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APPENDICES
Appendix A Raman Spectra of The Synthesized Graphene

Raman spectroscopy was used to verify graphite and graphene due to the ability
to identify and characterize all the members of the carbon family. The characterizations
were nondestructive, fast, with high resolution and give the maximum structural and
electronic information. The indications of graphite raw material and synthesized
graphene were measured by the Raman spectroscopy (NT-MDT, NTEGRA Spectra)
with 632.8 nm excitation laser, objective lens 100xand accumulate time 60s from
National Nanotechnology Center.

The main features in the Raman spectra of carbons are called G and D peaks,
which lie at around 1560 and 1360 cm-1, respectively, for visible excitation. The G peak
represents the bond stretching of all pairs of sp2atoms in both rings and chains. The D
peak refers to the breathing modes of sp2 atoms in the rings. Another peak is 2D, at
2700 ¢cm"1, which is the second order of D peak. A significant change in the shape and
intensity of the 2D peak of graphene compared to bulk graphite is that the 2D peak in
bulk graphite consists of two components (2Di and 2D2), while graphene has only one
peak (2D). Moreover, graphene has a single, sharp 2D peak, roughly four times more
intense than the G peak (Ferrari, 2007).
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Appendix B XRD Pattern of The Synthesized Graphene

The wide angle X-ray diffraction microscope (XRD) was used to study the
crystal structure below the nanometer scale. The CuK-alpha radiation source was
operated at 40 kV/30 mA. K-beta filter was used to eliminate interference peak.
Divergence slit and scattering slit 0.5 deg together with 0.3 mm of receiving slit were set
on the instrument. The graphene powder was placed into a sample holder and the
measurement was continuously run. The experiments were recorded by monitoring the
diffraction appearing in the diffraction angle (20) range from 10 to 80 with a scan speed

5deg/min and a scan step 0.02 deg.
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Appendix C FT-IR Spectra of The Synthesized Graphene and Natural Rubber
(NR)

Fourier Transform Infrared Spectroscopy (FT-IR) was used to investigate the
characteristic vibration frequencies of the molecules in order to determine the molecular
structure of the samples. This technique employed the absorption mode with 32 scans a
resolution of £4 ¢m’% covering a wavelength range of 400-4000 cm’L using deuterated
triglycine sulfate as a detector. Optical grade KBr powder was used as a hackground
material to characterize the synthesized graphene and the graphite raw material. The
sample powder was ground with KBr and pressed to form pallets before testing. In
addition, NR films were characterized for the functional groups by using the Attenuated
total reflectance (ATR) mode.
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Table Cl Assignments of the fundamental vibration modes for graphene oxide

(Krishnamoorthy, 2013)
Assignment
OH stretching
=0 stretching
C-C vibration
C-OH bending
C-0 stretching
C -0 stretching

Wavenumber (cm’)
3260
1728
1600
1413
1250
1050
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Table C2 Assignments of the fundamental vibration modes for pure NR (Guidelli,

2011)

Assignment
CHastretching
CHzasymmetry stretching
CHz2symmetry stretching
CZOSymmeUMSUMCMng
CHz2hending
C-H asymmetric bending
CH2wagging
C-CHazstretching
C=C-H bending

Wavenumber (cm ')
2960
2920
2855
1667
1447
1376
1126
1086
838
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Appendix D TGA Themogram of The Natural Rubber Film and Its Composites

A thermogravimetric analyzer (Thermo, TGA Q 50) was used to determine the
thermal behavior of the NR film. The thermal behavior was examined by weighting
sample of 4-5 mg and loaded into a platinum pan. The mass change under the
temperature scan from 30 to 550 °Cata heating rate of 10 °c/min and under the nitrogen
flow was monitored and recorded.
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Figure D1 TGA themogram of the crosslinked NR with various crosslink times and a
fixed crosslinking ratio of 2.0 %v/v.
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Table DI Summary of the thermal behavior of NR film

Sample

Pure NR

Crosslinking times
(min)

Crosslinking
concentrations
(%viv)

Graphene
concentrations
(%vIv)

15
0.1
0.5
1.0
3.0
5.0

0.01
0.1
1.0
5.0
10.0
20.0

Onset Temperature, To,
(
223.77
229.16
208.90
210.42
231.95
231.95
240.51
243.40
249.61
273.55
265.01
260.11
251.17
245.07
255.13
258.04

Derivative Peak
Temperature, Tp,

(°C)
352.29
353.24
355.66
360.68
363.22
363.45
361.99
362.52
359.91
312.33
366.32
371.26
368.05
370.68
374.43
3712.73



Table D2 Thermal behavior assignations for TGA behavior of NR film

Behavior Temperature ( C) References
Removal of adsorbed water below 200 Ly et aI., 2006
on the surface
Decomposition of C-C
inkages 200 - 270 yahya etal., 2011
Degradation of carbon Above 350 Sharif etal., 2005

hackhone

86
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Appendix E Mole Percent Uptake of Solvent, Weight Loss, and Crosslink Density
Determined by Swelling Method

Dried rubber sheets were prepared by casting the latex on glass plates and
cured under UV radiation with various UV irradiation times and concentration of
crosslinker. The thin films were cut into small pieces (1 c¢cm2) and then immersed in
toluene (150 mL) until the swelling reaches the equilibrium (3 days). The mole percent
uptake of solvent, weight loss, and crosslinking density of crosslinked NR were
calculated from the following equations;

cw0
Mole percent uptake of solvent = _WV' X 100 (E1)

where Wo and Wtare the weights of dried and swollen samples, respectively. MWis the
molar mass of toluene (92.14 g mol"Y).

% Weight loss = X 100 (E2)

where |\/|j and Md are the weight of dried rubber before and after soaking in toluene.

o ~[in(l-VrHr XV v

V' (

where vc is effective number of chains in a real network per unit volume, v ris volume
fraction of polymer in a swollen network in equilibrium with pure solvent and is
calculated as:

N ~ Weight of dry rubber/density of dry rubber
*r ~ Weight of dry rubber 1 Weight of solvent absorbed by sample (E4)
DenSity of dry rubber Density of solvent
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Xiis polymer-solvent interaction parameter (0.391) and V/'is molecular volume ot

solvent.

Table E1 Swelling results of crossliked NR films at various UV irradiation times, fixed

crosslinking ratio 2.0 %v/v

uv
irradiation
times (min)

10

12

No.

O MR s O RN s WO N s W R s GO RN W RN

Weight
before
swelling (g)

0.0396
0.0508
0.0494
0.0599
0.0514
0.0481
0.0405
0.0355
0.0442
0.0298
0.0383
0.0393
0.0401
0.0360
0.0357
0.0276
0.0287
0.0267

Weight after
swelling (g)

1.2140
1.0042
0.7913
0.6020
0.4509
0.6746
0.2775
0.3489
0.3802
0.2790
0.2607
0.2610
0.1685
0.1883
0.1702

Dried

weight

(0)

0.0329
0.0263
0.0226
0.0313
0.0167
0.0254
0.0278
0.0345
0.0346
0.0371
0.0334
0.0325
0.0257
0.0277
0.0257

Mole %
uptake of
toluene

1.0318
1.0298
1.0193
1.0123
0.9999
1.0142
0.9688
0.9662
09731
0.9293
0.9354
0.9369
0.9075
0.9199
0.9150

Weight loss
(%)

100.00
100.00
100.00
45.08
48.83
53.01
22.72
52.96
42.54
6.71
9.92
11.96
148
1.22
8.96
6.88
3.48
3.74

Crosslink
density
(mole/cm3)

4.38E-08
1.62E-07
9.14E-07
3.15E-07
1.62E-06
3.58E-07
1.10E-06
1.52E-06
4.22E-07
2.70E-06
3.17E-06
2.39E-06
8.74E-06
2.91E-05
2.17E-06
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Table El Swelling results of crossliked NR films at various uv irradiation times, fixed

concentration of crosslinker 2.0 %v/v (continue 1)

i ' 0 : Crosslink
: U.V : Welght Weight after Dr_|ed Mole % Weight loss ross_ln
irradiation  No. before . weight  uptake of density
) . . swelling (g) (%)
times (min) swelling (g) (9) toluene (mole/cm3)
1 0.0402 0.6858 0.0246 1.0217 38.81 6.69E-06
b 2 0.0388 0.6236 00227 10178 41.50 2.37E-07
3 0.0331 0.5281 0.0207 1.0173 37.46 1.57E-06

Table E2 Swelling results of crossliked NR films at various concentrations of
crosslinker, fixed uv irradiation time 7 min

Concentratio : \ Mole u .
of Welght Weight after Dr_|ed take of Weight loss Cross!|nk
. No. before ) weight density
crosslinker swelling () swelling (g) toluene (%) (molelem?)
(96w 90 0w
1 0.0396 - - - 100.00
0 2 0.0508 - - - 100.00
3 0.0494 - - - 100.00
1 0.0393 ] ] ) 100.00
01 2 0.0322 ) ) ) 100.00
3 0.0289 \ \ ] 100.00
1 0.0442 1.1931 0.0195 1.0451 55.88 3.00E-04
05 2 0.0326 0.8192 00183  1.0421 43.86 2.82E-05
3 0.0386 0.9982 0.0171 1.0433 55.70 3.90E-05



Table E2
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Swelling results of crossliked NR films at various concentrations of

crosslinker, fixed UV irradiation time 7 min (continue 1)

Concentratio

of

crosslinker

(%vh)

10

2.0

3.0

5.0

1.0

10.0

WO N s WO RN s W RN pa G R pa GO RN s W N

Weight
before
swelling (g)

0.0269
0.0280
0.0254
0.0283
0.0311
0.0284

0.0255
0.0259
0.0292
0.0468
0.0322
0.0419
0.0273
0.0231
0.0383
0.0239
0.0343
0.0409

Weight after
swelling (g)

0.6444
0.6448
0.3167
0.3424
0.3518
0.3063

0.2044
0.2006
0.2247
0.2470
0.1577
0.2184
0.1453
0.1135
0.2614
0.1092
0.1816
0.2263

Dried
weight

©)

0.0145
0.0159
0.0080
0.0241
0.0265
0.0248

0.0242
0.0240
0.0266
0.0445
0.0313
0.0410
0.0253
0.0225
0.0346
0.0211
0.0313
0.0381

Mole up
take of
toluene
(%)
24910
2.3900
1.2440
1.2040
1.1190
1.0610

0.9499
0.9451
0.9443
0.8797
0.8637
0.8771
0.8814
0.8644
0.9263
0.8478
0.8803
0.8891

Weight loss
(%)

46.09
4321
68.50
14.84
14.79
12.67

5.09
1.33
8.90
491
2.79
2.14
1.32
2.59
9.66
1171
8.74
6.84

Crosslink
density
(mole/cm3)

0.29E-05
0.3 IE-05
0.89E-05
0.94E-05
1.05E-05
1.14E-05

1.99E-05
1.94E-05
1.00E-04
2.00 E-04
9.11E-06
2.18E-05
1.50E-05
1.00E-04
3.37E-05
1.53E-06
2.85E-05
2.T4E-05



Table E2

crosslinker, fixed uv irradiation time 7 min (continue 2)

concentratio

of
crosslinker
(%viv)

150

20.0

W N s WO RO

Weight
before
swelling (g)

0.0233
0.0268
0.0379
0.0208
0.0583
0.0331

Weight after
swelling (g)

0.1085
0.0972
0.1838
0.0850
0.3730
0.1505

Dried

weight

9)

0.0200
0.0237
0.0306
0.0175
0.0457
0.0265

Mole up

take of
toluene
(%)
0.8522
0.7861
0.8615
0.8197
0.9157
0.8466

Weight loss
(%)

14.16
11.57
19.26
15.87
21.61
19.94

91

Swelling results of crossliked NR films at various concentrations of

Crosslink
density
(mole/cm3)

1.00E-04
6.58E-05
1.00E-04
2.00E-04
1.32E-05
6.06E-05
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Figure EI Mole uptake of toluenen of crossliked NR films at various uv irradiation
times, a fixed concentration of crosslinker of 2.0 %v/v.
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Figure E2 Weight loss of crossliked NR films at various uv irradiation times, a fixed
concentration of crosslinker of 2.0 %v/v.
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Figure E3 Crosslinking density of crossliked NR films at various u v irradiation times,

a fixed concentration of crosslinker of 2.0 %v/v.
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Figure E5 Weight loss of crossliked NR films at various concentrations of crosslinker,
a fixed uv irradiation time of 7 min.
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Figure E6 Crosslinking density of crossliked NR films at various concentrations of
crosslinker, a fixed u v irradiation time of 7 min,
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Appendix F Mechanical Properties of Natural Rubber Film

The mechanical properties of NR film were measured by the melt rheometer
(Rheometric scientific, Ares) with the extensional fixture at room temperature. In this
experiment, the transient mode was applied and the stress was monitored during
stretching, as a function of strain, at strain rate 0.01s'L From the results, stress vs. strain
was obtained. An evaluation of the mechanical properties of the film was focus on the
modulus, the yield point, and the yield strain. The mechanical properties of NR were

studied in terms of UV-irradiation time and concentration of crosslinker.

1e+7 —E

™

® (0 UVirradiation time (Minute)
® 7 UVirradiation time (Minute)
1e+6 - ® 12 UVirradation time (Minute)
15 UVirradiation time (Minute)

1e+d ¢ . be ©
—~ F s
< [
=) L
@ et ¢
(] s
B [
)
1e+3 1
8
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le+2 4 o
; ©
o
1e+1J| i A .1;..;] A 411;;14' " i ‘I‘I“T i " ......‘ A I TS R )
0.01 0.1 1 10 100 1000

Strain (%)

F|gure FI Stress-strain curve of NR films at various UV irradiation times, a fixed
concentration of crosslinker of 2.0 %v/v, by using the melt rheometer in the tension

mode with a strain rate 0.01 ‘'land temperature of 300 K.
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Figure F2 Modulus of NR films at various uv irradiation times, a fixed concentration
of crosslinker of 2.0 %vlv, by using the melt rheometer in the tension mode with a strain
rate 0.01 "land temperature of 300 K.
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Figure F3  Yield strength of NR films at various uv irradiation times, a fixed
concentration of crosslinker of 2.0 %viv, by using the melt rheometer in the tension
mode with a strain rate 0.01 'land temperature of 300 K.
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Figure F4 Yield strain of NR films at various uv irradiation times, a fixed
concentration of crosslinker of 2.0 %v/v, by using the melt rheometer in the tension
mode with a strain rate 0.01 "Land temperature of 300 K.
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Table FI Mechanical properties of NR films at various UV irradiation times, a fixed

concentration of crosslinker of 2.0 %v/v, by using the melt rheometer in the tension

mode with a strain rate 0.01 ‘'land temperature of 300 K

Crosslinking
Yield strength (Pa)
time (min)

0 2.65E+5 + 9.27E+4
7 4.92E+5 + 1.12E+5
12 8.62E+5 + 1.70E+5
15 3.23E+5 + 9.67E+3

Yield strain (%)

53.97 +£7.39

70.39 *7.26

73.61 £2.09

62.23 *

4.28

Modulus (Pa)

4.67Ex3 = 1.0E+x3

6.82E+3 + 8.74Ex2

1.16E+4 = 1.75E%2

5.05Ex3+5.06E+2
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F|gure F5 Stress-strain curve of NR films at various concentrations of crosslinker, a
fixed UV irradiation time of 7 min, by using the melt rheometer in the tension mode

with a strain rate 0.01 'land temperature of 300 K.
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Figure F6 Modulus of NR films at various concentrations of crosslinker, a fixed uv
irradiation time of 7 min, by using the melt rheometer in the tension mode with a strain

rate 0.01 'land temperature of 300 K.
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Figure F7 Yield strength of NR films at various concentrations of crosslinker, a fixed
UV irradiation time of 7 min, by using the melt rheometer in the tension mode with a
strain rate 0.01 'Land temperature of 300 K.
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Figure F8 Yield strain of NR films at various concentrations of crosslinker, a fixed uv
irradiation time of 7 min, by using the melt rheometer in the tension mode with a strain

rate 0.01 'land temperature of 300 K.
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Table F2 Mechanical properties of NR films at various concentrations of crosslinker, a

fixed UV irradiation time of 7 min, by using the melt rheometer in the tension mode

with a strain rate 0.01

Concentrations of
crosslinker (%viv)
0.1
05
10
2.0
30
50
70
100
150
20.0

‘land temperature of 300 K

Yield strength (Pa)

3.09E+5 + 9.00E+4
3.41E+5 £ 6.00E+4
5.53E+5 + 5.37E+3
4.92E45 + 1.12E45
5.25E+5 + 1.40E+5
1.71E+5 £ 2.04E+5
508E+5 + LI1E+5
6.29E+5 £ 1.22E+5
T.44E+5 £ 1.15E45
6.71E+5 £ 5.81E+4

Yield strain (%)

45.02 £9.17
36.76 +3.37
46.80 £3.20
5157+ 5.84
39.58 £6.07
5041 +5.18
39.18+2.74
4546 £3.18
50.30 +4.98
53.66 +5.82

Modulus (Pa)

1.76E+3 £ 7.00E+2
1,00E+4 + 109E+2
1.29E+4+9.82E+2
106E+4 + 1.36E£3
1.30E+4 + 2.20E+3
1.79E+4+ 1.27E+3
1.16E+4+3.93E+2
1.32E+4+ 108E£3
1.54E+4+ 1.69E+3
1.96E+4+3.02E+3
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Appendix G Mechanical properties of natural rubber and graphene composite
film under the effect of commercial graphene multilayers with v v irradiation time
of 7-min. and concentration of crosslinker 5.0 %v/v

The mechanical properties of graphene/NR composites were measured by the
melt rheometer (Rheometric scientific, Ares) with the extensional fixture at room
temperature. In this experiment, the transient mode was applied and the stress was
monitored during stretching, at strain rate 0.01s'L as a function of strain. From the
results, stress vs. strain was obtained. An evaluation of the mechanical properties of the
film was focus on the modulus, the yield strength, and the yield strain.

le+7
le+6

le+5

le+4
Pure NR
0.01%v/v Graphene/NR composite
0.1%v/v Graphene/NR composite
1% v/v Graphene/NR composite
le+3 5%v/v Graphene/NR composite
10%v/v Graphene/NR composite
20%v/v Graphene/NR composite
DANFOSS commercial compliant electrode

le+2 A
0.01 0.1 1 10 100 1000

Strain (%)

Figure Gl Stress-strain curve of graphene/NR composites at various concentrations of
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f0.01 'Land temperature of 300 K.
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Figure G2 Modulus of graphene/NR composites at various concentrations of graphene
multilayers as measured by the melt rheometer in the tension mode with a strain rate of
001 "land temperature of 300 K.
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Figure G3 Yield strength of graphene/NR composites at various concentrations of
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 'land temperature of 300 K.
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Figure G4 Yield strain of graphene/NR composites at various concentrations of
graphene multilayers as measured by the melt rheometer in the tension mode with a

strain rate 0f 0.01 'Land temperature of 300 K.
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Table G1 Mechanical properties of graphene/NR composites at various concentrations
of graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 'land temperature of 300 K

Graphene
concentration Yield strength (Pa) Yield strain (%) Modulus (Pa)

(%vIv)
0.0 7.78E+5 + 3.89E+4 75.54 +3.71 1.01E+4+ 507.25
0.01 8.26E+5 + 1.25E+5 79.01 £6.51 1.03E+4% 757.46
0.1 5.67E+5 + 8.62E+4 73.16 £ 7.77 757E+3 +527.50
10 1.10E+6 + 5.70E+4 79.34 £6.61 1.38E£4% 782.71
5.0 8.70E+45 + 5.61E+4 73.28 +4.12 1.13E£4% 620.69
10.0 9.70E+5 + 1.84E+5 64.48 + 6.64 1.40E+4+ 1507.49
20.0 1.70E+6 + 2.12E+5 7497 42.22 2.07TE+4+ 1068.84

DANFOSS 2.39E+6 + 8.34E+3 68.10 £ 2.35 3.45E+4% 144584



113

Appendix H  Mechanical Properties and Electrical Conductivity of Natural
Rubber and Graphene Composite Film under The Effect of Graphene Multilayers
with uv Irradiation Time of 7 min. and Concentration of Crosslinker of 5.0 %viv
with Applied Electric Field of 5 volt

The mechanical properties of graphene/NR composites were measured by the
melt rheometer (Rheometric scientific, Ares) with the extensional fixture at room
temperature. In this experiment, the transient mode was applied and the stress was
monitored during stretching, at strain rate 0.01s’L as a function of strain. From the
results, stress versus strain was obtained. An evaluation of the mechanical properties of
the film was focused on the modulus, the yield strength, and the yield strain.

Table HI Prepartion conditions of graphene/NR composite films

Graphene TWEEN 80 Natural rubber ~ Water TWEENS8O/graphene
content (%v/v) (surfactant) (%v/v) latex (ml) (ml) volume ratio

0.0 - 20

0.01 1 20 20 100
0.1 1 20 20 10
1.0 1 20 20 1
5.0 1 20 20 0.2
10.0 2 20 20 0.2
20.0 8 20 40 0.4
30.0 12 20 60 0.4
35.0 14 20 70 0.4
40.0 16 20 80 0.4
45.0 18 20 90 0.4

*Crosslink under UV irradiation time of 7 minute and crosslink concentration of 5.0

%vlv
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The electrical conductivity of graphene/NR composites was investigated with
the same fixture as mechanical testing and then the DC voltage was applied with DC
power supply (Instek, GFG 8216A) connected with a digital multimeter (Tektronix,
CDM 250) to monitor the voltage input. The electrical conductivity during stretching

was calculated through the following equation: ‘ﬂ

where, ais the electrical conductivity (S/cm), R is the resistivity (D Xcm), /s the length
of specimen (cm), A is the cross-section area of specimen (cm2), 7 is the current
(Ampere), and Vis the applied voltage (Volt),

In addition, the length and area of specimen depend on the stretching which
was calculated based on the incompressible material via the following equations:

ik —m:O.S (H2)
tx = t0(1 - £33) = t0(1+ 0.5eu) (H3)
= wo(l - ¢33) = woct + 0.56N) (H4)
IX —ro(l + G i) (H5)
til - %- |on|0 (H6)

where y is the Possion ratio (for rubber = 0.5), f11,22,33 is the strain in x. y, z axis, {is the
thickness of specimen (cm), is the width of specimen (cm), /is the length of specimen
(cm). Subscript x means the value at any strain, and subscript 0 means at strain = 0.
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Figure H1 Stress-strain curve of graphene/NR composites at various concentrations of
the graphene multilayers measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01s'] temperature of 300 K, and applied electric field of 5 volt.
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Figure H2  Modulus of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 '] temperature of 300 K, and applied electric field of 5 volt,
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Figure H3 Yield strength of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate of 0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Figure H4 Yield strain of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Table H2 Mechanical properties of graphene/NR composites at various concentrations
of the graphene multilayers as measured by the melt rheometer in the tension mode with

a strain rate 0f 0.01

Graphene
concentration
(%vIv)

0.0
0.01
0.1
1.0
5.0
10.0
20.0
30.0
35.0
40.0
45.0

DANFOSS

"1, temperature of 300 K, and applied electric field of 5 volt

Yield strength (Pa)

6.14E+5 £ 1.18E+5
6.26E+5 £ 3.28E+4
4.07E+5 £ 1.04E+5
T.11E+5 2.76E+4
8.36E+6 £ 4.18E+5
9.15E+6 £ 4.57E+5
9.99E+6 + 4.99E+5
4.95E+6 £ 2.47E+5
4.36E+6 £ 2.18E+5
3.65E+6 + 1.82E+5
5.94E+6 £ 2.97E+5

2.84E+6 £ 1.78E+4

Yield strain (%)

63.60 £2.04

10.23 £2.42

54.87 + 1.88

66.46 £2.29

69.86 £3.49

53.53 £2.67

60.42 £3.00

16.75 £0.84

13.06 £0.65

246 £0.12

144 £0.07

7512 £2.60

Modulus (Pa)

4.75E+4+ 399.45
8.48E+3 £497.65
5.95E+3 £401.56
7.12E+3+ 356.10
1.13E£54 5670.71
1.63E£5+ 8148.37
1.54E+5+ 7709.10
2.66E+5+ 1330.54
2.46E+5 £ 123412

6.99E+5 + 3506.67

+

3.65E£6 1 1834.23

8.15E+3 £ 1893.50

+
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Figure H5 Conductivity of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Table H3 Electrical conductivity of graphene/NR composites at various concentrations
of the graphene multilayers as measured by the melt rheometer in the tension mode with
a strain rate 0f 0.01 'L temperature of 300 K, and applied electric field of 5 volt.

Graphene concentration Conduct.ivity Critical strain* (%)
(%viv) before stretching (S/cm)
0.0 1.41E-5 + 5.47E-6 > 100
0.01 3.55E-5 + 1.77E-6 > 100
01 4.05E-5 # 2.03E-6 > 100
1.0 3.84E-4 + 2.23E-4 > 100
5.0 1.10E-1 + 5.50E-3 2.01 £0.11
100 1.50E-1 + 5.07E-2 3.11 £0.51
20.0 3.36E-1 + 1.90E-2 5.02 +0.67
30.0 6.04E-1 + 1.00E-2 12.70 £0.92
35.0 6.12E-1 + 3.06E-2 12.74 £0.67
40.0 5.22E-1  2.61E-2 3.38 £0.17
45.0 4.86E-1 * 2.43E-2 1.38 £0.07
DANFOSS 2.54E-2 % 1.27E-3 6.45 £0.32

* Critical strain refers to 5% conductivity drop. Beyond this critical strain point, the

material’s behavior is non-linear and the conductivity declines.
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Figure H6 Stress-strain curve for 20 stretching cycles of 0.01%v/v graphene/NR
composite as measured by the melt rheometer in the tension mode with a strain rate of

0.01s’L temperature of 300 K, and applied electric field of 5 volt,
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Figure H7 Conductivity for 20 stretching cycles of 0.01%v/v graphene/NR composite
as measured by the melt rheometer in the tension mode with a strain rate of 0.0 ']
temperature of 300 K, and applied electric field of 5 volt.
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Figure H8 Stress-strain curve for 20 stretching cycles of 5.0%vi/v graphene/NR
composite as measured by the melt rheometer in the tension mode with a strain rate of
0.015"1 temperature of 300 K, and applied electric field of 5 volt.
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Figure H9 Conductivity for 20 stretching cycles of 5.0%v/v graphene/NR composite as
measured by the melt rheometer in the tension mode with a strain rate of 0.01s',
temperature of 300 K, and applied electric field of 5 volt,
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Figure H10 Stress-strain curve for 20 stretching cycles of 20.0%v/v graphene/NR
composite as measured by the melt rheometer in the tension mode with a strain rate of
0.01s'% temperature of 300 K, and applied electric field of 5 volt.
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Figure HII Conductivity for 20 stretching cycles of 20.0%vlv graphene/NR composite
as measured by the melt rheometer in the tension mode with a strain rate of 0.015'1
temperature of 300 K, and applied electric field of 5 volt.



128

_ 0.02%v/v Craphene/NR composite
le+l = A 5.0%vlv Q-aphene/NR compos ite
0 20.0%vlv Graphene/NR composite

1e+0

0
o1 AAAAAAAAAZ222 22222122

& le-2
0
163
1e4
165
1
1e-6 y -

10 15
Stretchmg cycle

Figure HL2 Conductivity versus stretching cycles of the composites at fixed strain 1%
as measured by the melt rheometer in the tension mode with a strain rate of 0.01s']
temperature of 300 K, and applied electric field of 5 volt.
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Figure H13 Conductivity of composites as a function of strain as measured by the melt
rheometer in the tension mode with a strain rate of 0.015' temperature of 300 K and
applied electric field of 5 volt,
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Figure H14 Conductivity of 5 %viv graphene/NR composites as a function of strain
rate as measured by the melt rneometer in the tension mode with a strain rate of 0.015']
temperature of 300 K, and applied electric field of 5 volt,
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Supplementary data of trial experiment

Composite data with fixed concentration of surfactant
Table 1 Preparation conditions of graphene/NR composites

Graphene ~ TWEENS0  Natural Water ~ TWEENSO/graphene

content  (surfactant)  rubber mi volume ratio Remark
(%oviv) (%oviv) latex (ml)

0.0 - 20 - -

0.01 1 20 20 100

01 1 20 20 10

10 1 20 20 1

5.0 1 20 20 0.2 -

100 1 20 20 01 Agglomerate

20.0 1 20 20 0.05 Agglomerate

Crosslink under uv irradiation time of 7 minute and crosslink concentration of 5.0
Yoviv
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Figure 1 Stress-strain curve of graphene/NR composites at various concentrations of
the graphene multilayers as measured hy the melt rheometer in the tension mode with a
strain rate 0f 0.01s'L temperature of 300 K, and applied electric field of 5 volt.
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Figure 2 Modulus of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0 0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Figure3 Yield strength of graphene/NR composites at various concentrations of the
graphene multilayers measured by the melt rheometer in the tension mode with a strain
rate 0f0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Figure4 Yield strain of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 'L temperature of 300 K, and applied electric field of 5 volt.
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Table 2 Mechanical properties of graphene/NR composites at various concentrations of
the graphene multilayers measured by the melt rheometer in the tension mode with a
strain rate of 0.01 "1, temperature of 300 K, and applied electric field of 5 volt

Grapheng
concentration
(%oviv)

0.0

001
01

10
5.0

10.0
200

DANFOSS

Yield strength (Pa)

6.14E45  L18E+5
6.20E+5 £ 3.28E+4
4,07E+5+ LOAE+S
1.11E+5 £ 2.76E+4
8.36E+6 + 4.18E+5
9.52E+5 + 1.29E+4
9.88E+5 5.74E+3
2.84E+6 + 1.78E+4

Yield strain (%)

63.60+2.04
1023 £ 242
5487+ 188
66.46 + 2.29
69.86 £3.49
64.56 +3.58
58.67 +2.06
1512 +2.60

Modulus (Pa)

4.75E+4 +399.45
8.48E+3 +497.65
5.95E+3 +401.56
1.12E£3 £3210
1.13E+5+ 5670.71
6.88E+4+ 431.64
[.TTE+4 + 546.60
8.15E+3 £ 1893.50
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Figure5 Conductivity of graphene/NR composites at various concentrations of the
graphene multilayers as measured by the melt rheometer in the tension mode with a
strain rate 0f 0.01 ', temperature of 300 K, and applied electric field of 5 volt.
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Table 3 Electrical conductivity of graphene/NR composites at various concentrations
of the graphene multilayers as measured by the melt rheometer in the tension mode with
astrain rate of 0.01 "1 temperature of 300 K, and applied electric field of 5 volt

Graphen(e(;:/?\f)entratlon beforecsi?gtlé(r:ltilr:/glt)(/S/cm) Critcal tra (%)

0.0 141E-5 + 5.47E-6 > 100
001 355E-5 £ LTTE- > 100
01 4,05E-5 £ 2.03E-6 > 100
10 3.84E-4 £ 2.23E-4 > 100
50 1.10E-1  5.50E-3 201 £0.11
100 1.28E-2 + 5.07E-2 3.7510.94
200 2.34E-2 £ 1.90E-2 6.20 £0.43

DANFOSS 254E-2 + 1.27E-3 6.45 £0.32

* Critical strain refers to 5% conductivity drop. Beyond this critical strain point, the
material’s behavior is non-linear and the conductivity declines.
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Table 4 SEM images of composites at 10.0 %viv and 20.0 %vlv graphene
concentration with magnifications of 2k and 60

Magnification

Composites
P 2 kX 60 kX

10.0 %ovlv
graphene/NR

composite

20.0 %vlv
graphene/NR
composite
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Appendix I FE-SEM Images of The Graphene/NR Composite Film

A field-emission scanning electron microscope (FE-SEM, JSM-7001F) was
used to examine the morphological structure and to determine the dispersion of the
graphene in the NR matrix. The film was placed on the holder with an adhesive tape and
coated with a thin layer of gold using an ion sputtering device for 100 sec prior to
observation under FE-SEM. The scanning electron images were investigated by using an
acceleration voltage of 20 kv with a magnification in the range of 2k and 60k times,

Table 11 Summary of FE-SEM images of the graphene/NR composites and DANFOSS
commercial compliant electrode at magnifications of 2 kx and 60 kx.

Magpnification

Composites

0.01 %vlv
graphene/NR
composite

0.1 %viv
graphene/NR
composite



Composites

1.0 %viv
grapheNne/R
composite

5.0%v/v
graphene/NR
composite

10.0 %viv
graphene/NR
composite

2 kx

Magnification

60 kx

141



Composites

20.0 %vlv
graphene/NR
composite

DANFOSS

commercial
compliant
electrode
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AppendixJ AFMImages of The Graphene/NR Composite Film

The topology of the composite was obtained by using the atomic force
microscope (AFM, Park System, XE-100) in air under ambient conditions. For the
conventional AFM, the non-contact mode was operated with the cantilever (NSC36)
tapping at scan rate of 0.5 Hz and applied Z-servo gain of 10. The micro-Scale
dispersion of graphene in the NR matrix can be observed from the topology.

(0)
FigureJ1 AFM image of pure natural rubber with scanned area of; (a) 10 pmz; (b) 5
pm2
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(b)

FAureJ2 AFM image of 1.0%v/v graphene/NR composite with scanned area of: (a) 10
pm2; (b) 5 pm2
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b

FigureJS AFM image of5.0%vV/v graphene/NR composite with scanned area of: (a) 10
pm2; (b) 5 pm2.
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Figure J4 AFM image of 10.0%v/v graphene/NR composite with scanned area of: (a) 10
pm2; (b) 5 pm2
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FigureJ5 AFM image of20.0%v/v graphene/NR composite with scanned area of: (a) 10
pm2; (b) 5 pm2,
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Figure J6 AFM image of DANFOSS commercial compliant electrode with scanned area
of: (@) 10 pm2; (b) 5 pm2.
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(€)

Figure J7 Distribution in micro-scale of composite in the area of 2 pm2 (a) L0%viv
graphene/NR  composite; (o) 5.0%viv graphene/NR composite; (c) 10.0%viv
graphene/NR composite; (d) 20.0%viv graphene/NR composite; and () DANFOSS
commercial compliant electrode,
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Appendix K Electrical Conductivity Measurement of The Graphene Multilayers

An electrometer (Keithley, 6517A), with a custom-built two-point probe, was
used to measure the electrical conductivity which is the inversion of specific resistivity
() that indicates the ability of material to transport electrical charge. The meter
consisted of a probe making contact on the surface of the sample in a disc shape. This
probe was connected to a power supplier source for a constant source and for reading
current. The applied voltage was plotted versus the resultant current to determine the
linear Ohmic regime of each sample based on the Van der Pauw method. The applied
voltage and the current in the linear Ohmic regime were converted to the electrical
conductivity of the sample using equation (K1) as follow:

0=)5 = Ryt = ke = Kxt K1)

where a Is the specific conductivity (S/cm), p is the specific resistivity (flem), rs is the
sheet resistivity (Q), 1 is the resultant current (A), « is the geometric correction factor, v
is the applied voltage (V), and t is the thickness of the disc sample (cm).

The geometrical correction factor was taken into account of geometric effects,
depending on the configuration and probe tip spacing and was determined by using
standard materials where specific resistivity values were known; we used silicon wafer
chips (3C»). In our case, the sheet resistivity was measured by using the two-point
probe and then the geometric correction factor was calculated by equation (K2) as
follow:

K=" = =slope XRs (K2)

where K is the geometric correction factor (2.147E-03), p is the known resistivity of
standard silicon wafer (flcm), t is the film thickness (cm), & is the film resistance (f2),
and 1 1s the resultant current (A).
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Table K1 Summary of the specific conductivities of the raw graphite, and graphene
multilayers

Specific conductivity (Sfcm)

saimple Average D
Raw graphite 675.59 64.76
Commercial graphene multilayers 283,69 6849

grade ¢ (XG® science)

Table K2 Raw data for determination of specific conductivities of the raw graphite

: Specific conductivity
Sample Thickness (cm) IV (S
No. 0.1479 0.236 32
No.2 0.1649 0.237 669.42
No.3 0.1805 0.238 614.14

Table K3 Raw data for determination of specific conductivities of the commercial
graphene multilayers grade ¢ (XG® science)

. Specific conductivity
Sample Thickness (cm) IV (St
Nol 0.2024 0111 255.44
No.2 0.1960 0.09 235.26

No.3 0.1739 0.124 33212
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Appendix L Synthesized Graphene
LI Experimental

LI.I' Preparation of Graphene Filler from Graphite Powder
(Hummers et al., 1958, Krishnamoorthy et al., 2013,  etal., 2013)

LI1. 1.1 Preparation ofgraphite oxide by the modified Hummers method

2  of graphite powder was mixed with 35 mL concentrate H.SO:
and stirred in an ice bath for 2 hour. KMnCit s g was gradually added into the mixture
within 1+ h (to keep the temperature of mixture not exceeding 20 C) and the mixture
was kept stirred for 1hour. After 30 min, temperature of mixture was heated up to 35°¢
within 30 min and then stirring was kept at 35 °c for 2 h. During heating up of the
mixture, 90 mL deionize water (D1) was slowly added and external heat was introduced
to maintain the reaction temperature at 98 °c for 30 min. Termination of the oxidation
reaction and reduction of residual KMnGCs and manganese dioxide was carried out by
adding 150 mL DI water and 10 mL of 30% H.0x solution. The mixture was filtered
while still hot to avoid precipitation of the slightly soluble salt of mellitic acid formed as
a side reaction. The resultant solid product was repeatedly washed with 5% HCL solution
after that wash with DI water until pH-s and then dried at 80 °c 24 hour.

L1.1.2 Preparation of Graphenefrom Graphite Oxide
0.2 g of graphite oxide was dispersed in DI water 200 ml.
Sonicate with ultrasonicater for 30 minute to obtain graphene oxide. After that, 0.2 g of
graphene oxide was dispersed in DI water 200 ml and pH was adjusted to 10 by NaOH
solution. Adding 2 mL of hydrazine hydrate and the mixture was sonicated for 1 hour.
Ultrasound irradiation was performed for 2 hour without cooling (temperature ~ 60 £ 5
). The obtained Graphene nanosheets was washed thoroughly with distilled water and
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centrifuged at 12000 rpm for 10 min in order to remove the residuals and dry in hot air
oven.

L2 Characterizations

121 Raman Spectrometer fNT-MDT, NTEGRA Spectra)

Raman spectroscopy was used to verify graphite and graphene due to the
ability to identify and characterize all the members of the carbon family. The
characterizations were nondestructive, fast, with high resolution and give the maximum
structural and electronic information. The indications of graphite raw material and
synthesized graphene were measured by the Raman spectroscopy (NT-MDT, NTEGRA
Spectra) with 632.8 nm excitation laser, objective lens 100k and accumulate time 60s
from National Nanotechnology Center.
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Figure LI Raman spectrum of the synthesized graphene.
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Figure L2 Raman spectra of raw graphite, commercial graphene multilayers and
synthesized graphene.
TableLI Raman shift position of Raman spectra

sample Raman shift oosition (crzn
Raw graphite 1329.622 1575.529
Commercial graphene multilayers 1343506 1575529

race ¢ (XG™ science)
ynthesized graphene 1329.622 1575529
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L2.2 X-ray Diffraction Spectrometer, XRD (Rigaku, DMAX 2200)

The wide angle X-ray diffraction microscope (XRD) was used to study
the crystal structure below the nanometer scale. The CuK-alpha radiation source was
operated at 40 kV/30 mA. K-beta filter was used to eliminate interference peak.
Divergence slit and scattering slit 0.5 deg together with 0.3 mm of receiving slit were set
on the instrument. The graphene powder was placed into a sample holder and the
measurement was continuously run. The experiments were recorded by monitoring the
diffraction appearing in the diffraction angle (20) range from 10 to 80 with a scan speed
5 deg/min and a scan step 0.02 deg.

40

30 -

20 -

10 -

Intensity (a.u.)

2 - Theta (deg)

Figure L3 XRD pattern of the synthesized graphite oxide.
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Figure L4 XRD pattern of the synthesized graphene.
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Table L2 Strong peak position 20 (deg) of synthesized graphene

sample

Raw graphite

Commermal aphene multilayers
rade ¢ (XGRsClence)
yntheS|zed graphite oxice

Synthesized graphene

26,84
26.44

2.5
24.48

Peak position 20 (deg)
2 3
54.86
4333 4.3
326 5646
2308 A

80

100

4h

.29

11.76



L2.3 Two -point probe Technique

An electrometer (Keithley, 6517A), with a custom-built two-point probe,
was used to measure the electrical conductivity which is the inversion of specific
resistivity (p) that indicates the ability of material to transport electrical charge. The
meter consisted of a probe making contact on the surface of the sample in a disc shape.
This probe was connected to a power supplier source for a constant source and for
reading current. The applied voltage was plotted versus the resultant current to
determine the linear Ohmic regime of each sample based on the Van der Pauw method.
The applied voltage and the current in the linear Ohmic regime were converted to the

electrical conductivity of the sample using equation (L1) as follow:

ol == [ slope 1
° ~ p ~ Rsxt ~ KxVxt~ Kxt A

where @ is the specific conductivity (S/cm), P is the specific resistivity ( .cm), RSis the
sheet resistivity (), / is the resultant current (A), K is the geometric correction factor, V
is the applied voltage (V), and Tis the thickness of the disc sample (cm).

Table L3 Summary of the specific conductivities of the raw graphite, Graphene
multilayers and synthesized graphene

Specific conductivity (S/cm)

Sample
Average SD
Raw graphite 675.59 64.76
Commercial graphene multilayers
gradeé XG science) 283.69 68.49

Synthesized graphene 198.38 49.05
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TableL4 Raw data for determination of specific conductivities of the synthesized
graphene

Sample Thickness (cm) IV Sp.egflc
conductivity (S/cm)

No.l 0.0727 0.033 251.42

No.2 0.0813 0.033 189.06

No.3 0.0783 0.026 154,66

L2.4 SEM Image
A field-emission scanning electron microscope (FE-SEM, JSM-7001F)
was used to examine the morphological structure of the synthesized graphene. The
graphene powder was placed on the holder with an adhesive tape and coated with a thin
layer of gold using an ion sputtering device for 100 sec prior to observation under FE-
SEM. The scanning electron images were investigated by using an acceleration voltage
0f20 kV with a magnification in the range of 5k and 60k times.
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Figure L5 FE-SEM images of the synthesized graphene with magnifications of: a) 5
kX: and (b) 60 kx.

L3 Literature Renews about the Characterizations of Graphene

L3.1 Raman Spectroscopy

Raman spectrum of graphite exhibits a band at 1580 cm'lnamed as G
band and other band at 1350 cm'inamed as D band. The former is due to the first order
scattering of E2g mode and latter associates with the defects in the graphite lattice. The
Raman spectra of graphite, graphene oxide (GO) and graphene nanosheets are provided
in Figure L6. The Raman spectrum of GO possesses the G band at 1595.89 ¢cm'land D
band at 1354 ¢cm"L The increase in FWHM of the G band in the GO compared with the
graphite suggests the presence of sp3 carbon in GO. The D band in GO is broadened
which was due to the reduction in size of in plane sp2 domains by the creation of defects,
vacancies and distortions of the sp2 domains after complete oxidation. In case of



graphene, the G band is shifted towards lower wave number (1588.41 c¢m']) due to the
recovery of hexagonal network of carbon atoms with defects.

G ——Graphite
D
—GO0

000 1200 1%“ Eﬁb,o(anblsbo 2000

Figure L6 Raman spectra of graphite, GO and graphene nanosheets (Krishnamoorthy K.
etal,, 2013 ).

Intensity (a.u.)

L3.2 X-ray Diffraction Spectroscopy

Graphene oxide was synthesized from graphite flakes by a modified
Hummer’s method. Figure L7 shows the XRD patterns of graphite and GO. Pristine
graphite flakes exhibit a strong (002) reflection at 26.5° which corresponds to an
interlayer distance (dspacing) of 0.34 nm. After oxidation of graphite to GO, the (002)
diffraction peak shifts to a lower 20 angle (10.8°), which corresponds to an interlayer
distance of approximately 0.82 nm. This indicates the GO sheets are separated due to the
covalently honded oxygen. Hydrazine has been widely used to reduce. GO to graphene
and restore the conjugated sp2 network. The deoxygenated GO by an alkaline
hydrothermal process (hGO) was performed at 120 c¢. The interlayer distance of the
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hydrazine reduced GO (rGO) obtained from (002) reflection ofthe XRD pattern at 23.6°
was 0.37 nm. The decrease in interlayer spacing between individual graphene sheets is
attributed to the van der Waals interaction between sp2 hybridized carbon frame-work
that was restored during the chemical reduction. The XRD pattern of hGO also exhibits
a (002) reflection at 23.9° corresponding to the interlayer spacing of 0.37 nm. The broad
XRD peak ofthe hGO suggests these stacked graphene sheets are few layers thick.
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Figure L7 XRD pattern of the synthesized graphene (Sanjaya D.p. etal., 2012).
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