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ABSTRACT
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To enhance the energy recovery through heat integration, heat exchanger
network (HEN) synthesis has been introduced for industrial processes. The design of
an optimal-cost HEN s a challenging research topic in recently decade. This work
modifies a mixed-integer nonlinear programming (MINLP) stage-wise model by
commercial optimization software; GAMS, for simultaneous synthesis where the
main objective is to minimize total annual cost composing of capital and operational
expenses. The proposed model overcomes the area trade-off restriction caused by the
assumption of isothermal mixing and allows any split stream flow through multiple
exchangers in series as well as bypass stage before mixing non-isothermally for
simultaneous synthesis. Dealing with the MINLP case, the initialization strategy is
developed to find feasible starting point for the optimization problem resulting in
better HENs compared to published results from the literatures. In addition, the
retrofit of HENS is done by applying retrofit constraints to HENS model.
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