POLYELECTROLYTES ASSISTED SYNTHESIS OF GOLD/CERIA CATALYST FOR CO REMOVAL

Worarin Meesorn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2014

I28369865

570038

Thesis Title:	Polyelectrolytes Assisted Synthesis of Gold/Ceria Catalyst
	for CO Removal
By:	Worarin Meesorn
Program:	Polymer Science
Thesis Advisors:	Dr. Stephan Thierry Dubas
	Assoc. Prof. Apanee Luengnaruemitchai
	Asst. Prof. Thanyalak Chaisuwan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee: (Asst. Prof. Marit Nithitanakul)

.....

.

(Dr. Stephan Thierry Dubas)

Thanyalk Chaise

(Assoc. Prof. Apanee Luengnaruemitchai) (Asst. Prof. Thanyalak Chaisuwan)

(Assoc. Prof. Manop Panapoy)

ABSTRACT

5572030063: Polymer Science Program
Worarin Meesorn: Polyelectrolytes Assisted Synthesis of Gold/Ceria
Catalyst for CO Removal
Thesis Advisors: Dr. Stephan Thierry Dubas, Assoc. Prof. Apanee
Luengnaruemitchai and Asst. Prof. Thanyalak Chaisuwan 52 pp.
Keywords: Polyelectrolyte/ Ceria/ Gold/ Silver/ CO Removal

Ceria support was successfully synthesized by using anionic polyelectrolyte as a capping agent. In this work, the effects of capping agent concentration and synthesis method used on ceria particle size was investigated by using various concentrations of poly(4-styrenesulfonic acid-co-maleic acid) (PSS-co-MA) under magnetic stirring or sonication. The silver/ceria was prepared via sodium borohydride reduction and converted to gold/ceria via the redox reaction in an attempt to reduce amount of gold used compared to conventional catalyst preparations. Cerium(III) nitrate hexahydrate, silver nitrate, and hydrogen tetrachloroaurate(III) acid were used as the sources of cerium, silver, and gold, respectively. The prepared catalysts were characterized by particle size analyzer, nitrogen adsorption-desorption, FTIR, XRD and AAS. The catalytic activity and selectivity of the catalysts were also studied. The experimental results showed that the particle size of ceria was affected by the synthesis method and PSS-co-MA concentration. The increase in PSS-co-MA concentration induced a more negatively charged spread over the ceria surface to stabilize the sphere in solution. The smallest ceria particles (0.58±0.01 micron) were obtained by using 10 mM PSS-co-MA under magnetic stirring.

บทคัดย่อ

วรรินทร์ มีสอน : การศึกษาความสามารถของพอลิอิเล็กโทรไลต์ในการช่วยสังเคราะห์ ตัวเร่งปฏิกิริยาโลหะทองบนซีเรียสำหรับใช้กำจัดก๊าซการ์บอนมอนอกไซด์ (Polyelectrolytes Assisted Synthesis of Gold/Ceria Catalyst for CO Removal) อาจารย์ที่ปรึกษา: คร. สเตฟาน ดูบาส, รศ.คร. อาภาณี เหลืองนฤมิตชัย และ ผศ.คร. ธัญลักษณ์ ฉายสุวรรณ์ 52 หน้า

การสังเคราะห์ตัวรองรับซีเรียประสบผลสำเร็จได้โดยใช้พอลิอิเล็กโทรไลต์ชนิดประจุลบ เป็นตัวช่วย ในงานวิจัยนี้ได้ศึกษาผลของความเข้มข้นของพอลิอิเล็กโทรไลต์และวิธีการสังเคราะห์ ที่มีต่อขนาดอนุภาคซีเรีย ด้วยการใช้ poly(4-styrenesulfonic acid-co-maleic acid) (PSS-co-MA) ที่ความเข้มข้นต่างๆกันภายใต้วิธีการกวนสารด้วยเเท่งแม่เหล็กและคลื่นอัลตร้าโซนิค ตัวรองรับซีเรีย ที่สังเคราะห์ใต้ถูกนำมาใช้ในการเตรียมตัวเร่งปฏิกิริยาโลหะเงินบนซีเรียผ่านปฏิกิริยารีดักชันด้วย โซเดียมโบโรไฮไดรด์ จากนั้นจึงแปลงเป็นตัวเร่งปฏิกิริยาโลหะทองบนซีเรียผ่านปฏิกิริยารีดักชันด้วย โซเดียมโบโรไฮไดรด์ จากนั้นจึงแปลงเป็นตัวเร่งปฏิกิริยาโลหะทองบนซีเรียผ่านปฏิกิริยารีดอกซ์ โดยมีวัตถุประสงค์เพื่อลดปริมาณโลหะทองที่ใช้ในการเตรียมตัวเร่งปฏิกิริยาลิกระคลอโรออเรต(III) ได้ถูก ซีเรียม(III) ในเตรต เอกซะไฮเดรต, ซิลเวอร์ในเตรต และไฮโดรเจน เตตระคลอโรออเรต(III) ได้ถูก ใช้เป็นแหล่งของซีเรียม, เงิน และทอง ตามลำคับ ผลิตภัณฑ์ที่สังเคราะห์ได้ถูกพิสูจน์เอกลักษณ์ด้วย เทคนิค PSA, nitrogen adsorption-desorption, FTIR, XRD และ AAS รวมทั้งศึกษาสมบัติในการ เป็นตัวเร่งปฏิกิริยาด้วย จากผลการทดลองพบว่า ความเข้มข้นของพอลิอิเล็กโทรไลต์และวิธีการ สังเคราะห์มีผลต่อขนาดอนุภาคของตัวรองรับซีเรีย โดยสามารถสังเคราะห์ด้วรองรับซีเรียที่มาจนุก อนุภาคเล็ก 0.58=0.01 ไมครอน โดยใช้สารละลาย PSS-co-MA ความเข้มข้น 10 mM ภายใต้การ กวนสารด้วยแท่งแม่เหล็ก

ACKNOWLEDGMENTS

This thesis work is funded by the Center of Excellence on Petrochemical and Materials Technology, Thailand. The author also gratefully acknowledge for financial supports from the Development and Promotion of Science and Technology Talent Project (DPST) and Thai Research Fund (TRF) grant MRG56-80184.

The author would like to express gratitude to Dr. Stephan Thierry Dubas, Assoc. Prof. Apanee Luengnaruemitchai, and Asst. Prof. Thanyalak Chaisuwan for their suggestions and encouragement. The gratitude is also to Assoc. Prof. Sujitra Wongkasemjit for instruments and facilities in laboratory and thank you to all of research group members for their helps.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Acl	knowledgements	v
Tab	ble of Contents	vi
Lis	List of Tables	
Lis	t of Figures	ix
CHAPT	ER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	14
	3.1 Materials	14
	3.2 Catalyst Synthesis	14
	3.3 Materials Characterization	15
	3.4 Activity Study	16
IV	POLYELECTROLYTES ASSISTED SYNTHESIS	17
	OF GOLD/CERIA CATALYST FOR CO REMOVAL	
	4.1 Abstract	17
	4.2 Introduction	18
	4.3 Experimental	19
	4.4 Results and Discussion	22
	4.5 Conclusions	41
	4.6 Acknowledgements	41
	4.7 References	41

V	CONCLUSIONS AND RECOMMENDATIONS	44
	REFERENCES	45
	APPENDIX	51
	CURRICULUM VITAE	52

CHAPTER

PAGE

LIST OF TABLES

TABLE		PAGE
4.1	The Average Particle Size of Ceria Supports Prepared by	22
	Using Different Method with 0 and 10 mM Polyelectrolyte	
4.2	The Metal Contents and BET Analysis of Ag/CeO_2 and	32
	Au/CeO ₂ Catalysts	

viii

LIST OF FIGURES

FIGURE

PAGE

2.1	Schematic of a Single Typical PEMFC.	5
2.2	Transport of Protons, Electrons, and Gases in the PEMFC.	6
2.3	Schematic Mechanism of Soot Oxidation over Ag/CeO_2	10
	Catalyst.	
2.4	Structures of Most Commonly Used Polyelectrolytes.	13
4.1	Plot of the Ceria Average Particle Size Prepared by 0 and 10	23
	mM Polyelectrolyte with Different Method.	
4.2	Particle Size Distribution of Ceria Support Prepared by	24
	Using 0 mM Polyelectrolyte with Different Method: (a)	
	Quick Mixing under Magnetic Stirring, (b) Quick Mixing	
	under Sonication, (c) Drop-by-drop under Magnetic Stirring,	
	and (d) Drop-by-drop under Sonication.	
4.3	Particle Size Distribution of Ceria Support Prepared by	25
	Using 10 mM Polyelectrolyte with Different Method: (a)	
	Quick Mixing under Magnetic Stirring, (b) Quick Mixing	
	under Sonication, (c) Drop-by-drop under Magnetic Stirring,	
	and (d) Drop-by-drop under Sonication.	
4.4	Particle Size Distribution of Ceria Support Prepared by	27
	Quick Mixing under Magnetic Stirring with Various	
	Concentrations of Polyelectrolyte: (a) 0.5 mM, (b) 1 mM, (c)	
	5 mM, (d) 10 mM, (e) 50 mM, and (f) 100 mM.	
4.5	Plot of the % Particle Content of Ceria with Less Than 1	28
	Micron Diameter for Various Polyelectrolyte Concentrations.	
4.6	FTIR Spectra of Ceria Support Prepared by Using Various	29
	Concentrations of PSS-co-MA Capping Agent.	
4.7	FTIR Spectra of Catalysts Prepared by Using 10 mM of	30
	Different Type of Polyelectrolytes Capping Agent.	

FIGURE

PAGE

4.8	XRD Patterns of (a) Ag/CeO_2 and (b) Au/CeO_2 Catalysts	31
4.9	Effect of the Different Polyelectrolytes on the CO Conversion	33
	of Au/CeO ₂ Catalysts in CO Oxidation Reaction.	
4.10	Effect of the Different Polyelectrolytes on the Selectivity of	34
	Au/CeO ₂ Catalysts in CO Oxidation Reaction.	
4.11	Methanol Conversion of Au/CeO2 Catalyst in Methanol	36
	Reforming at Different Temperatures.	
4.12	H ₂ and CO Selectivity of Au/CeO ₂ Catalyst in Methanol	37
	Reforming at Different Temperatures.	
4.13	CO ₂ and CH ₄ Selectivity of Au/CeO ₂ Catalyst in Methanol	38
	Reforming at Different Temperatures.	
4.14	Product Composition of Au/CeO ₂ Catalyst in Methanol	39
	Reforming at Different Temperatures.	
4.15	Hydrogen Yield of Au/CeO ₂ Catalyst in Methanol	40
	Reforming at Different Temperatures.	