MCM-48-POLYBENZOXAZINE MIXED MATRIX MEMBRANES FOR CH₄/CO₂ SEPARATION

Nuttheewan Kittisarunlerd

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2012

.

Thesis Title:	MCM-48-Polybenzoxazine Mixed Matrix Membranes for	
	CH ₄ /CO ₂ Separation	
By:	Nuttheewan Kittisarunlerd	
Program:	Polymer Science	
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit	
	Asst. Prof. Thanyalak Chaisuwan	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyalak Chaisun

(Asst. Prof. Thanyalak Chaisuwan)

Jothaha M.

(Asst. Prof. Hathaikarn Manuspiya)

B. Km

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5372015063:	Polymer Science Program
	Nuttheewan Kittisarunlerd: MCM-48-Polybenzoxazine Mixed
	Matrix Membranes for CH ₄ /CO ₂ Separation
	Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, and Asst. Prof.
	Thanyalak Chaisuwan 47 pp.
Keywords:	Mixed matrix membrane/ Gas separation/ MCM-48/
	Polybenzoxazine

Mesoporous MCM-48 was synthesized from silatrane via sol-gel process and mixed with polybenzoxazine (PBZ) to fabricate mixed-matrix membranes (MMMs) for gas separation. The performance of the membranes was investigated as a function of filler loading. The permeance of CH_4 and CO_2 increased with increasing MCM-48 loading was more strongly affected by the gas diffusivity than by the gas solubility. The selectivity had a maximum at 10 wt% loading that related to the good interaction between MCM-48 and PBZ matrix and that the MMM was defect free, as indicated in the characterization done by SEM, ATR-FTIR and DSC.

บทคัดย่อ

นัทธีวรรณ กิตติศรัณย์เลิศ : การใช้แผ่นเยื่อบางผสมของ MCM-48 และพอลิเบนซอก-ซาซีนในการแยกก๊าซมีเทนและก๊าซการ์บอนไดออกไซด์ (MCM-48-Polybenzoxazine Mixed Matrix Membranes for CH₄/CO₂ Separation) อ.ที่ปรึกษา: รองศาสตราจารย์ ดร.สุจิตรา วงศ์เกษมจิตต์ และ ผู้ช่วยศาสตราจารย์ ดร.ธัญญลักษณ์ ฉายสุวรรณ์ 47 หน้า

MCM-48 ที่มีรูพรุนขนาดเมโซถูกสังเคราะห์ขึ้นจาก silatrane ด้วยกระบวนการโซล-เจล และนำมาผสมกับพอลิเบนซอกซาซีนเพื่อเตรียมแผ่นเยื่อบางผสมสำหรับแยกก๊าซมีเทนออก จากก๊าซคาร์บอนไดออกไซด์ ประสิทธิภาพของเมมเบรนศึกษาจากการเปลี่ยนแปลงปริมาณของ ฟิลเลอร์ที่เติมลงไป จากการทดลองพบว่า การซึมผ่านของก๊าซมีเทนและก๊าซคาร์บอนไดออกไซด์ มีก่าเพิ่มขึ้นเมื่อเพิ่มปริมาณของ MCM-48 ในเมมเบรน ซึ่งเป็นผลมาจากการแพร่ของก๊าซมากกว่า การละลายของก๊าซ ขณะที่ความสามารถในการเลือกผ่านก๊าซมีค่ามากที่สุดเมื่อปริมาณของ MCM-48 เพิ่มขึ้นเท่ากับ 10 เปอร์เซนด์โดยน้ำหนัก ซึ่งอธิบายได้จากการเกิดแรงดึงดูดที่ดี ระหว่าง MCM-48 และพอลิเบนซอกซาซีนเมทริกซ์ และการไม่เกิดรอยแยกของเมมเบรน ซึ่ง สามารถพิสูจน์โดยใช้เครื่อง SEM, ATR-FTIR และ DSC

ACKNOWLEDGEMENTS

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand

I wish to express special thanks to my advisor and co-advisor, Assoc. Prof. Sujitra Wongkasemjit and Asst. Prof. Thanyalak Chaisuwan for their kindness suggestions and encouragement. I appreciate all Professors for their invaluable knowledge and all staffs for their assistances at the Petroleum and Petrochemical College, Chulalongkorn University.

Furthermore, I would like to thank all of the members in my research group for their kindness, cheerfulness, suggestions, encouragement and friendly assistance. I had enjoyable time working with all of them. Finally, the acknowledgements would not be complete without expressing special thanks to my family for warm support and understanding.

TABLE OF CONTENTS

PAGE

	Title P	lage	i
	Abstract (in English)		
	Abstract (in Thai)		iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of Tables		viii
	List of Figures		ix
	Abbre	viations	xi
CHA	APTER		
	I INTRODUCTION		1
	Π	LITERATURE REVIEW	3
	III	EXPERIMENTAL	13
		3.1 Materials	13
		3.2 Equipment	13
		3.3 Methodology	14
		3.3.1 Silatrane Synthesis	14
		3.3.2 Synthesis of MCM-48	14
		3.3.3 Synthesis of MCM-48	14
		3.3.4 Synthesis of Polybenzoxazine Precursor	15
		3.3.5 Preparation of Polybenzoxazine Membrane	15
		3.3.6 Preparation of Mixed Matrix Membranes (MMMs)	16
		3.3.7 Characterization	16
		3.3.8 Gas Permeation Measurements	17

IV	RESULTS AND DISCUSSION	20
	4.1 Characterization of Mesoporous Molecular Sieve	20
	4.2 Polybenzoxazine Membrane Properties	22
	4.2.1 Polybenzoxazine Membrane Properties	22
	4.2.2 Appearance and Morphology of Polybenzoxazine	
	Membrane	24
	4.2.3 Thermal Behaviors of the Synthesized	
	Polybenxozazine	25
	4.3 Mixed Matrix Membranes Properties	26
	4.3.1 Appearance of Mixed Matrix Membranes	26
	4.3.2 Interfacial Interaction of Polybenzoxazine and	
	MCM-48	27
	4.4 Gas Separation Measurements	
	4.2.1 Effect of Filler Loading on the Gas Permeability	32
	4.3.2 Effect of Silica type (MCM-48 and MCM-41) on	
	the Gas Permeability	37
V	CONCLUSIONS AND RECOMMENDATIONS	39
	REFERENCES	40
	APPENDIX	44
	Appendix A Experimental Flow Rate of CH ₄ and CO ₂ of MMMs	44
	CURRICULUM VITAE	47

LIST OF TABLES

TABLE		PAGE
4.1	Specific surface area, pore volume, and pore diameter of the	
	synthesized MCM-48 and MCM-41	21
4.2	Glass transition temperature (Tg) of PBZ and MCM-48/PBZ	
	membranes	31
4.3	CH_4/CO_2 selectivity, gas permeance of CH_4 and CO_2 (GPU)	
	using PBZ, MCM-48/PBZ, and MCM-41/PBZ membranes	32
4.4	Diffusivity (D) and solubility (S) of gases in MCM-48/PBZ	
	membranes at different loadings	36

LIST OF FIGURES

FIGURE

3.1	Synthesis of polybenzoxazine precursor	15
3.2	a) Experimental setup for a gas permeability apparatus and	
	b) a membrane testing unit	17
4.1	SEM images of the synthesized (a) MCM-48 and (b) MCM-	
	41	20
4.2	XRD spectra of the synthesized MCM-48 and MCM-41	21
4.3	N2-adsorption and desorption isotherms of (a) MCM-48 and	
	(b) MCM-41	22
4.4	IR spectrum of the synthesized polybenzoxazine membrane	23
4.5	¹ H-NMR spectrum of the synthesized polybenzoxazine	
	precursor	23
4.6	Appearance of the synthesized polybenzoxazine membrane	24
4.7	SEM micrographs of the synthesized polybenzoxazine	
	membrane from (a) top view and (b) cross-section	24
4.8	DSC thermogram of the synthesized polybenzoxazine	
	precursor	25
4.9	TGA thermogram of the synthesized polybenzoxazine	
	membrane	26
4.10	Appearance of mixed matrix membrane	26
4.11	IR spectra of MCM-48, the synthesized polybenzoxazine	
	membrane, and mixed matrix membrane	27
4.12	SEM micrographs of the PBZ membrane surface, containing	
	various amounts of mesoporous MCM-48, (a) 1, (b) 5, (c)	
	10, (d) 15, and (e) 20 wt%	28

PAGE

FIGURE

4.13	Cross-section SEM micrographs of PBZ membranes	
	containing various amounts of mesoporous MCM-48; a, b)	
	1, c, d) 5, e, f) 10, g, h) 15, and i, j) 20 wt%	29
4.14	IR spectra of polybenzoxazine membranes containing	
	various amounts of mesoporous MCM-48; a) 1, b) 5, c) 10,	
	d) 15, and e) 20 wt%	31
4.15	Pure gas permeances of MCM-48/PBZ membranes with	
	different loadings	34
4.16	Selectivity of MCM-48/PBZ membranes at different	
	loadings	34
4.17	The structure of mesoporous materials (a) MCM-41 and (b)	
	MCM-48	38
4.18	SEM micrographs of 10 wt% MCM-41/PBZ membrane from	
	(a) top view and (b) cross-section	38
4.19	The shape of gas molecules (a) CO_2 and (b) CH_4	38

ABBREVIATIONS

¹ H NMR	Proton nuclear magnetic resonance spectroscopy
ATR–IR	Attenuated total reflectance infrared spectroscopy
DSC	Differential scanning calorimetry
FT–IR	Fourier transform infrared spectrometer
MMM	Mixed matrix membrane
PBZ	Polybenzoxazine
SAA	Surface area analysis
SEM	Scanning electron microscopy
TGA	Thermogravimetric analysis