

## CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

## 5.1 Conclusions

In this research, the mesoporous-assembled TiO<sub>2</sub>-SiO<sub>2</sub>, TiO<sub>2</sub>-ZrO<sub>2</sub>, and  $SrTi_xZr_{1-x}O_3$  nanocrystal photocatalysts were synthesized by the sol-gel process with the aid of a structure-directing surfactant at the Ti-to-Si molar ratio of 97:3 and Ti-to-Zr molar ratio of 93:7 and were comparatively tested for sensitized photocatalytic H<sub>2</sub> production under visible light irradiation from an aqueous diethanolamine (DEA) solution containing dissolved Eosin Y (E.Y.) sensitizer. The bimetallic Pt-Ag loadings on the  $0.97 \text{TiO}_2 - 0.03 \text{SiO}_2$ ,  $0.93 \text{TiO}_2 - 0.07 \text{ZrO}_2$  and  $\text{SrTi}_{0.93} \text{Zr}_{0.07} \text{O}_3$ photocatalysts were prepared by the photochemical deposition (PCD) method with the aim of photocatalytic activity enhancement. The experimental results revealed that the bimetallic 1.25 wt.% Pt-0.25 wt.% Ag loaded on the mesoporous-assembled 0.97TiO<sub>2</sub>-0.03SiO<sub>2</sub> photocatalyst significantly enhanced the photocatalytic hydrogen production activity with the hydrogen production rate of 3.21 cm<sup>3</sup>/h·g<sub>cat</sub>, whereas the bimetallic 1.25 wt.% Pt-0.25 wt.% Ag loaded on the 0.93TiO<sub>2</sub>-0.07ZrO<sub>2</sub> photocatalyst exhibited the hydrogen production rate of 2.11 cm<sup>3</sup>/h·g<sub>cat</sub>. Interestingly, among the investigated photocatalysts, the SrTi<sub>0.93</sub>Zr<sub>0.07</sub>O<sub>3</sub> photocatalyst with bimetallic 1.25 wt.% Pt-0.25 wt.% Ag loading showed the highest hydrogen production rate of 5.37 cm<sup>3</sup>/h·g<sub>cat</sub>.

## 5.2 Recommendations

In order to obtain higher photocatalytic activity, other types of bimetallic loading, e.g. Pt-Ni, can also be potentially used to load on the synthesized mesoporous-assembled  $0.93\text{TiO}_2$ - $0.07\text{SiO}_2$ ,  $0.93\text{TiO}_2$ - $0.07\text{ZrO}_2$ , and  $\text{SrTi}_{0.93}\text{Zr}_{0.07}\text{O}_3$  photocatalysts for the H<sub>2</sub> production application. The incorporation of SiO<sub>2</sub> into SrTiO<sub>3</sub> is also interesting to be studied for visible light irradiation system.