HYDROGEN PRODUCTION FROM WATER SPLITTING UNDER VISIBLE LIGHT IRRADIATION OVER MESOPOROUS-ASSEMBLED TiO₂-SiO₂, TiO₂-ZrO₂, AND SrTi_XZr_{1-X}O₃ NANOCRYSTAL PHOTOCATALYSTS WITH BIMETALLIC Pt-Ag LOADING

Nicharee Chaona

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2012

I28374228

Thesis Title:	Hydrogen Production from Water Splitting under Visible
	Light Irradiation over Mesoporous-Assembled TiO_2 -SiO ₂ ,
	$TiO_2\mbox{-}ZrO_2,$ and $SrTi_xZr_{1\mbox{-}x}O_3$ Nanocrystal Photocatalysts with
	Bimetallic Pt-Ag Loading
By:	Nicharee Chaona
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej
	Assoc. Prof. Pramoch Rangsunvigit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

alundy' umath

(Prof. Sumaeth Chavadej)

moch of

(Assoc. Prof. Pramoch Rangsunvigit)

apan

(Assoc.Prof.Apanee Leungnaruemitchai)

_ 14

(Dr. Tarawipa Puangpetch)

ABSTRACT

5371012063:	Petrochemical Technology Program
	Nicharee Chaona: Hydrogen Production from Water Splitting under
	Visible Light Irradiation over Mesoporous-Assembled TiO ₂ -SiO ₂ ,
	TiO_2 -ZrO ₂ , and $SrTi_xZr_{1-x}O_3$ Nanocrystal Photocatalysts with
	Bimetallic Pt-Ag Loading
	Thesis Advisors: Prof. Sumaeth Chavadej and
	Assoc. Prof. Pramoch Rangsunvigit 110 pp.
Keywords:	Photocatalysis/ Water splitting/ Hydrogen production/
	Mesoporosity/ Bimetallic/ Visible light/

Hydrogen is an ideal energy source for the future due to its versatile application and environmentally friendly properties. Photocatalytic water splitting is a chemical reaction for producing hydrogen by using water and solar energy. This work focused on hydrogen production from photocatalytic water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled TiO₂-SiO₂, TiO₂-ZrO₂, and SrTi_xZr_{1-x}O₃ photocatalysts with bimetallic Pt-Ag loading were synthesized by the sol-gel process with the aid of a structure-directing surfactant at the Ti-to-Si molar ratio of 97:3 calcined at 500 °C, Ti-to-Zr molar ratio of 93:7 calcined at 500 °C, and SrTi_xZr_{1-x}O₃ with Ti-to-Zr molar ratio of 93:7 calcined at 700 °C. The photocatalytic activity, including phase composition, and Pt and Ag loadings, were investigated. The experimental results showed that the bimetallic Pt-Ag loadings with suitable contents by the photochemical deposition method were found to greatly enhance the photocatalytic activity of the assembled 0.97TiO₂-0.03SiO₂, 0.93TiO₂-0.07ZrO₂, and SrTi_{0.93}Zr_{0.07}O₃ photocatalyst.

บทคัดย่อ

ณิชารีย์ ชาวนา: การผลิตไฮโดรเจนจากการแตกโมเลกุลของน้ำภายใต้สภาวะที่มีแสง ในช่วงตามองเห็นโดยใช้ตัวเร่งปฏิกิริยาไททาเนียมไดออกไซด์-ซิลิคอนไดออกไซด์, ไททาเนียม ไดออกไซด์-เซอร์โคเนียมไดออกไซด์ และ สตรอนเทียมไททาเนียมเซอร์โคเนตที่เกาะตัวกันจนมี รูพรุนขนาดเมโซพอร์ที่ถูกกระตุ้นด้วยโลหะแบบผสมของแพลทินัมและซิลเวอร์ (Hydrogen Production from Water Splitting under Visible Light Irradiation over Mesoporous-Assembled TiO₂-SiO₂ TiO2-ZrO2, and SrTi_xZr_{1-x}O₃ Nanocrystal Photocatalysts with Bimetallic Pt-Ag Loading) อ. ที่ปรึกษา : ศ.-ดร. สุเมธ ชวเดช และ รศ. ดร. ปราโมช รังสรรก์วิจิตร 110 หน้า

้ไฮโครเจน เป็นแหล่งพลังงานในอุคมคติในอนาคต เนื่องจาก ไฮโครเจนมีประโยชน์ หลายอย่างและเป็นมิตรกับสิ่งแวคล้อม ปฏิกิริยาการแตก โมเลกุลของน้ำ โคยใช้ตัวเร่งปฏิกิริยาแบบ ใช้แสงร่วมเป็นกระบวนการในอุดมคติในการผลิตไฮโครเจน โดยการใช้น้ำและพลังงานแสง งานวิจัยนี้มุ่งเน้นการผลิตไฮโครเจนจากกระบวนการแตกโมเลกุลของน้ำค้วยปฏิกิริยาแบบใช้แสง ้ร่วมภายใต้สภาวะที่มีแสงในช่วงที่ตามองเห็น โคยใช้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมไททาเนียมไค ออกไซค์-ซิลิคอนไคออกไซค์, ไททาเนียมไคออกไซค์-เซอร์โคเนียมไคออกไซค์ ແລະ ้สตรอนเทียมไททาเนียมเซอร์โคเนต ที่มีการเติมตัวเร่งปฏิกิริยาร่วมโลหะแบบผสมของแพลทินัม และเงิน โดยมีการกระตุ้นด้วยสี่ย้อม โดยตัวเร่งปฏิกิริยาแบบใช้แสงร่วมดังกล่าวถกสังเคราะห์ขึ้น ้โดยกระบวนการโซลเจลควบคู่กับการใช้สารลดแรงตึงผิวเป็นสารค้นแบบ ที่มีอัตราส่วนโดย ้โมลของไททาเนียมไดออกไซด์ต่อซิลิคอนไดออกไซด์ที่ก่า 97 ต่อ 3 แคลไซน์ที่อุณหภูมิ 500 องศาเซลเซียส, ไททาเนียมไคออกไซด์ต่อเซอร์โคเนียมไคออกไซด์ที่ค่า 93 ต่อ 7 แคลไซน์ที่ อุณหภูมิ 500 องศาเซลเซียส และสตรอนเทียมไททาเนียมเซอร์โคเนตที่มีอัตราส่วนโดยโมลงอง ์ไททาเนียมไดออกไซด์ต่อเซอร์โคเนียมไดออกไซด์ที่ค่า 93 ต่อ 7 แคลไซน์ที่อุณหภูมิ 700 องศา เซลเซียส โคยได้ศึกษาถึงประสิทธิภาพในการเร่งปฏิกิริยาแบบใช้แสงร่วมของตัวเร่งปฏิกิริยาด้วย การเติมแพลทินัมและเงิน จากผลการทคลองพบว่าโลหะแบบผสมของแพลทินัมและเงิน ใน ้ปริมาณที่เหมาะสมบนพื้นผิวของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมด้วยวิธีการยึดเกาะด้วย กระบวนการเคมีโดยใช้แสงร่วม ถูกพบว่าช่วยเพิ่มประสิทธิภาพการผลิตไฮโครเจนของตัวเร่ง ปฏิกิริยาแบบใช้แสงร่วมไททาเนียมไคออกไซด์-ซิลิคอนออกไซด์, ไททาเนียมไคออกไซด์-เซอร์โคเนียมไดออกไซด์ และ สตรอนเทียมไททาเนียมเซอร์โคเนต อย่างมาก

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand.

The author would like to express her sincere gratitude to Prof. Sumaeth Chavadej and Assoc.Prof. Pramoch Rungsunvigit for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

She would like to express special thanks to Assoc. Prof. Apanee Luengnaruemitchai and Dr. Tarawipa Puangpetch for kindly serving on her thesis committee. Their sincere suggestions are definitely imperative for accomplishing her thesis.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, she would like to take this important opportunity to thank all of her graduate friends for their unforgettable friendship.

Finally, she really would like to express her sincere gratitude to her parents and family for the love, understanding, and cheering.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Hydrogen: Fuel of the Future	3
	2.2 Water Splitting: Hydrogen Generation Using Solar	
	Energy	4
	2.2.1 Photocatalytic Reaction	4
	2.2.2 Splitting Water into Hydrogen	6
	2.2.3 Efficiency	8
	2.2.4 Semiconductor	8
	2.2.5 Types of Semiconductor Systems Proposed	
	for Solar Water Splitting	9
	2.2.5.1 Semiconductor Solid State	
	Photovoltaic Based Systems	9
	2.2.5.2 Semiconductor Electrode	
	(Liquid Junction) Systems	10
	2.2.5.3 Semiconductor Particle Systems	11
	2.2.6 The Principle of Water Splitting Using	
	Semiconductor Particle	12
	2.3 Photocatalyst	14

III

2.4 Titanium Oxide Photocatalyst	15
2.4.1 General Remarks	15
2.4.2 Crystal Structure and Properties	16
2.4.3 Semiconductor Characteristic and	
Photocatalytic Activity	18
2.5 Nano-Photocatalyst	20
2.5.1 General Remarks	20
2.5.2 Activity of Nano-Photocatalyst	21
2.6 Chemical Additive for Enhancement of	
Photocatalytic H ₂ Production	22
2.7 Metal Loading for Enhancement of H ₂ Production	24
2.8 Ion Doping for Enhancement of H ₂ Production	25
2.8.1 Metal Ion Doping	25
2.8.2 Anion Doping	27
2.9 Dye Sensitization	29
2.10 Composite Semiconductors	31
2.11 Mixed Oxide System	33
2.12 Bimetallic System	36
2.13 Porous Material	37
2.14 Sol-Gel Process	39
EXPERIMENTAL	42
3.1 Materials and Equipment	42
3.1.1 Chemicals	42
3.1.2 Equipment	42
3.2 Experimental Procedures	43
3.2.1 Mesoporous-Assembled TiO ₂ -SiO ₂	
Nanocrystal Photocatalyst Synthesis by	
a Sol-Gel Process with the Aid of	
a Structure-Directing Surfactant	43

 \mathbf{V}

PAGE

viii

	3.2.2 Mesoporous-Assembled 110_2 -Zr 0_2	
	Nanocrystal Photocatalyst Synthesis by	
	a Sol-Gel Process with the Aid of	
	a Structure-Directing Surfactant	46
	3.2.3 Mesoporous-Assembled $SrTi_xZr_{1-x}O_3$	
	Nanocrystal Photocatalyst Synthesis by	
	a Sol-Gel Process with the Aid of	
	a Structure-Directing Surfactant	49
	3.2.4 Photocatalyst Characterizations	52
	3.2.5 Photocatalytic H ₂ Production System	53
IV	RESULTS AND DISCUSSION	55
	4.1 Photocatalyst Characterizations	55
	4.1.1 TG-DTA Results	55
	4.1.2 N ₂ Adsorption-Desorption Results	60
	4.1.3 XRD Results	68
	4.1.4 UV-Visible Spectroscopy Results	75
	4.1.5 SEM-EDX Results	84
	4.1.6 TEM-EDX Results	89
	4.1.7 Hydrogen Chemisorption Results	95
	4.2 Photocatalytic Hydrogen Production Activity	96
	4.2.1 Effect of Bimetallic Pt-Ag Loadings	97
v	CONCLUSIONS AND RECOMMENDATIONS	101
	5.1 Conclusions	101
	5.2 Recommendations	101
	REFERENCES	102
	CURRICULUMVITAE	110

LIST OF TABLES

TABLE		PAG
2.1	Definitions about porous solids	38
4.1	Thermal decomposition result of the dried synthesized	
	pure TiO ₂ , 0.97 TiO ₂ - 0.03 SiO ₂ , and 0.093 TiO ₂ - 0.07 ZrO ₂	
	mixed oxide photocatalysts from TG-DTG analysis	58
4.2	Thermal decomposition result of the dried synthesized	
	SrTiO ₃ and SrTi _{0.97} Zr _{0.03} O ₃ photocatalysts from	
	TG-DTG analysis	60
4.3	N_2 adsorption-desorption results of the synthesized	
	mesoporous-assembled pure TiO2, 0.97TiO ₂ -0.03SiO ₂ ,	
	0.93TiO ₂ -0.07ZrO ₂ , SrTiO ₃ and SrTiZrO ₃ photocatalysts	66
4.4	N_2 adsorption-desorption results of the synthesized	
	bimetallic Pt-Ag-loaded mesoporous-assembled	
	$0.97 TiO_2$ - $0.03 SiO_2$, $0.93 TiO_2$ - $0.07 ZrO_2$, and $SrTi_{0.93} Zr_{0.07}O_3$	
	photocatalysts	67
4.5	Crystallite size results of the synthesized mesoporous-	
	assembled pure TiO ₂ 0.97TiO ₂ -0.03SiO ₂ , 0.93TiO ₂ -0.07ZrO ₂ ,	
	pure $SrTiO_3$ and $SrTi_{0.93}Zr_{0.07}O_3$ photocatalysts	71
4.6	Crystallite size results of the synthesized bimetallic	
	Pt-Ag-loaded mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ ,	
	0.93TiO ₂ -0.07ZrO ₂ , and SrTi _{0.93} Zr _{0.07} O ₃ photocatalysts	
	calcined at 500 °C, 500 °C, and 700 °C, respectively	75

TABLE

4.7	Absorption onset wavelength and ban gap energy	
	results of the synthesized mesoporous-assembled	
	0.97TiO ₂ -0.03SiO ₂ , 0.93TiO ₂ -0.07ZrO ₂ , and	
	SrTi _{0.93} Zr _{0.07} O ₃ photoctalysts	82
4.8	Absorption onset wavelength and ban gap energy results	
	of the synthesized mesoporous-assembled $0.97 TiO_2$ - $0.03 SiO_2$,	
	$0.93 TiO_2$ - $0.07 ZrO_2$, and $SrTi_{0.93} Zr_{0.07}O_3$ photocatalysts with	
	bimetallic Pt-Ag loadings	83
4.9	Metal dispersion results over the bimetallic Pt-Ag-loaded	
	mesoporous-assembled 0.97TiO ₂ -0.03SiO ₂ ,	
	$0.93 TiO_2$ - $0.07 ZrO_2$, and $SrTi_{0.93} Zr_{0.07}O_3$ photocatalysts	
	calcined at 500 °C, 500 °C, and 700 °C, respectively	96

LIST OF FIGURES

FIGURE		PAGE
2.1	Relative emissions of greenhouse gases (expressed in	
	carbon units per km) for vehicles powered by today's	
	internal combustion engine using gasoline compared to	
	vehicles powered by fuel cells	4
2.2	Types of photocatalytic reactions: (a) photoinduced	
	reaction and (b) photon energy conversion reaction	5
2.3	Electrochemical cell in which the TiO2 electrode	
	is connected with a Pt electrode	7
2.4	The structure of band gap energy	9
2.5	Schematic of (a) solid state photovoltaic cell driving	
	a water electrolyzer and (b) cell with immersed	
	semiconductor p/n junction (or metal/semiconductor	
	Schottky junction) as one electrode	10
2.6	Schematic of liquid junction semiconductor electrode cell	11
2.7	Representation of semiconductor particulate system for	
	heterogeneous Photocatalysis	12
2.8	Reaction schematic for water spitting reaction over	
	semiconductor photocatalysts	13
2.9	Processes occurring in semiconductor photocatalyst	
	under photoexcitation for water splitting reaction	14
2.10	Band gap energy of the photocatalyst	15
2.11	Crystal structures of (a) anatase, (b) rutile, and	
	(c) brookite	16
2.12	Photocatalytic hydrogen production over	
	anatase/rutile TiO_2 under the mediation of I'/IO_3^-	23
2.13	Mechanism of dye-sensitized photocatalytic hydrogen	
	production under visible light irradiation	30
2.14	Electron injection in composite semiconductors	32

2.15	Proposed mechanism of phenol degradation at	
	the surface of Ag/Au-TiO ₂ nanoparticles	37
2.16	A schematic of forming the BaTiO ₃ nanoparticles	40
3.1	Synthesis procedure for mesoporous-assembled	
	$0.97 TiO_2$ - $0.03 SiO_2$ photocatalysts: (a) without and	
	(b) with Pt and/or Ag-loading by PCD method	45
3.2	Synthesis procedure for mesoporous-assembled	
	0.93TiO ₂ -0.07ZrO ₂ photocatalysts: (a) without and	
	(b) with Pt and/or Ag-loading by PCD method	48
3.3	Synthesis procedure for mesoporous-assembled	
	SrTiZrO ₃ photocatalysts: (a) without and	
	(b) with Pt and/or Ag-loading by PCD method	51
3.4	Setup of photocatalytic H ₂ production system	54
4.1	TG-DTA curves of the dried synthesized (a) pure TiO_2 ,	
	(b) 0.97TiO ₂ -0.03SiO ₂ , and (c) 0.93TiO ₂ -0.07ZrO ₂	
	photocatalysts	57
4.2	TG-DTA curves of the dried synthesized (a) $SrTiO_3$ and	
	(b) SrTi _{0.93} Zr _{0.07} O ₃ photocatalysts	59
4.3	N ₂ adsorption-desorption isotherms and pore size	
	distributions (inset) of the synthesized	
	mesoporous-assembled photocatalysts calcined at 500 °C:	
	(a) pure TiO ₂ , (b) 0.97 TiO ₂ - 0.03 SiO ₂ and	
	(c) 0.93TiO ₂ -0.07ZrO ₂	63
4.4	N ₂ adsorption-desorption isotherms and pore size	
	distribution (inset) of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded	
	mesoporous-assembled 0.97TiO2-0.03SiO2 photocatalyst	
	calcined at 500 °C	63

PAGE

63

4.5	N ₂ adsorption-desorption isotherms and pore size	
	distribution (inset) of the synthesized	
	0.25 wt.% Pt-1.25 wt.% Ag-loaded mesoporous-	
	assembled 0.93TiO ₂ -0.07ZrO ₂ photocatalysts calcined	
	at 500 °C	64
4.6	N_2 adsorption-desorption isotherms and pore size	
	distributions (inset) of the synthesized mesoporous-	
	assembled photocatalysts calcined at 700 °C: (a) $SrTiO_3$	
	and (b) $SrTi_{0.93}Zr_{0.07}O_3$	65
4.7	N_2 adsorption-desorption isotherms and pore size	
	distribution (inset) of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled SrTi $_{0.93}$ Zr $_{0.07}$ O ₃ photocatalysts calcined	
	at 500 °C	65
4.8	XRD patterns of the synthesized mesoporous-assembled	
	pure TiO ₂ , 0.97 TiO ₂ - 0.03 SiO ₂ , and 0.93 TiO ₂ - 0.07 ZrO ₂	
	photocatalysts calcined at 500 °C, (A = Anatase TiO_2).	69
4.9	XRD patterns of the synthesized mesoporous-assembled	
	pure SrTiO ₃ and SrTi _{0.93} Zr _{0.07} O ₃ photocatalysts	
	calcined at 700 °C	70
4.10	XRD patterns of the synthesized bimetallic Pt-Ag-loaded	
	mesoporous-assembled $0.97 TiO_2$ - $0.03 SiO_2$ photocatalysts	
	calcined at 500 °C, (A = Anatase TiO ₂)	72
4.11	XRD patterns of the synthesized bimetallic Pt-Ag-loaded	
	mesoporous-assembled $0.93 TiO_2$ - $0.07 ZrO_2$ photocatalysts	
	calcined at 500 °C (A = Anatase TiO_2)	73
4.12	XRD patterns of the synthesized bimetallic Pt-Ag-loaded	
	mesoporous-assembled SrTi _{0.93} Zr _{0.07} O ₃ photocatalysts	
	calcined at 700 °C	74

4.13	UV-visible spectra of the synthesized mesoporous-	
	assembled photocatalysts calcined at 500 °C:	
	(a) pure TiO_2 , and (b) $0.97TiO_2$ - $0.03SiO_2$, and	
	(c) $0.93 \text{TiO}_2 - 0.07 \text{ZrO}_2$	77
4.14	UV-visible spectra of the synthesized mesoporous-	
	Assembled photocatalysts calcined at 700 $^{\circ}C$: (a) SrTiO ₃	
	and (b) SrTi _{0.93} Zr _{0.07} O ₃	78
4.15	UV-visible spectra of the synthesized mesoporous-	
	assembled photocatalysts calcined at 500 °C:	
	(a) $0.97 TiO_2$ - $0.03 SiO_2$ and (b) 1.25 wt.% Pt- 0.25 wt.% Ag-	
4.16	loaded 0.97TiO ₂ -0.03SiO ₂ UV-visible spectra of the synthesized mesoporous-	79
	assembled photocatalysts calcined at 500 °C:	
	(a) 0.93TiO2-0.07ZrO2 and (b) 0.25 wt.% Pt-1.25 wt.% Ag-	
4.17	loaded 0.93TiO ₂ -0.07ZrO ₂ UV-visible spectra of the synthesized mesoporous-	80
	assembled photocatalysts calcined at 700 °C:	
	(a) $SrTi_{0.93}Zr_{0.07}O_3$ and (b) 1.25 wt.% Pt-0.25 wt.% Ag-	
	loaded SrTi _{0.93} Zr _{0.07} O ₃	81
4.18	UV-visible spectrum of Eosin Y solution	81
4.19	SEM images of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 °C: (a) $0.97 TiO_2$ - $0.03 SiO_2$	
	and (b) 1.25 wt.% Pt-0.25 wt.% Ag-loaded	
	0.97TiO ₂ -0.03SiO ₂	84
4.20	SEM images of the synthesized mesoporous-assembled	
	photocatalysts calcined at 500 °C: (a) 0.93TiO ₂ -0.07ZrO ₂	
	and (b) 0.25 wt.% Pt-1.25 wt.% Ag-loaded	
	0.93TiO ₂ -0.07ZrO ₂	85

4.21	SEM images of the synthesized mesoporous-assembled	
	photocatalysts calcined at 700 °C: (a) $SrTi_{0.93}Zr_{0.07}O_3$ and	
	(b) 1.25 wt.% Pt-0.25 wt.% Ag-loaded SrTi _{0.93} Zr _{0.07} O ₃	85
4.22	SEM image and EDX area mappings of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled $0.97 TiO_2$ - $0.03 SiO_2$ photocatalysts calcined	
	at 500 °C	86
4.23	SEM image and EDX area mappings of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled $0.93 TiO_2$ - $0.07 ZrO_2$ photocatalysts calcined	
	at 500 °C	87
4.24	SEM image and EDX area mappings of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled $SrTi_{0.93}Zr_{0.07}O_3$ photocatalysts calcined	
	at 700 °C	88
4.25	TEM images of synthesized mesoporous-assembled	
	photocatalysts calcined at 500 °C: (a) pure TiO ₂ ,	
	(b) 0.97TiO ₂ -0.03SiO ₂ , and (c) 0.93TiO ₂ -0.07ZrO ₂	90
4.26	TEM images of synthesized mesoporous-assembled	
	photocatalysts calcined at 700 °C: (a) pure $SrTiO_3$ and	
	(b) $SrTi_{0.93}Zr_{0.07}O_3$	91
4.27	TEM image and EDX point mapping of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled $0.97 TiO_2$ - $0.03 SiO_2$ photocatalyst calcined	
	at 500 °C	92
4.28	TEM image and EDX point mapping of the synthesized	
	1.25 wt.% Pt-1.25 wt.% Ag-loaded mesoporous-	
	assembled 0.93TiO ₂ -0.07ZrO ₂ photocatalyst calcined	
	at 500 °C	93

4.29	TEM image and EDX point mapping of the synthesized	
	1.25 wt.% Pt-0.25 wt.% Ag-loaded mesoporous-	
	assembled $SrTi_{0.93}Zr_{0.07}O_3$ photocatalyst calcined at 700 °C	94
4.30	Effect of bimetallic Pt-Ag loading on specific H ₂	
	production rate over the mesoporous-assembled	
	0.97TiO ₂ -0.03SiO ₂ photocatalyst calcined at 500 °C	
	(Photocatalyst, 0.2 g; total reaction mixture volume,	
	150 ml; DEA concentration, 15 vol.%;	
	E.Y. concentration, 0.1 mM; irradiation time, 5 h)	98
4.31	Effect of bimetallic Pt-Ag loading on specific H_2	
	production rate over the mesoporous-assembled	
	0.93TiO ₂ -0.07ZrO ₂ photocatalyst calcined at 500 °C	
	(Photocatalyst, 0.2 g; total reaction mixture volume,	
	150 ml; DEA concentration, 15 vol.%;	
	E.Y. concentration, 0.1 mM; irradiation time, 5 h)	99
4.32	Effect of bimetallic Pt-Ag loading on specific H_2	
	production rate over the mesoporous-assembled	
	SrTi _{0.93} Zr _{0.07} O ₃ photocatalyst calcined at 700 °C	
	(Photocatalyst, 0.2 g; total reaction mixture volume,	
	150 ml; DEA concentration, 15 vol.%;	
	E.Y. concentration, 0.1 mM; irradiation time, 5 h)	100