ACTIVITY OF SUPPORTED AU CATALYST FOR PREFERENTIAL CO OXIDATION

Kunanya Srihamat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2012

I 2837 A046

Thesis Title:	Activity of Supported Au Catalyst for Preferential CO	
	Oxidation	
By:	Kunanya Srihamat	
Program:	Petroleum Technology	
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai	
	Dr. Ratchaneekorn Pilasombat	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

apenn L

(Assoc. Prof. Apanee Luengnaruemitchai)

R. Pilason bat

(Dr. Ratchaneekorn Pilasombat)

Pranoch of

(Assoc. Prof. Pramoch Rangsunvigit)

S. Bengpan d

(Asst. Prof. Sitthipong Pengpanich)

ABSTRACT

5373006063: Petroleum Technology Kunanya Srihamat: Activity of Supported Au Catalyst for Preferential CO Oxidation Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai, Dr. Ratchaneekorn Pilasombat
Keywords: Fuel cell, CO conversion, CO selectivity, Au catalyst, Titania, Iron oxide, PROX, CO oxidation

In this work, a series of Au supported on Fe_2O_3 -TiO₂ with various atomic ratios of Fe:Ti (0:1, 1:4, 1:1, 4:1 and 1:0) were investigated for the preferential CO oxidation (PROX) in a H₂-rich stream. Gold catalysts were prepared by depositionprecipitation method (DP). The reactant gas composition were 1 % CO, 1 % O₂, 40 % H₂, and balance with He. The PROX reaction was carried out in a fixed bed reactor. The effects of mixed oxide support, calcination temperature, gold loading, and pretreatment condition, on the characteristic and catalytic activity of the catalysts were studied. The result showed that 1% Au/Fe₂O₃-TiO₂ with an atomic ratio of Fe:Ti (1:4) achieved 94.99 % CO conversion and 56.46 % PROX selectivity at 60 °C and also exhibited higher CO conversion than the 1% Au/TiO₂ and 1% Au/Fe₂O₃ at all reaction temperature (40 °C to 180 °C). It was found that the addition of Fe₂O₃ on titania (TiO₂) could lead to enhance the electronic interaction and thereby promoting the catalytic activity for PROX reaction to a better extent.

บทคัดย่อ

คุณัญญา ศรีหมาตร : ความว่องไวในการเกิดปฏิกิริยาเคมีของตัวเร่งปฏิกิริยาทอง สำหรับออกซิเคชันแบบเลือกเกิดของคาร์บอนมอนอกไซด์ (Activity of Supported Au Catalyst for Preferential CO oxidation) อ. ที่ปรึกษา: รศ. คร.อาภาณี เหลืองนฤมิตชัย และ คร. รัชนึกร พิลาสมบัติ

ในการศึกษางานวิจัยนี้ศึกษาตัวเร่งปฏิกิริยาทองบนตัวรองรับผสมระหว่างเหล็ก ออกไซค์และไททาเนียที่อัตราส่วนอะตอมของเหล็กและไททาเนียม (0:1, 1:4, 1:1, 4:1 และ 1:0) ในปฏิกิริยาการเลือกเกิดปฏิกิริยาออกซิเคชันของก๊าซคาร์บอนมอนอกไซค์ในก๊าซไฮโครเจน ้ก่อนเข้าเซลล์เชื้อเพลิง ตัวเร่งปฏิกิริยาทองบนตัวรองรับผสมระหว่างเหล็กออกไซค์และไททาเนีย ถูกเตรียมด้วยวิธีการยึดเกาะควบคู่กับการตกผลึก (Deposition-precipitation) ซึ่งใน องค์ประกอบของก๊าซที่ป้อนเข้าสู่ปฏิกิริยาประกอบค้วยก๊าซคาร์บอนมอนอกไซค์ร้อยละ 1 ก๊าซ ออกซิเจนร้อยละ 1 ก๊าซไฮโครเจนร้อยละ 40 และปรับสมคุลโคยก๊าซฮีเลียม ตัวแปรที่ศึกษาที่มี อิทธิพลต่อความว่องไวของตัวเร่งปฏิกิริยาได้แก่ สัคส่วนของตัวรองรับผสม อุณหภูมิที่ใช้ในการ เผาเตรียมตัวเร่งปฏิกิริยา ปริมาณของทองที่ใช้ในการเตรียมตัวเร่งปฏิกิริยา รวมทั้งการปรับสภาวะ ของตัวเร่งปฏิกิริยาก่อนใช้งาน หลังจากการศึกษาพบว่าตัวเร่งปฏิกิริยาที่มีปริมาณทองร้อยละ 1 บนตัวรองรับผสมระหว่างเหล็กออกไซค์และไททาเนียที่อัตราส่วนเหล็กและไททาเนียม (1:4) ให้ ้ค่าการเปลี่ยนแปลงของก๊าซการ์บอนมอนอกไซค์ที่ 94.99 เปอร์เซนต์ และค่าการเลือกเกิดของ ออกซิเจนกับก๊าซคาร์บอนมอนอกไซค์ที่ 56.46 เปอร์เซนต์ที่อุณหภูมิ 60 องศาเซลเซียส ซึ่งให้ค่า การเปลี่ยนแปลงของก๊าซการ์บอนมอนอกไซค์สูงกว่าตัวเร่งปฏิกิริยาทองบนตัวรองรับไททาเนีย และตัวเร่งปฏิกิริยาทองบนตัวรองรับเหล็กออกไซค์ที่ทุกช่วงอุณหภูมิที่ศึกษา (40 ถึง 180 องศา เซลเซียส) ซึ่งการเติมเหล็กออกไซค์ลงบนตัวรองรับไททาเนียสามารถเพิ่มอันตรกิริยาของตัว รองรับและส่งเสริมให้ความว่องไวของตัวเร่งปฏิกิริยาเพิ่มขึ้น

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who gave the possibility to complete this work.

First of all, I want to thank the Petroleum and Petrochemical College, Chulalongkorn University, Thailand for providing me the opportunity to work on this special project in the first instance, to do the necessary research work, and to use the laboratory facilities. I also would like to thank the Center of Excellence on Petrochemical and Materials Technology, Energy Policy and Planning office (EPPO), Ministry of Energy, and The National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (EN276B), Thailand for their support.

I am deeply indebted to my thesis advisors, Assoc. Prof Apanee Luengnaruemitchai, and Dr. Ratchaneekorn Pilasombat whose giving admirable guidance, encourage, stimulating suggestions and helped me in all the time of my research.

My sincere thank are due to the official committees, Assoc. Prof. Pramoch Rangsunvigit and Asst. Prof. Sitthipong Pengpanich, for their detailed review, constructive critisim and excellent advice during the preparation of my thesis work. Also for special senior students in the Petroleum and Petrochemical College, I would like to show my appreciation to Mr. Chinchanop Pojanavaraphan for their helpful suggestions.

Lastly, this special thesis would not have been possible without the knowledge received from all the lecturers and staffs at the Petroleum and Petrochemical College, plus love and constant support from my family and friends.

TABLE OF CONTENTS

Titl	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Acl	knowledgements	v
Tab	le of Contents	vi
List	List of Tables	
List	of Figures	x
CHAPTI	ER	
Ι	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	3
	2.1 Fuel Cells	3
	2.1.1 Basic Principles of Fuel Cells	3
	2.1.2 How a Fuel Cell Works	3
	2.1.3 Fuel Cell Types and Potential Applications	4
	2.1.4 Prospects of Proton Exchange Membrane	
	Fuel Cell	7
	2.2 Proton Exchange Membrane Fuel Cell	7
	2.2.1 PEM Fuel Cell Basics	8
	2.2.2 Problems to Overcome	9
	2.3 Gas Clean-up	10
	2.3.1 Water Gas Shift Reaction	10
	2.3.2 Selective Oxidation of CO	11
	2.3.3 Methanation	11
	2.3.4 Membranes	11

	2.4 Preferential Oxidation or Selective Oxidation of CO	12
	2.5 Catalysis by gold	13
	2.5.1 Physical and Chemical Properties of Gold	14
	2.5.2 Potential Applications	16
	2.6 Activity of Supported Gold Catalyst	17
	2.6.1 Particle Size Effects	18
	2.6.2 Nature of Active Sites in Gold Catalysis	20
	2.6.3 Effect of Support	21
	2.6.4 Preparation Methods	24
III	METHODOLOGY	27
	3.1 Materials	27
	3.2 Equipment	27
	3.3 Preparation of Catalyst and Support	30
	3.3.1 Precipitation Method	30
	3.3.2 Incipient-wetness Impregnation	30
	3.3.3 Deposition-precipitation (DP) Method	30
	3.4 Catalyst Characterization	31
	3.4.1 BET Surface Area Measurement	31
	3.4.2 X-ray Diffractometry (XRD)	33
	3.4.3 Atomic Absorption Spectroscopy (AAS)	34
	3.4.4 Transmission Electron Microscopy (TEM)	34
	3.4.5 Temperature-Programmed Reduction (TPR)	35
	3.4.6 UV-vis Spectrophotometry	35
	3.5 Activity Measurement	36
	3.6 Calculation	37
IV	RESULTS AND DISCUSSION	39
	4.1 Catalyst Characterization	39
	4.1.1 Surface Properties	39

 \mathbf{V}

PA	GE
----	----

86

4.1.2 UV Measurement	41
4.1.3 TPR Measurement	45
4.1.4 TEM Result	50
4.1.5 XRD Patterns	54
4.1.6 FT-IR Measurement	57
4.2 Activity Measurement	59
4.2.1 Effect of Support Atomic Ratio	59
4.2.2 Effect of Calcination Temperature	61
4.2.3 Effect of Gold Loading	61
4.2.4 Effect of O ₂ Pretreatment	64
4.2.5 Deactivation Test	66
4.2.5.1 Effect of H_2O in the Feed Stream	66
4.2.5.2 Effect of CO_2 in the Feed Stream	66
4.2.5.3 Effect of Combination of CO_2 and H_2O	
in Feed Stream	67
CONCLUSIONS AND RECOMMENDATIONS	68
5.1 Conclusions	68
5.2 Recommendation	69
REFERENCES	70
APPENDICES	
Appendix A Calculation for support and catalyst preparation	
Appendix B SEM-EDS of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) calcined	d at
400 °C	81
Appendix C Particle size distribution bar graph of support in	n
Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts	83

viii

LIST OF TABLES

TABLE

2.1	Characteristics of major fuel cell types	5
2.2	The different fuel cells that have been realized and are currently in	
	use and development	6
2.3	Physical properties of gold	15
2.4	Applications of gold-based catalysts	17
2.5	Summary of preparation techniques for Au catalyst	26
4.1	Physicochemical properties of the catalysts	40
BI	Composition of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalyst	82

LIST OF FIGURES

FIGURE

2.1	Basic working concepts of a fuel cell.	4
2.2	Schematic representation of the PEM fuel cell.	9
3.1	Schematic diagram flow of PROX process.	29
4.1	UV-vis DRS spectra of Fe_2O_3 , TiO_2 , and Fe_2O_3 - TiO_2 supports.	42
4.2	UV-vis DRS spectra of supported Au catalyst samples.	42
4.3	UV-vis DRS spectra of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) samples with	
	different calcination temperatures.	43
4.4	UV-vis DRS spectra of Au/Fe ₂ O ₃ -TiO ₂ (1:4) samples with	
	different Au loadings.	44
4.5	$H_2\text{-}TPR$ profiles for $Fe_2O_3\text{-}TiO_2$ supports with different atomic ratios.	45
4.6	H_2 -TPR profiles for all catalyst sample with 1% gold loading.	46
4.7	H ₂ -TPR profiles for 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts with	
	different calcination temperatures.	48
4.8	H ₂ -TPR profiles for Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts with	
	different Au loadings.	49
4.9	TEM images of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts; a) calcined	
	at 200 °C, b) calcined at 300 °C, and c) calcined at 400 °C.	52
4.10	TEM images of Au/Fe ₂ O ₃ -TiO ₂ (1:4) calcined at 400 °C with	
	different gold loadings; a) 3%, and b) 5 wt%	53
4.11	TEM images of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) calcined at 400 °C with O ₂	
	pretreatment at 200 °C for 2 h.	54

FIGURE

4.12	XRD patterns of: (a) 1% Au/Fe ₂ O ₃ ;	
	(b) $1\% \text{ Au/Fe}_2\text{O}_3\text{-TiO}_2$ (4:1); (c) $1\% \text{ Au/Fe}_2\text{O}_3\text{-TiO}_2$ (1:1);	
	(d) $1\% \text{ Au/Fe}_2\text{O}_3\text{-TiO}_2$ (1:4); (e) $1\% \text{ Au/TiO}_2$.	55
4.13	XRD patterns of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4)	
	catalysts with different calcination temperatures: (a) calcined at 200 $^\circ$	C;
	(b) calcined at 300 °C; (c) calcined at 400 °C.	56
4.14	XRD patterns of Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts with different	
	gold loadings: (a) 1 wt%; (b) 3 wt%; (c) 5 wt%	57
4.15	FTIR spectra of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalysts: (a) fresh catalyst;	
	(b) spent catalyst.	58
4.16	CO conversion and selectivity as a function of reaction temperature	
	for PROX reaction over 1% Au/Fe ₂ O ₃ -TiO ₂ catalysts with various	
	atomic ratios of Fe/Ti.	60
4.17	Effect of calcination temperature on CO conversion and PROX	
	selectivity over 1% Au/Fe ₂ O ₃ -TiO ₂ catalysts.	62
4.18	Effect of gold loading on CO conversion and PROX selectivity over	
	Au/Fe_2O_3 -TiO ₂ (1:4) catalysts.	63
4.19	CO conversion and PROX selectivity as a function of reaction	
	temperature for PROX reaction over 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4)	
	catalyst pretreated with oxygen.	65
4.20	Deactivation test of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalyst calcined	
	at 400 °C.	67
B1	SEM-EDS of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4): (a) SEM image of	
	1 % Au/Fe ₂ O ₃ -TiO ₂ (1:4), (b) mapping of Ti, (c) mapping	
	of Ti, (d) mapping of Fe, and (d) mapping of Au.	81
B2	Composition of 1% Au/Fe ₂ O ₃ -TiO ₂ (1:4) catalyst.	82
C1	Particle size distribution bar graph of support in 1% Au/Fe ₂ O ₃ -TiO ₂	
	(1:4) catalysts; a) calcined at 200 °C, b) calcined at 300 °C, and	
	c) calcined at 400 °C.	84

FIGURE

- C2 Particle size distribution bar graph of support in 1% Au/Fe₂O₃-TiO₂
 (1:4); calcined at 400 °C with different gold loadings; a) 3%,
 and b) 5 wt%.
- C3 Particle size distribution bar graph of support in 1% Au/Fe₂O₃-TiO₂ (1:4) catalysts calcined at 400 °C with O₂ pretreatment at 200 °C for 2 h. 85