comparison of %burn off of PBZ-derived carbon aerogels from		
	two instruments (TG-DTA and Furnace)	135	

xii

LIST OF FIGURES

FIGURE

σ

2.1	Global CO ₂ emissions by source: Baseline, 1980-2050.	5
2.2	The different routes for CO_2 capture and separation.	6
2.3	The CO_2 adsorption behavior on the adsorbent surface.	8
2.4	The physisorption of CO_2 and the chemisorption of CO_2 on porous	
4	substrate.	9
2.5	a) A microporous material, b) A mesoporous material, and c) A	
	macroporous material.	12
2.6	The different types of pores.	13
2.7	The structure of DETA, PEHA and PEI.	22
2.8	The structure of TEA, AMPD and DIPA.	23
2.9	Monofunctional benzoxazine monomer synthesis.	26
2.10	Bifunctional benzoxazine monomer synthesis.	26
2.11	The microscopic images of polybenzoxazine foam (a) and	
	carbon foam (b) at 10 wt% of AZD.	29
2.12	The microscopic images of polybenzoxazine foams at several	
4	relative densities (a) 0.35, (b) 0.43, (c) 0.50 and (d) 0.60.	30
2.13	Synthesis of diphenolic acid benzoxazine.	31
2.14	Cell size distribution and microscopic image of diphenolic acid	
	benzoxazine foam at foaming temperature of 190 °C.	31
2.15	Schematic of the volumetric differential pressure hydrogen	
	adsorption apparatus.	37
3.1	The polybenzoxazine synthesis reactions (a) Polybenzoxazine-based	
	on DETA and (b) Polybenzoxazine based on PEHA.	46
3.2	Schematic diagram of the adsorption system.	48
4.1	FT-IR spectrum of the benzoxazine monomer by DETA as reactant.	51
4.2	FT-IR spectrum of the benzoxazine monomer by PEHA as reactant.	51
4.3	DSC thermograms of benzoxazine monomers by DETA and PEHA	
	as reactants.	52

xiii

xiv

4.4	TGA thermograms of benzoxazine monomers with DETA and	
	PEHA asamine reactants.	53
4.5	FT-IR spectrum of polybenzoxazine by DETA as reactant.	54
4.6	FT-IR spectrum of polybenzoxazine by PEHA as reactant.	55
4.7	DSC thermograms of polybenzoxazines by DETA and PEHA	
	as reactant.	56
4.8	DSC thermograms of (a) DETA-40wt% derived aerogel at 180 $^\circ\mathrm{C}$	
	for 15 min, (b) DETA-40wt% derived aerogel at 180 °C for 30 min,	
	and (c) DETA-40wt% derived aerogel at 180 °C for 45 min.	57
4.9	DSC thermograms of polybenzoxazine aerogels before curing step	
	with DETA as reactant.	58
4.10	DSC thermograms of polybenzoxazine aerogels after curing step	
	with DETA as reactant.	58
4.11	DSC thermograms of polybenzoxazine aerogels before curing step	
	with PEHA as reactant.	59
4.12	DSC thermograms of polybenzoxazine aerogels after curing step	
	with PEHA as reactant.	60
4.13	TGA thermograms of polybenzoxaine and polybenzoxazine aero-	0
	gels with DETA as reactant.	61
4.14	TGA thermograms of polybenzoxazine and polybenzoxazine aero-	
	gels with PEHA as reactant.	61
4.15	TGA thermograms of PBZs derived from DETA and PEHA after	
	heating up to 900 °C (with a heating rate of 20 °C/min).	62
4.16	TGA thermograms of PEG-PPG-PEG block copolymer after heating	
	up to 900 °C (with heating rate of 20 °C/min).	63
4.17	TGA thermograms of PBZ aerogels derived from DETA and PEHA	
	with and without non-ionic surfactant (PEG-PPG-PEG block copo-	
	lymer) after heating up to 900 °C (with heating rate of 20 °C/min).	64

σ

Ξ.

o

·

PAGE

4.18	SEM images of (a) activated carbon from DETA-derived PBZ,	
	(b) activated carbon from PEHA-derived PBZ, (c) carbon aerogel	•
	from DETA-30wt%, and (d) carbon aerogel from PEHA-30wt%.	67
4.19	SEM images of (a) fully-cured DETA-derived PBZ aerogel at	
	20 wt%, (b) 25 wt%, and (c) 30 wt% of monomersolutions.	69
4.20	SEM images of (a) DETA-derived PBZ carbon aerogel at 30 wt%,	
	(b) 30 wt%, (c) 35 wt%, (d) 35 wt%, (e) 40 wt%, and (f) 40 wt% of	
	monomer solutions; low magnification for (a), (c), and (e);	
	high magnification for (b), (d), and (f).	71
4.21	SEM images of (a) PEHA-derived PBZ carbon aerogel at 30 wt%,	
	(b) 30 wt%, (c) 35wt%, (d) 35 wt%, (e) 40 wt%, and (f) 40 wt% of	
	monomer solutions; low magnification for (a), (c), and (e);	
	high magnification for (b), (d), and (f).	72
4.22	SEM images of (a) activated carbon from DETA-derived PBZ,	
	(b) activated carbon from PEHA-derived PBZ with a magnification	
	of 5,000 times.	73
4.23	SEM images of (a) carbon aerogel from DETA-30 wt% at activation	
	temperature of 800 °C, (b) carbon aerogel from DETA-30 wt% at	
	activation temperature of 900 °C, (c) carbon aerogel from PEHA-	
	30 wt% at activation temperature of 800 $^{\circ}$ C, and (d) carbon aerogel	
	from PEHA-30 wt% at activation temperature of 900 °C.	75
5.1	SEM images of (a) activated carbon from DETA-derived PBZ,	
	(b) activated carbon from PEHA-derived PBZ with a magnification	
	of 2,000 times.	79
5.2	SEM images of (a) PEHA-derived PBZ carbon aerogel at 30 wt%,	
	(b) 35 wt%, and (c) 40 wt% of monomer solutions with magnifica-	
	tion of 600 times.	80
5.3	The chemical structures of (a) DETA-derived polybenzoxazine and	
	(b) PEHA-derived polybenzoxazine.	86

÷

FIGURE

7

5.4	Adsorption/desorption isotherms of carbon materials from PBZ	
÷	prepared by two preparation methods: a conventional technique	
•	and a sol-gel technique by DETA as precursor (at 40 $^{\circ}$ C and 1 bar).	94
5.5	Adsorption/desorption isotherms of carbon materials from PBZ	
	prepared by two preparation methods: a conventional technique	
	and a sol-gel technique by DETA as precursor (at 40 °C and 1 bar).	95
5.6	Adsorption/desorption isotherms of carbon aerogels at different	
	benzoxazine concentrations by DETA as precursor (at 40 $^{\circ}\mathrm{C}$	
	and 1 bar).	96
5.7	Adsorption/desorption isotherms of carbon aerogels at different	
	benzoxazine concentrations by PEHA as precursor (at 40 °C	
	and 1 bar).	97
5.8	Adsorption/desorption isotherms of activated carbons derived from	
	PBZ by DETA and PEHA as amine precursors (at 40 $^\circ$ C and 1 bar).	98
5.9	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	of benzoxazine solution by DETA and PEHA as amine precursors	
	(at 40 °C and 1 bar).	98
5.10	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	of benzoxazine solution with different activation temperatures of	
	800 and 900 °C by DETA as precursor (at 40 °C and 1 bar).	99
5.11	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	of benzoxazine solution with different activation temperatures of	
	800 and 900 °C by PEHA as precursor (at 40 °C and 1 bar)	100
5.12	Adsorption/desorption isotherms of carbon aerogels from 30 wt $\%$	
	of benzoxazine solution with and without non-ionic surfactant at	
	activation temperature of 900 °C by DETA as precursor	
	(at 40 °C and 1 bar).	101

FIG	URE
-----	-----

5.13	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	of benzoxazine solution with and without non-ionic surfactant at	
	activation temperature of 900 °C by PEHA as precursor	
	(at 40 °C and 1 bar).	192
5.14	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by DETA as	
	precursor at 40 °C and 1 bar).	108
5.15	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by PEHA as	
	precursor (at 40 °C and 1 bar).	108
5.16	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by DETA as	
	precursor (at 75 °C and 1 bar).	109
5.17	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by PEHA as	
	precursor (at 75 °C and 1 bar).	109
5.18	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by DETA as	
	precursor (at 110 °C and 1 bar).	110
5.19	Desorption isotherms of activated carbon from PBZ, carbon aero-	
	gels from 30 wt% of benzoxazine solution with and without non-	
	ionic surfactant at activation temperature of 900 °C by PEHA as	
	precursor (at 110 °C and 1 bar).	110
B.1	FT-IR spectrum of the benzoxazine monomer by DETA as react-	
	ant.	124

PAGE

.

B.2 ·	FT-IR spectrum of the benzoxazine monomer by PEHA as react-	
	ant.	124
B.3	FT-IR spectrum of polybenzoxazine by DETA as reactant.	125
B.4	FT-IR spectrum of polybenzoxazine by PEHA as reactant.	125
C.1	DSC thermograms of benzoxazine monomers by DETA and PEHA	
	as reactants.	126
C.2	DSC thermograms of polybenzoxazines by DETA and PEHA as	
	reactant.	126
C.3	DSC thermograms of (a) DETA-40wt% derived aerogel at 180 $^{\circ}\mathrm{C}$	
	for 15 min, (b) DETA-40wt% derived aerogel at 180 °C for 30	
	min, and (c) DETA-40wt% derived aerogel at 180 °C for 45 min.	127
C.4	DSC thermograms of polybenzoxazine aerogels before curing step	
	with DETA as reactant.	127
C.5	DSC thermograms of polybenzoxazine aerogels after curing step	
	with DETA as reactant.	128
C.6	DSC thermograms of polybenzoxazine aerogels before curing step	
	with PEHA as reactant.	128
C.7	DSC thermograms of polybenzoxazine aerogels after curing step	
	with PEHA as reactant.	129
D.1	TGA thermograms of benzoxazine monomers with DETA and	
	PEHA as amine reactants.	130
D.2	TGA thermograms of polybenzoxaine and polybenzoxazine aero-	
	gels with DETA as reactant.	130
D.3	TGA thermograms of polybenzoxazine and polybenzoxazine aero-	
	gels with PEHA as reactant.	131
D.4	TGA thermograms of PBZs derived from DETA and PEHA after	
	heating up to 900 °C (with a heating rate of 20 °C/min).	131
D.5	TGA thermograms of PEG-PPG-PEG block copolymer after heat-	
	ing up to 900 °C (with heating rate of 20 °C/min).	132

D.6 TGA thermograms of PBZ aerogels derived from DETA and PEHA with and without non-ionic surfactant (PEG-PPG-PEG block copolymer) after heating up to 900 °C (with heating rate of 20 °C/min). 132 G.1 C1s XPS spectra of DETA-derived polybenzoxazine. 136 G.2 Ols XPS spectra of DETA-derived polybenzoxazine. 136 G.3 NIs XPS spectra of DETA-derived polybenzoxazine. 137 G.4 C1s XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel. 137 G.5 Ols XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel. 138 G.6 N1s XPS spectra of a 30 wt% DETA-derived PBZ organic aerogel. 138 G.7 C1s XPS spectra of a 35 wt% DETA-derived PBZ organic aerogel. 139 G.8 Ols XPS spectra of a 35 wt% DETA-derived PBZ organic aerogel. 139 G.9 NIs XPS spectra of a 35 wt% DETA-derived PBZ organic aerogel. 140 G.10 C1s XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel. 140 G.11 Ols XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel. 141 G.12 N1s XPS spectra of a 40 wt% DETA-derived PBZ organic aerogel. 141 G.13 C1s XPS spectra of PEHA-derived polybenzoxazine. 142 Ğ.14 Ols XPS spectra of PEHA-derived polybenzoxazine. 142 G.15 N1s XPS spectra of PEHA-derived polybenzoxazine. 143 G.16 C1s XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel. 143 G.17 Ols XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel. 144 N1s XPS spectra of a 30 wt% PEHA-derived PBZ organic aerogel. G.18 144 C1s XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel. G.19 145 Ols XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel. G.20 145 N1s XPS spectra of a 35 wt% PEHA-derived PBZ organic aerogel. G.21 146 G.22 C1s XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel. 146 G.23 O1s XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel. 147 G.24 N1s XPS spectra of a 40 wt% PEHA-derived PBZ organic aerogel. 147 G.25 C1s XPS spectra of activated carbon from DETA-derived PBZ. 148

G.26 O1s XPS spectra of activated carbon from DETA-derived PBZ. 148

PAGE

0

G.27	NIs XPS spectra of activated carbon from DETA-derived PBZ.	149
G.28	C1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel.	149
G.29	O1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel.	150
G.30	N1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel .	150
G.31	C1s XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel.	151
G.32	Ols XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel.	151
G.33	N1s XPS spectra of a 35 wt% DETA-derived PBZ carbon aerogel.	152
G.34	C1s XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel.	152
G.35	Ols XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel.	153
G.36	N1s XPS spectra of a 40 wt% DETA-derived PBZ carbon aerogel.	153
G.37	C1s XPS spectra of activated carbon from PEHA-derived PBZ.	154
G.38	Ols XPS spectra of activated carbon from PEHA-derived PBZ.	154
G.39	N1s XPS spectra of activated carbon from PEHA-derived PBZ.	155
G.40	C1s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel.	155
G.41	Ols XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel.	156
G.42	C1s XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel.	156
G.43	C1s XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel.	157
G.44	Ols XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel.	157
G.45	N1s XPS spectra of a 35 wt% PEHA-derived PBZ carbon aerogel.	158
G.46	C1s XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel.	158
G.47	Ols XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel.	159
G.48	N1s XPS spectra of a 40 wt% PEHA-derived PBZ carbon aerogel.	159
G.49	C1s XPS spectra of activated carbon from DETA-derived PBZ at	
	activation temperature of 900 °C.	160
G.50	Ols XPS spectra of activated carbon from DETA-derived PBZ at	
	activation temperature of 900 °C.	160
G.51	N1s XPS spectra of activated carbon from DETA-derived PBZ at	
	activation temperature of 900 °C.	161
G.52	C1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	161

σ

0

G.53	Ols XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	. 162
G.54	N1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	162
G.55	C1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	163
G.56	Ols XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	163
G.57	N1s XPS spectra of a 30 wt% DETA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	164
G.58	C1s XPS spectra of activated carbon from PEHA-derived PBZ at	
	activation temperature of 900 °C.	164
G.59	Ols XPS spectra of activated carbon from PEHA-derived PBZ at	
	activation temperature of 900 °C.	165
G.60	N1s XPS spectra of activated carbon from PEHA-derived PBZ at	
	activation temperature of 900 °C.	165
G.61	C1s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	166
G.62	Ols XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	166
G.63	NIs XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	at activation temperature of 900 °C.	167
G.64	C1s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	167

. .

PAGE

G.65	Ols XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	168
G.66	N1s XPS spectra of a 30 wt% PEHA-derived PBZ carbon aerogel	
	loading with non-ionic surfactant at activation temperature of	
	900 °C.	168
H.!	Isotherm of a 30 wt% DETA-derived PBZ organic aerogel.	169
H.2	Barrett-Joyner-Halenda pore size distribution of a 30 wt% DETA-	
	derived PBZ organic aerogel.	169
H.3	Horvath and Kawazoe pore size distribution of a 30 wt% DETA-	
	derived PBZ organic aerogel.	170
H.4	Isotherm of a 35 wt% DETA-derived PBZ organic aerogel.	170
H.5	Barrett-Joyner-Halenda pore size distribution of a 35 wt% DETA-	
	derived PBZ organic aerogel.	171
H.6	Horvath and Kawazoe pore size distribution of a 35 wt% DETA-	
	derived PBZ organic aerogel.	171
H.7	Isotherm of a 40 wt% DETA-derived PBZ organic aerogel.	172
H.8	Barrett-Joyner-Halenda pore size distribution of a 40 wt% DETA-	
-	derived PBZ organic aerogel.	172
H.9	Horvath and Kawazoe pore size distribution of a 40 wt% DETA-	
	derived PBZ organic aerogel.	173
H.10	Isotherm of a 30 wt% PEHA-derived PBZ organic aerogel.	173
H.11	Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA-	
	derived PBZ organic aerogel.	174
H.12	Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-	
	derived PBZ organic aerogel.	174
H.13	Isotherm of a 35 wt% PEHA-derived PBZ organic aerogel.	175
H.14	Horvath and Kawazoe pore size distribution of a 35 wt% PEHA-	
	derived PBZ organic aerogel.	175
H.15	Isotherm of a 40 wt% PEHA-derived PBZ organic aerogel.	176

-

H.16	Horvath and Kawazoe pore size distribution of a 40 wt% PEHA-	
	derived PBZ organic aerogel.	176
H.17	Isotherm of activated carbon from DETA-derived PBZ.	177
H.18	Barrett-Joyner-Halenda pore size distribution of activated carbon	
	from DETA-derived PBZ.	177
H.19	Horvath and Kawazoe pore size distribution of activated carbon	
	from DETA-derived PBZ.	178
H.20	Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel.	178
H.21	Barrett-Joyner-Halenda pore size distribution of a 30 wt% DETA-	
	derived PBZ carbon aerogel.	179
H.22	Horvath and Kawazoe pore size distribution of a 30 wt% DETA-	
	derived PBZ carbon aerogel.	179
H.23	Isotherm of a 35 wt% DETA-derived PBZ carbon aerogel.	180
H.24	Barrett-Joyner-Halenda pore size distribution of a 35 wt% DETA-	
	derived PBZ carbon aerogel.	180
H.25	Horvath and Kawazoe pore size distribution of a 35 wt% DETA-	
	derived PBZ carbon aerogel.	181
H.26	Isotherm of a 40 wt% DETA-derived PBZ carbon aerogel.	181
H.27	Barrett-Joyner-Halenda pore size distribution of a 40 wt% DETA-	
	derived PBZ carbon aerogel.	182
H.28	Horvath and Kawazoe pore size distribution of a 40 wt% DETA-	
	derived PBZ carbon aerogel.	182
H.29	Isotherm of activated carbon from PEHA-derived PBZ.	183
H.30	Barrett-Joyner-Halenda pore size distribution of activated carbon	
	from PEHA-derived PBZ.	183
H.31	Horvath and Kawazoe pore size distribution of activated carbon	
	from PEHA-derived PBZ.	184
H.32	Isotherm of a 30 wt% PEHA-derived PBZ carbon aerogel.	184
H.33	Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel.	185

H.34	Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel.	185
H.35	Isotherm of a 35 wt% PEHA-derived PBZ carbon aerogel.	186
H.36	Barrett-Joyner-Halenda pore size distribution of a 35 wt% PEHA-	
	derived PBZ carbon aerogel.	186
H.37	Horvath and Kawazoe pore size distribution of a 35 wt% PEHA-	
	derived PBZ carbon aerogel.	187
H.38	Isotherm of a 40 wt% PEHA-derived PBZ carbon aerogel.	187
H.39	Barrett-Joyner-Halenda pore size distribution of a 40 wt% PEHA-	
	derived PBZ carbon aerogel.	188
H.40	Horvath and Kawazoe pore size distribution of a 40 wt% PEHA-	
	derived PBZ carbon aerogel.	188
H.41	Isotherm of activated carbon from DETA-derived PBZ at activa-	
	tion temperature of 900 °C.	189
H.42	Barrett-Joyner-Halenda pore size distribution of activated carbon	
	from DETA-derived PBZ at activation temperature of 900 °C.	189
H.43	Horvath and Kawazoe pore size distribution of activated carbon	•
	from DETA-derived PBZ at activation temperature of 900 °C.	190
H.44	Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel at	
	activation temperature of 900 °C.	190
H.45	Horvath and Kawazoe pore size distribution of a 30 wt% DETA-	
	derived PBZ carbon aerogel at activation temperature of 900 °C.	191
H.46	Isotherm of a 30 wt% DETA-derived PBZ carbon aerogel loading	
	with non-ionic surfactant at activation temperature of 900 °C.	191
H.47	Barrett-Joyner-Halenda pore size distribution of a 30 wt% DETA-	
	derived PBZ carbon aerogel loading with non-ionic surfactant at	
	activation temperature of 900 °C.	192
H.48	Horvath and Kawazoe pore size distribution of a 30 wt% DETA-	
	derived PBZ carbon aerogel loading with non-ionic surfactant at	
	activation temperature of 900 °C.	192

PAGE

H.49	Isotherm of activated carbon from PEHA-derived PBZ at activa-	
	tion temperature of 900 °C.	193
H.50	Barrett-Joyner-Halenda pore size distribution of activated carbon	
	from PEHA-derived PBZ at activation temperature of 900 °C.	193
IH.51	Horvath and Kawazoe pore size distribution of activated carbon	
	from PEHA-derived PBZ at activation temperature of 900 °C.	194
H.52	Isotherm of a 30 wt% PEHA-derived PBZ carbon aerogel at	
	activation temperature of 900 °C.	194
H.53	Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel at activation temperature of 900 °C.	195
H.54	Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel at activation temperature of 900 °C.	195
H.55	Isotherm of a 30 wt% PEHA-derived PBZ carbon aerogel loading	
	with non-ionic surfactant at activation temperature of 900 °C.	196
H.56	Barrett-Joyner-Halenda pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel loading with non-ionic surfactant at	
	activation temperature of 900 °C.	196
H.57	Horvath and Kawazoe pore size distribution of a 30 wt% PEHA-	
	derived PBZ carbon aerogel loading with non-ionic surfactant at	
	activation temperature of 900 °C.	197
I.1	Adsorption/desorption isotherms of DETA-derived activated car-	
	bons at activating temperature of 800 $^\circ\mathrm{C}$ (at 40, 75, 110 $^\circ\mathrm{C}$ and	
	l bar).	198
1.2	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	DETA-derived PBZ at activating temperature of 800 °C (at 40,	
	75, 110 °C and 1 bar).	198
I.3	Adsorption/desorption isotherms of carbon aerogels from 35 wt%	
	DETA-derived PBZ at activating temperature of 800 °C (at 40,	
	75, 110 °C and 1 bar).	199

Ø

Adsorption/desorption isotherms of carbon aerogels from 40 wt%	
DETA-derived PBZ at activating temperature of 800 °C (at 40, 75	
110 °C and 1 bar)	100
A desorption/desorption isotherms of DEHA derived activated car	177
has at activating town another of 800 80 (at 40, 75, 110,80, at	
bons at activating temperature of 800 °C (at 40, 75, 110 °C and	200
i bar).	200
Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
PEHA-derived PBZ at activating temperature of 800 °C (at 40,	
75, 110 °C and 1 bar).	200
Adsorption/desorption isotherms of carbon aerogels from 35 wt%	
PEHA-derived PBZ at activating temperature of 800 °C (at 40,	
75, 110 °C and 1 bar).	201
Adsorption/desorption isotherms of carbon aerogels from 40 wt%	
PEHA-derived PBZ at activating temperature of 800 °C (at 40,	
75, 110 °C and 1 bar).	201
Adsorption/desorption isotherms of DETA-derived activated car-	
bons at activating temperature of 900 °C (at 40, 75, 110 °C and	
l bar).	202
Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
DETA-derived PBZ at activating temperature of 900 °C (at 40, 75,	
110 °C and 1 bar).	202
Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
DETA-derived PBZ loading non-ionic surfactant at activating	
temperature of 900 °C (at 40, 75, 110 °C and 1 bar).	203
Adsorption/desorption isotherms of PEHA-derived activated car-	
bons at activating temperature of 900 °C (at 40, 75, 110 °C and	
l bar).	203
	Adsorption/desorption isotherms of carbon aerogels from 40 wt% DETA-derived PBZ at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of PEHA-derived activated car- bons at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 30 wt% PEHA-derived PBZ at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 35 wt% PEHA-derived PBZ at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 40 wt% PEHA-derived PBZ at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 40 wt% PEHA-derived PBZ at activating temperature of 800 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of DETA-derived activated car- bons at activating temperature of 900 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 30 wt% DETA-derived PBZ at activating temperature of 900 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 30 wt% DETA-derived PBZ at activating temperature of 900 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of carbon aerogels from 30 wt% DETA-derived PBZ loading non-ionic surfactant at activating temperature of 900 °C (at 40, 75, 110 °C and 1 bar). Adsorption/desorption isotherms of PEHA-derived activated car- bons at activating temperature of 900 °C (at 40, 75, 110 °C and 1 bar).

σ

σ

-

PAGE

•

I.13	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	PEHA-derived PBZ at activating temperature of 900 °C (at 40,	
	75, 110 °C and 1 bar).	204
I.14	Adsorption/desorption isotherms of carbon aerogels from 30 wt%	
	PEHA-derived PBZ loading non-ionic surfactant at activating	
	temperature of 900 °C (at 40, 75, 110 °C and 1 bar).	204
J. I	SEM images of (a) fully cured DETA-derived PBZ aerogel at 20	
	wt%, (b) 25 wt%, and (c) 30 wt% of monomer solutions.	205
J.2	SEM images of (a) activated carbon from DETA-derived PBZ	
	and (b) activated carbon from PEHA-derived PBZ at activating	
	temperature of 800 °C.	205
J.3	SEM images of (a) DETA-derived PBZ carbon aerogel at 30 wt%,	
	(b) 30 wt%, (c) 35 wt%, (d) 35 wt%, (e) 40 wt%, and (f) 40 wt%	
	of monomer solutions at activating temperature of 800 °C; low	
	magnification for (a), (c), and (e); high magnification for (b), (d),	
	and (f).	206
J.4	SEM images of (a) PEHA-derived PBZ carbon aerogel at 30 wt%,	
	(b) 30 wt%, (c) 35 wt%, (d) 35 wt%, (c) 40 wt%, and (f) 40 wt%	
	of monomer solutions at activating temperature of 800 °C; low	
	magnification for (a), (c), and (e); high magnification for (b), (d),	
	and (f).	207
J.5	SEM images of (a) activated carbon from DETA-derived PBZ,	
	(b) activated carbon from PEHA-derived PBZ, (c) DETA-derived	
	PBZ carbon aerogel at 30 wt% (d) PEHA-derived PBZ carbon	
	aerogel at 30 wt%, (e) DETA-derived PBZ carbon aerogel at 30	
	wt% loading non-ionic surfactant, and (f) PEHA-derived PBZ car-	
	bon aerogel at 30 wt% loading non-ionic surfactant at activating	
	temperature of 900 °C.	208