

REFERENCES

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). <u>Molecular Biology of the Cell</u>: Garland Science.
- Arai, K., Tanaka, M., Yamamoto, S., & Shimomura, M. (2008). Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 313-314, 530-535.
- Bordes, C., Friville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., Brian^oon, S., et al. Determination of poly(ε-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. <u>International Journal</u> <u>of Pharmaceutics</u>, 383(1-2), 236-243.
- Effects of Conditioning Nylon Filaments.
- Friess, W. (1998). Collagen biomaterial for drug delivery. <u>European Journal of</u> <u>Pharmaceutics and Biopharmaceutics</u>, 45(2), 113-136.
- Gümüşderelioğlu, M., Kaya, F. B., & Beşkardeş, I. G. (2011). Comparison of epithelial and fibroblastic cell behavior on nano/micro topographic PCL membranes produced by crystallinity control. <u>Journal of Colloid and</u> <u>Interface Science</u>.
- Hall, J. E., Fu, W., Schaller, M. D., & Kwang, W. J. Focal Adhesion Kinase: Exploring FAK Structure to Gain Insight into Function <u>International Review</u> of Cell and Molecular Biology (Vol. Volume 288, pp. 185-225): Academic Press.

Hirayama, K. (1990). BBRC, 172, 639.

- Hongliang, H. (2004). Miscibility, interactions and surface properties of blends involving fluorine-containing polymers, C60-containing polymers or polycarbonates. National University of Singapore, Singapore.
- Lin, W.-J., & Lu, C.-H. (2002). Characterization and permeation of microporous poly(e-caprolactone) films. Journal of Membrane Science, 198(1), 109-118.

- Mattanavee, W., Supaphol, P., & Hoven, V. P. Immobilization of Biomolecules on Surface of Polycaprolactone for Artificial Skin Application. Bangkok, Thailand.
- Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V. P., & Supaphol, P. (2009). Immobilization of Biomolecules on the Surface of Electrospun Polycaprolactone Fibrous Scaffolds for Tissue Engineering. <u>Applied Materials & Interfaces</u>, 1(5), 1076–1085.
- Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Nature Reviews Molecular Cell Biology <u>Nature</u>, 6, 56-78.
- Olah, L., Filipczak, K., Ulanski, P., Sosnowski, S., Czigany, T., Borbas, L., et al. Development of porous scaffolds for bone tissue engineering
- Peesan, M., Supaphol, P., & Rujiravanit, R. (2007). Effect of Casting Solvent on Characteristics of Hexanoyl Chitosan/Polylactide Blend Films. Journal of Applied Polymer Science, 105, 1844–1852.
- Ponik, S. M., & Pavalko, F. M. (2004). Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE₂ release in MC3T3-E1 osteoblasts. Journal of Applied Physiology, 97, 135-142.
- Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., Oratai Weeranantanapan, Chuenjitbuntaworn, B., et al. (2007). In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. <u>Biomacromolecules</u>, 8, 1587-1594.
- Sunami, H., Ito, E., Tanaka, M., Yamamoto, S., & Shimomura, M. (2006). Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 284-285, 548-551.
- Tang, Z. G., Black, R. A., Curran, J. M., Hunt, J. A., Rhodes, N. P., & Williams, D. F. (2004). Surface properties and biocompatibility of solvent-cast poly[e-caprolactone] films. <u>Biomaterials</u>, 25(19), 4741-4748.
- Yamamoto, S., Tanaka, M., Sunami, H., Arai, K., Takayama, A., Yamashita, S., et al. (2006). Relationship between adsorbed fibronectin and cell adhesion on a honeycomb-patterned film. <u>Surface Science</u>, 600(18), 3785-3791.

- Yu, Y., Ying, P. Q., & Jin, G. (2004). Competitive Adsorption between Bovine Serum Albumin and Collagen Observed by Atomic Force Microscope <u>Chinese Chemical Letters</u> 15(12), 1465-1468.
- Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. <u>Tissue Engineering</u>, 10, 53-61.
- Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. <u>Biomacromolecules</u>, 3, 1312-1319.

Appendix A Bicinchoninic Acid Protein Assay (BCA Analysis)

Table A1 Bovine Serum Albumin (BSA) standards and their net absorbance

Standard	Standard BSA	Average Net
No.	Concentration (µg/ml)	Absorbance
1	100	0.3076
2	50	0.1566
3	25	0.0783
4	10	0.0326
5	5	0.0083
6	2.5	0.0094
7	1	0.0084
8	0.5	0.0006
9	0	0

Figure A1 The calibration curve for BSA using the standards.

Annealing Time (h)	Amount of Protein Adsorbed (µg/cm ²)	
0	0.03122 ± 0.00287	
1	0.03241 ± 0.00148	
2	0.03293 ± 0.00291	
3	0.03320 ± 0.00082	
4	0.03556 ± 0.00132	
5	0.03403 ± 0.00301	
6	0.03451 ± 0.00279	
12	0.03269 ± 0.00204	
24	0.03323 ± 0.00404	

Table A2 The amount of protein adsorbed on the surface of PCL film(diameter = 1.5 cm) at various annealing time

Table A3 The adsorption isotherm of the adsorbed bovine serum albumin on the neat PCL films (diameter = 1.5 cm) casted from different solvent systems at various initial protein concentration

Initial Protein	Amount of Protein Adsorbed (µg/cm ²)		
Concentration (µg/ml)	Chloroform	Acetone	
200	0.03232 ± 0.00011	0.03225 ± 0.00015	
400	0.03282 ± 0.00004	0.03237 ± 0.00030	
600	0.03382 ± 0.00010	0.03278 ± 0.00006	
800	0.03371 ± 0.00008	0.03288 ± 0.00009	
1000	0.03387 ± 0.00014	0.03295 ± 0.00014	
1400	0.03416 ± 0.00009	0.03365 ± 0.00050	
2000	0.03416 ± 0.00006	0.03467 ± 0.00008	
3000	0.03446 ± 0.00011	0.03495 ± 0.00032	

Initial Protein	Amount of Protein Adsorbed (µg/cm ²)		
Concentration (µg/ml)	THF	20:80 (v/v) EtOH:THF	
200	0.03221 ± 0.00012	0.03305 ± 0.00024	
400	0.03290 ± 0.00004	0.03326 ± 0.00010	
600	0.03336 ± 0.00013	0.03321 ± 0.00004	
800	0.03375 ± 0.00008	0.03336 ± 0.00002	
1000	0.03399 ± 0.00006	0.03372 ± 0.00001	
1400	0.03405 ± 0.00019	0.03392 ± 0.00007	
2000	0.03422 ± 0.00022	0.03511 ± 0.00008	
3000	0.03432 ± 0.00011	0.03511 ± 0.00003	
Initial Protein	Amount of Prote	in Adsorbed (µg/cm ²)	
Concentration (µg/ml)	30:70 (v/v) EtOH:THF	40:60 (v/v) EtOH:THF	
200	0.03319 ± 0.00009	0.03320 ± 0.00011	
400	0.03337 ± 0.00009	0.03314 ± 0.00006	
600	0.03362 ± 0.00015	0.03340 ± 0.00011	
800	0.03363 ± 0.00011	0.03357 ± 0.00006	
1000	0.03393 ± 0.00008	0.03473 ± 0.00037	
1400	0.03458 ± 0.00009	0.03749 ± 0.00033	
2000	0.03521 ± 0.00008	0.03755 ± 0.00013	
3000	0.03530 ± 0.00007	0.03852 ± 0.00013	
Initial Protein	Amount of Protein	in Adsorbed (μg/cm²)	
Concentration (µg/ml)	1 M NaOH	5 M NaOH	
200	0.03233 ± 0.00006	0.03270 ± 0.00005	
400	0.03279 ± 0.00006	0.03296 ± 0.00012	
600	0.03355 ± 0.00021	0.03322 ± 0.00008	
800	0.03409 ± 0.00008	0.03415 ± 0.00011	
1000	0.03411 ± 0.00008	0.03483 ± 0.00008	
1400	0.03419 ± 0.00006	0.03480 ± 0.00010	
2000	0.03411 ± 0.00006	0.03519 ± 0.00006	
3000	0.03426 ± 0.00005	0.03545 ± 0.00006	

Initial Protein	Amount of Protein Adsorbed (µg/cm ²)			
Concentration (µg/ml)	Neat PCL	Aminolyzed PCL	Activated PCL	
200	0.03320 ± 0.00011	0.03189 ± 0.00015	0.03322 ± 0.00012	
400	0.03314 ± 0.00006	0.03197 ± 0.00012	0.03350 ± 0.00010	
600	0.03340 ± 0.00011	0.03231 ± 0.00017	0.03360 ± 0.00015	
800	0.03357 ± 0.00006	0.03247 ± 0.00007	0.03438 ± 0.00016	
1000	0.03473 ± 0.00037	0.03246 ± 0.00007	0.03531 ± 0.00016	
1400	0.03749 ± 0.00033	0.03277 ± 0.00009	0.04080 ± 0.00018	
2000	0.03755 ± 0.00013	0.03305 ± 0.00012	0.04360 ± 0.00018	
3000	0.03852 ± 0.00013	0.03309 ± 0.00016	0.04401 ± 0.00029	

Table A4 The adsorption isotherm of the adsorbed bovine serum albumin on theneat and modified PCL films (diameter = 1.5 cm) casted from 40:60 EtOH:THF

Appendix B Atomic Force Microscopy (AFM)

Table B1 The variation of roughness parameters $(R_a, R_q, and R_z)$ of the films casted from different solvents

Roughness	Arithmetic Average	Root Mean Square	Absolute Height
Solvent	Roughness (R _a , µm)	Roughness (R _q , μm)	(R _z , μm)
TCPS	0.00436 ± 0.00074	0.00494 ±0.00078	0.01671 ±0.00138
Chloroform	0.01564 ± 0.00093	0.01992 ± 0.00157	0.09610 ± 0.00546
THF	0.22100 ± 0.00608	0.28900 ± 0.01682	1.35633 ± 0.12208
1 M NaOH	0.32400 ± 0.01200	0.41433 ± 0.02350	1.07933 ± 0.11625
5 M NaOH	0.37833 ± 0.00945	0.48033 ± 0.01721	1.15700 ± 0.10392
Acetone	0.40667 ± 0.03803	0.49233 ± 0.03573	1.42867 ± 0.07463
20:80 EtOH:THF	0.53667 ± 0.01168	0.66300 ± 0.05231	1.62500 ± 0.29091
30:70 EtOH:THF	0.59200 ± 0.00400	0.68400 ± 0.00361	1.93633 ± 0.08105
40:60 EtOH:THF	0.97367 ± 0.07849	1.19933 ± 0.01531	2.48967 ± 0.87032

Appendix C Biological Characterization

Table C1 Indirect cytotoxicity evaluation of protein adsorbed films shown by the

 percent viability of cells by MTT assay

Materials	% viability of MC3T3-E1 cells (relative to TCPS)			
	1 d	3 d	7 d	
TCPS (control)	100.00 ± 2.87	100.00 ± 6.47	100.00 ± 1.75	
Chloroform	89.73 ± 4.75	95.74 ± 9.03	111.50 ± 7.34	
Acetone	97.34 ± 7.60	88.76 ± 8.57	94.77 ± 15.52	
THF	87.45 ± 2.63	88.37 ± 10.03	83.62 ± 5.53	
20:80 EtOH:THF	105.32 ± 7.42	93.41 ± 5.97	94.77 ± 6.12	
30:70 EtOH:THF	103.42 ± 5.85	102.33 ± 6.47	106.97 ± 13.60	
40:60 EtOH:THF	89.35 ± 6.59	92.64 ± 5.97	85.71 ± 6.27	
1 M NaOH	93.16 ± 2.37	85.66 ± 6.40	84.67 ± 8.16	
5 M NaOH	114.45 ± 2.37	95.74 ± 3.55	100.70 ± 8.89	

Table C2 Indirect cytotoxicity evaluation of surface-modified films shown by the

 percent viability of cells by MTT assay

Materials	% viability of MC3T3-E1 cells (relative to TCPS)			
171466711415	1 d	3 d	7 d	
TCPS (control)	100.00 ± 2.87	100.00 ± 6.47	100.00 ± 1.75	
Neat Chloroform	92.78 ± 0.66	98.84 ± 8.14	85.02 ± 1.60	
Aminolyzed Chloroform	126.62 ± 10.28	93.80 ± 2.93	103.48 ± 6.96	
Activated Chloroform	112.55 ± 8.86	90.31 ± 9.47	96.52 ± 11.47	
Adsorbed Chloroform	128.14 ± 7.03	105.43 ± 3.48	112.20 ± 4.94	
Neat 40:60 EtOH:THF	115.59 ± 5.85	102.33 ± 3.49	97.91 ± 4.35	
Aminolyzed40:60EtOH:THF	116.73 ± 11.87	103.49 ± 10.34	114.63 ± 10.15	
Activated 40:60 EtOH:THF	116.35 ± 10.14	103.88 ± 9.03	101.05 ± 3.67	
Adsorbed 40:60 EtOH:THF	133.61 ± 12.82	123.26 ± 7.26	119.86 ± 6.39	

Matarials	% viability of MC3T3-E1 cells (relative to TCPS at 24 h)			
	4 h	16 h	24 h	
TCPS (control)	63.21 ± 1.63	80.66 ± 1.42	100.00 ± 6.38	
Chloroform	58.49 ± 7.79	74.06 ± 1.63	93.40 ± 6.17	
THF	66.04 ± 6.38	89.15 ± 5.66	89.62 ± 2.16	
Acetone	52.83 ± 4.97	78.30 ± 6.69	97.17 ± 7.12	
1 M NaOH	59.43 ± 12.58	88.68 ± 4.09	109.91 ± 5.36	
5 M NaOH	82.55 ± 7.26	94.81 ± 5.66	110.38 ± 6.48	
20:80 EtOH:THF	71.70 ± 8.99	90.57 ± 3.74	113.21 ± 3.74	
30:70 EtOH:THF	83.96 ± 7.26	93.87 ± 1.63	108.49 ± 7.79	
40:60 EtOH:THF	85.85 ± 0.82	102.83 ± 1.63	125.47 ± 8.17	

 Table C3
 Cell attachment on protein adsorbed films shown by the percent viability

 of cells by MTT assay

Table C4 Cell proliferation on protein adsorbed films shown by the percent viabilityof cells by MTT assay

Motorials	% viability of MC3T3-E1 cells (relative to TCPS at 1 d)			
Materials	1 d	2 d	3 d	
TCPS (control)	100.00 ± 6.38	129.39 ± 6.13	192.45 ± 3.74	
Chloroform	93.40 ± 6.17	99.53 ± 11.35	136.32 ± 5.89	
THF	89.62 ± 2.16	114.62 ± 6.17	143.40 ± 12.04	
Acetone	97.17 ± 7.12	119.34 ± 7.26	161.79 ± 15.59	
1 M NaOH	109.91 ± 5.36	117.45 ± 11.23	155.19 ± 9.21	
5 M NaOH	110.38 ± 6.48	140.09 ± 5.10	183.49 ± 10.99	
20:80 EtOH:THF	113.21 ± 3.74	121.23 ± 5.72	158.49 ± 16.32	
30:70 EtOH:THF	108.49 ± 7.79	135.38 ± 12.76	198.58 ± 16.40	
40:60 EtOH:THF	125.47 ± 8.17	158.96 ± 6.98	212.26 ± 13.65	

Matarials	%viability of MC3T3-E1(relative to TCPS at 24h)			
iviater lais	4 h	16 h	24 h	
TCPS (control)	63.21 ± 1.63	80.66 ± 1.42	100.00 ± 6.38	
Neat Chloroform	50.00 ± 4.09	61.79 ± 2.95	88.21 ± 2.16	
Aminolyzed Chloroform	62.26 ± 4.90	83.49 ± 2.38	104.01 ± 3.74	
Activated Chloroform	55.19 ± 2.31	84.20 ± 3.65	102.59 ± 5.28	
Adsorbed Chloroform	62.74 ± 4.97	87.74 ± 2.45	106.13 ± 2.45	
Neat 40:60 EtOH:THF	68.87 ± 8.65	83.02 ± 10.81	96.23 ± 5.10	
Aminolyzed40:60EtOH:THF	80.66 ± 2.65	99.06 ± 3.75	104.72 ± 8.01	
Activated 40:60 EtOH:THF	76.89 ± 6.38	97.64 ± 3.74	112.74 ± 6.54	
Adsorbed 40:60 EtOH:THF	82.08 ± 4.25	106.13 ± 7.35	148.11 ± 5.36	

Table C5 Cell attachment on surface-modified films casted from chloroform and40:60 (v/v) EtOH:THF shown by the percent viability of cells by MTT assay

Table C6 Cell proliferation on surface-modified films casted from chloroform and40:60 (v/v) EtOH:THF shown by the percent viability of cells by MTT assay

Matariala	%viability of MC3T3-E1 (relative to TCPS at 1 d)			
wiater fais	1 d	2 d	3 d	
TCPS (control)	100.00 ± 6.38	129.39 ± 6.13	192.45 ± 3.74	
Neat Chloroform	88.21 ± 2.16	99.06 ± 3.74	125.00 ± 3.27	
Aminolyzed Chloroform	104.01 ± 3.23	109.67 ± 7.60	121.70 ± 4.15	
Activated Chloroform	102.59 ± 5.94	112.50 ± 7.34	135.14 ± 3.34	
Adsorbed Chloroform	106.13 ± 2.45	126.89 ± 9.21	166.98 ± 3.74	
Neat 40:60 EtOH:THF	96.23 ± 5.10	109.91 ± 4.09	131.60 ± 3.74	
Aminolyzed40:60EtOH:THF	104.72 ± 8.01	114.62 ± 6.83	148.58 ± 1.23	
Activated 40:60 EtOH:THF	112.74 ± 6.54	141.98 ± 7.12	157.08 ± 14.91	
Adsorbed 40:60 EtOH:THF	148.11 ± 5.36	167.92 ± 4.55	243.87 ± 7.79	

Materials	Average absorbance at 570 nm	
	Neat PCL film	Protein-adsorbed PCL film
TCPS (control)	0.13067 ± 0.00907	0.13067 ± 0.00907
Chloroform	0.14867 ± 0.00681	0.19067 ± 0.01201
THF	0.16367 ± 0.00681	0.19800 ± 0.00917
Acetone	0.19200 ± 0.00361	0.20867 ± 0.00252
1 M NaOH	0.21067 ± 0.00651	0.21433 ± 0.00451
5 M NaOH	0.21000 ± 0.00954	0.21933 ± 0.00153
20:80 EtOH:THF	0.22767 ± 0.00651	0.24900 ± 0.00265
30:70 EtOH:THF	0.25533 ± 0.01301	0.28233 ± 0.01365
40:60 EtOH:THF	0.30900 ± 0.00721	0.43967 ± 0.00603

Table C7The average absorbance of Alizarin Red-S staining on day 21 bymineralization analysis

.

CURRICULUM VITAE

Name:Ms. Vipawee YamassatienDate of Birth:May 4, 1988Nationality:Thai

University Education:

2006-2010 Bachelor Degree of Nano Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

Proceeding:

 Yamassatien, V.; Pavasant, P.; and Supaphol, P. (2012, March) Influence of surface morphology to the protein adsorption on polycaprolactone film. <u>Proceedings of the 3rd Research Symposium on Petrochemical and Materials</u> <u>Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and</u> <u>Polymers 2012</u>, Bangkok, Thailand.

Presentation:

 Yamassatien, V.; Pavasant, P.; and Supaphol, P. (2012, April 24) Influence of surface morphology to the protein adsorption on polycaprolactone film. Poster presented <u>at the 3rd Research Symposium on Petrochemical and Materials</u> <u>Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and</u> <u>Polymers 2012</u>, Bangkok, Thailand.

