PRODUCTION OF HYDROGENATED BIODIESEL OVER PALLADIUM SUPPORTED TITANIA CATALYST: EFFECT OF TRIGLYCERIDE-BASED FEEDSTOCKS

Panatcha Bovornseripatai

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University, and Institut Français du Pétrole
2012

Thesis Title:	s Title: Production of Hydrogenated Biodiesel over Palladium		
	Supported Titania Catalyst: Effect of Triglyceride-based		
	Feedstocks		
By:	Panatcha Bovornseripatai		
Program:	Petroleum Technology		
Thesis Advisors:	Asst. Prof. Siriporn Jongpatiwut		
	Prof. Somchai Osuwan		
	Dr. Suchada Butnark		

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee: (Prof. Somchai Osuwan) (Asst. Prof. Siriporn Jongpatiwut) (Assoc. Prof. Apanee Luengnaruemitchai) (Dr. Suchada Butnark)

Supak Trakamroek

(Dr. Supak Trakarnroek)

ABSTRACT

5373012063: Petroleum Technology Program

Panatcha Bovornseripatai: Production of Hydrogenated Biodiesel

over Palladium Supported Titania Catalyst: Effect of Triglyceride-

based Feedstocks

Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut, Prof. Somchai

Osuwan, and Dr. Suchada Butnark 62 pp.

Keywords: Hydrogenated biodiesel/ Hydrodeoxygenation/ Pd/TiO₂/

Triglyceride-based feedstock

Hydrogenated biodiesel is one of the most promising renewable fuels. It has many advantages over conventional biodiesel, including higher cetane number, higher heating value, lower viscosity, and lower corrosiveness due to its absence of oxygen. From previous work, Pd/TiO₂ gave high conversion and selectivity in hydrogenated biodiesel. In this work, the effect of triglyceride-based feedstocks (i.e. beef fat, chicken fat, pork fat, jatropha oil, and palm oil) on the production of hydrogenated biodiesel over Pd/TiO₂ was studied. All feedstocks were analyzed by ICP-OES (inductively coupled plasma optical emission spectrometry) to identify the content of impurities (i.e. P, K, Ca, Na, and Mg). The deoxygenation catalyst, Pd/TiO₂, was prepared by incipient wetness impregnation (IWI) and tested in a continuous flow packed-bed reactor at 325 °C, 500 psig, LHSV of 4 h⁻¹ and H₂ to feed molar ratio of 30 for its catalytic activity and selectivity of hydrodeoxygenation. All feedstocks gave high selectivity in the diesel specification range of hydrocarbons. The main hydrocarbons were n-pentadecane (n-C15) and nheptadecane (n-C17), which resulted from the decarbonylation/decarboxylation reaction. The conversion of triglycerides in jatropha oil was higher than those of chicken fat, pork fat, beef fat, and palm oil, respectively. The higher concentration of metal impurities in the feedstock caused the deactivation of catalyst, thus lowering the conversion of triglycerides.

บทคัดย่อ

ภณัชญา บวรเสร็นไท : การผลิตไฮโครจีเนตเตทไบโอคีเซลบนตัวเร่งปฏิกิริยาที่มี โลหะพัลลาเคียมบนตัวรองรับไทเทเนีย : ผลกระทบของชนิคสารตั้งต้นจำพวกไตรกลีเซอไรค์ (Production of Hydrogenated Biodiesel over Palladium Supported Titania Catalyst: Effect of Triglyceride-based Feedstocks) อ. ที่ปรึกษา: ผศ. คร. ศิริพร จงผาติวุฒิ ศ. คร.สมชาย โอสุวรรณ และ คร.สุชาคา บุตรนาค 62 หน้า

ไฮโครจีเนตเตทไบโอคีเซลถือเป็นพลังงานทคแทนที่สำคัญอย่างหนึ่งเนื่องจากเป็นน้ำมัน ชีวมวลที่ไม่มีออกซิเจนอยู่ในโครงสร้างโมเลกุล ทำให้มีคุณสมบัติที่ดีกว่าไบโอดีเซลทั่วไป เช่น ค่าซีเทนและค่าพลังงานความร้อนที่สูงกว่า รวมไปถึงค่าความหนืดและการกัดกร่อนที่ต่ำกว่า ใน งานวิจัยที่ผ่านมาพบว่า ตัวเร่งปฏิกิริยาที่มีโลหะพัลลาเคียมบนตัวรองรับไทเทเนีย (Pd/TiO,) มี ความสามารถในการเปลี่ยนใขมันวัวที่เป็นสารตั้งต้นไปเป็นผลิตภัณฑ์ที่เป็นไฮโครคาร์บอน ในช่วงน้ำมันดีเซลได้เป็นอย่างดี ในงานวิจัยนี้จึงทำการศึกษาผลของสารตั้งต้นจำพวกไตรกลีเซอ ไรค์ (ได้แก่ ไขมันวัว, ไขมันไก่, ไขมันหมู, น้ำมันสบู่คำ และ น้ำมันปาล์ม) ที่มีต่อการผลิตไฮโคร จีเนตเตทไบโอดีเซลบนตัวเร่งปฏิกิริยาที่มีโลหะพักลาเดียมบนตัวรองรับไทเทเนีย สารตั้งต้นชีว มวลถกวิเคราะห์โดย พลาสมาเหนี่ยวนำคู่ควบ/สเปกโตรสโกปีแบบเปล่งแสง (inductively coupled plasma optical emission spectrometry, ICP-OES) เพื่อตรวจหาปริมาณสาร ปนเปื้อน (ได้แก่ ฟอสฟอรัส, โพแทสเซียม, แคลเซียม, โซเคียม และ แมกนีเซียม) ตัวเร่งปฏิกิริยา ถูกเตรียมโดยวิธีการฝั่งแบบชื้น (incipient wetness impregnation, IWI) และถูกทดสอบความ ว่องไวในการทำปฏิกิริยาโคยใช้เครื่องปฏิกรณ์แบบไหลต่อเนื่องชนิคเบคนิ่งที่สภาวะความคัน 500 ปอนด์ต่อตารางนิ้ว อุณหภูมิ 325 องศาเซลเซียส อัตราส่วนโดยโมลระหว่างใฮโครเจนกับสารที่ ป้อนเท่ากับ 30 และใช้อัตราการใหลของสารป้อนต่อปริมาตรตัวเร่งปฏิกิริยาเท่ากับ 4 ต่อชั่วโมง จากการศึกษาพบว่า ผลิตภัณฑ์ของเหลวที่ได้จากตัวเร่งปฏิกิริยาทุกตัวเป็นไฮโดรคาร์บอนอยู่ ในช่วงน้ำมันคีเซล โคยมีเฮปตะเคคเคนและเพนตะเคคเคนเป็นผลิตภัณฑ์หลัก ซึ่งเป็นผลมาจาก การปฏิกิริยา ดีคาร์บอกซีเลชัน/ดีคาร์บอนิลเลชัน โดยความสามารถในการเปลี่ยนไตรกลีเซอไรด์ ไปเป็นผลิตภัณฑ์ในน้ำมันสบู่คำมีค่าสูงสุด รองลงมาคือ ไขมันไก่ ไขมันหมู ไขมันวัว และน้ำมัน ปาล์ม ตามลำคับ ความสามารถในการเปลี่ยนสารตั้งต้นที่ต่ำกว่าเป็นผลมาจากปริมาณสารปนเปื้อน โลหะในสารตั้งต้นที่มากกว่า ทำให้เกิดการฝังตัวของสารปนเปื้อนลงบนผิวหน้าของตัวเร่ง ปฏิกิริยา

ACKNOWELEDGEMENTS

This thesis could not be accomplished without the kind assistance and support of the many people and organizations below.

First, I am heartily thankful to Asst. Prof. Siriporn Jongpatiwut, my advisor, whose encouragement, guidance and support enabled me to develop an understanding of this thesis more and more. My thanks are also including her kindness, effort to explain things clearly and simply, and patience to listen to my opinion and proof my writing. And the special thanks for my co-advisor, Dr. Suchada Butnark, and Prof. Somchai Osuwan, for all of comments and good suggestions.

I would like to thank Assoc. Prof. Apanee Luengnaruemitchai and Dr. Supak Trakarnroek for kindly serving on my thesis committee. Their suggestions are certainly important and helpful for completion of this thesis.

I am grateful for the full scholarship and funding of the thesis work provided by S&T Postgraduate Education and Research Development Office, Center of Excellence on Petrochemical and Materials Technology, and the Petroleum and Petrochemical College, Chulalongkorn University.

My thankfulness is extended to all of staff of the Petroleum and Petrochemical College for their kind help with the analytical instruments.

I wish to thank all my friends for informal support, help in difficult time, entertainment and care of me.

Finally, I wish to thank my family for moral support, understanding, and always give me greatest love, willpower and financial support until this study completion.

TABLE OF CONTENTS

		PAGE
Tit	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Ac	knowledgements	V
Tal	ole of Contents	vi
Lis	t of Tables	ix
Lis	t of Figures	x
СНАРТ	ER	
I	INTRODUCTION	1
П	LITERATURE REVIEW	3
	2.1 Petroleum-based Diesel	3
	2.1.1 Important Characteristics of Diesel Fuels	3
	2.1.1.1 Cold Flow Properties	4
	2.1.1.2 Volatility	4
	2.1.1.3 Ignition Indices	5
	2.2 Bio-based Diesel	6
	2.2.1 Feedstocks	6
	2.2.2 Biodiesel	12
	2.2.3 Renewable Diesel	14
	2.2.4 Influence of Condition	17
	2.2.5 Comparison of Biodiesel and Renewable Diesel	18
	2.3 Solid Catalysts	21
	2.3.1 Importance of Solid Catalysts	21
	2.3.2 Influence of Active Metal and Catalyst Support	23
	2.3.3 Catalyst Deactivation	24

CHAPTE	R	PAGE
	2.3.4 Synthesis of Solid Catalysts	27
	2.3.4.1 Impregnation	28
	2.3.4.2 Sol-gel Method	29
	2.3.4.3 Co-precipitation	30
III	EXPERIMENTAL	31
	3.1 Materials	31
	3.1.1 Feedstocks and Chemicals	31
	3.1.2 Gases	31
	3.2 Equipment	31
	3.3 Experimental Procedures	32
	3.3.1 Catalyst Preparation	32
	3.3.2 Catalyst Characterizations	32
	3.3.2.1 Thermo Gravimetry/Differential	
	Thermal Analyzer (TG/DTA)	32
	3.3.2.2 Brunauer-Emmett-Tellet (BET)	
	Surface Area Analysis	32
	3.3.2.3 Temperature Programmed Oxidation	
	(TPO)	33
	3.3.3 Feedstock Characterizations	33
	3.3.3.1 Gas Chromatography with Flame	
	Ionization Detector (GC/FID) -	
	Modified AOAC 996.06 Method	33
	3.3.3.2 Inductively Coupled Plasma Optical	
	Emission Spectrometry (ICP-OES)	34
	3.3.4 Hydrodeoxygenation Experiments	34
	3.3.5 Product Analysis	36

CHAPTER		PAGE
IV	RESULTS AND DISCUSSION	38
	4.1 Fresh Catalyst Characterizations	38
	4.1.1 Brunauer-Emmett-Tellet Surface Area	38
	Analyzer (BET)	
	4.1.2 Thermogravimetry and Differential Thermal	
	Analysis (TG-DTA)	38
	4.2 Feed Characterizations	39
	4.2.1 Standard Analysis	39
	4.2.2 Feed Analysis	44
	4.2.3 Inductively Coupled Plasma Optical Emission	
	Spectrometry (ICP-OES)	49
	4.3 Catalytic Activity Testing	50
	4.3.1 Product Analysis	50
	4.4 Spent Catalyst Characterizations	54
	4.4.1 Inductively Coupled Plasma Optical Emission	
	Spectrometry (ICP-OES)	54
	4.4.2 Temperature Programmed Oxidation (TPO)	54
V	CONCLUSIONS AND RECOMMENDATIONS	57
	REFERENCES	58
	CURRICULUM VITAE	62

LIST OF TABLES

TABL	TABLE	
2.1	Fatty acid of some edible fats and oil	7
2.2	Selected properties of some common fatty acids	10
2.3	Petroleum diesel, biodiesel and green diesel properties	19
2.4	Comparison of biodiesel and green diesel production	
	processes	20
2.5	Green diesel and biodiesel yields	21
2.6	Steps in a catalytic reaction	22
2.7	Survey of selected catalysts with their main applications	23
2.8	Mechanisms of catalyst deactivation	24
3.1	The reaction conditions for the production of hydrogenated	
	biodiesel	35
4.1	Textural properties of the catalysts	38
4.2	Retention times and response factors of standard chemicals	44
4.3	Composition of biomass feedstock from gas	
	chromatography	47
4.4	Fatty acid compositions of feedstocks investigated	48
4.5	Concentration of main impurities in each feedstocks	49
4.6	Conversion and product selectivity from	
	hydrodeoxygenation over Pd/ TiO2 catalyst	51
4.7	Concentration of main impurities and metal loading on spent	
	catalysts	54
4 8	Amount of carbon deposit on the spent catalyst after reaction	55

LIST OF FIGURES

FIGU	IGURE	
2.1	A chemical structure of triglyceride.	7
2.2	The production of biodiesel via transesterification of	
	triglyceride.	12
2.3	The transesterification reactions of triglyceride with alcohol	
	to ester and glycerol.	13
2.4	The reaction pathway for conversion of triglycerides to	
	renewable diesel.	15
2.5	The possible liquid-phase reaction pathways for production	
	of straight- chain hydrocarbons from fatty acids.	16
2.6	Gas phase reactions of CO or CO ₂ with H ₂ or H ₂ O.	17
2.7	Flow chart for transformation of lipid materials (biodiesel	
	and renewable diesel) to products of engine combustion.	20
2.8	Mechanisms of catalyst deactivation ($M = metal$).	25
2.9	General scheme of sol-gel processing in the preparation of	
	solid materials.	30
3.1	Flow chart to prepare the sample for ICP Analysis.	34
3.2	A schematic flow diagram of high pressure experiment set.	35
4.1	TG-DTA profile of 1 wt% Pd/TiO ₂ catalyst prepared via	
	incipient wetness impregnation method (IWI).	39
4.2	Chromatograms of standard chemicals.	40
4.3	Chromatograms of 30 vol.% triglyceride based feedstocks in	
	dodecane.	45
4.4	Conversion and selectivity of diesel range hydrocarbons	
	(C15-C18) over Pd/TiO ₂ catalyst obtained from various	
	triglyceride baesd feedstocks.	52
4.5	TPO profiles of spent catalysts.	55