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1. INTRODUCTION 

 In finance, the risk-neutral density (RND) is a probability measure widely used in the pricing 

framework. It is derived from the first fundamental theorem of asset pricing (FTAP I), stating that this 

measure must exist for a market to be arbitrage-free. Under the risk-neutral probability measure, any 

discounted asset prices are martingale. We can use this fact to price any financial products, for 

example, an option on a single stock. That is, the price of derivative today is equal to the expected 

value of its payoff function at maturity discounted by the risk-free rate. One can compute this 

expectation by integrating the payoff function with respect to its density function under the risk-neutral 

measure. This method is called risk-neutral pricing. Because the risk-neutral itself cannot be observed 

directly, the limitation here is that we do not know what distribution the risk-neutral density is. One 

solution is to estimate the implied risk-neutral density from observed prices given by the market data. 

To do so, we need an assumption of the density function and the model in order to extract its 

parameters. The more efficient the model is, the more accurate the estimated prices are. 

 The Black-Scholes (1973) is a well-known model for European option pricing derived from 

the risk-neutral pricing method. According to the research, it is assumed that the dynamic of stock 

prices follows Geometric Brownian Motion (GBM) with constant mean and constant volatility across 

its maturity. It implies that stock prices are distributed as log-normal and the returns of stocks are 

distributed as the normal distribution, a symmetric distribution. Although this approach is quite 

interesting, it fails to capture skewness and excess kurtosis of asset returns. Several papers provide 

empirical results showing that the distribution of asset returns is not symmetric. It has negative 

skewness and fat tail properties. The drawback of those problems is that its implied volatilities are not 

consistent across strike prices for options with the same time to maturity. This effect is known as the 

volatility smile. Consequently, the Black-Scholes model will overprice out-of-the-money call options 

and underprice in-the-money call options. This result shows how highly sensitive options prices are to 

extreme events in the tail of its density. In response, later academic researchers have proceeded to 

overcome mentioned drawbacks by proposing alternative distributions for an asset return. 

 Based on a review of literature on this topic by Jackwerth (1999), it suggested that numerous 

methods can be categorized into two main categories, namely, parametric and non-parametric. For 

parametric methods, they can be divided into three sub-categories. The first method is the expansion 

method. In this method, we typically start with a general distribution, mostly normal or log-normal. 

Then we add some conditions to coefficient terms to provide more flexibility to the models. A serious 

weakness of this sub-category is that the implied risk-neutral density can take on negative value and 

violate the positivity constraint of density function. The second method is the generalized distribution 

method. We include more parameters further from two parameters in normal or log-normal 

distributions. The third method is the mixture method. In this method, we provide greater flexibility by 

combining a couple of simple distributions using the weighted sum approach. The main disadvantage 

of mixture models is that the number of parameters is large. To illustrate, the mixture of three log-

normal distributions needs us to estimate eight parameters. Non-parametric methods are also divided it 
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into three sub-categories. The first method is the kernel method. We use a regression technique to fit 

given data without considering a parametric form of the function. The second method is the maximum-

entropy method. We try to fit observed data with non-parametric distribution while consider certain 

constraints. The third method is the curve fitting method. In this method, we basically try to fit the 

implied volatilities or the risk-neutral density with some flexible function. By using non-parametric 

methods, because there are not many extraordinarily high or low strike prices traded in the market, 

most of them fail to capture tail behavior for the density functions. Therefore, parametric methods are 

more appropriate in this perspective. 

 According to Markose and Alentorn (2011), they introduced a new generalized distribution in 

the parametric method, that is, the Generalized Extreme Value (GEV) distribution. It is developed 

within the Extreme Value Theory (EVT) framework, which is useful in estimating the distribution of 

extreme events of financial markets. Moreover, it brings more flexibility to capture the negative 

skewness and excess kurtosis of asset returns. Their article discussed the benefits of using the GEV 

approach in option pricing as follows: (i) It can provide a closed-form solution for both call and put 

options. (ii) There are only two parameters in this model to be estimated, the tail shape parameter (𝜉) 

and the scale parameter (𝜎). This is equal to the number of parameters in log-normal and normal 

distribution models. (iii) It can be categorized into three special cases depending on the value of the tail 

shape parameter, namely, the Weibull thin-tailed type, the Gumbel short-tailed type, and the Fréchet 

fat-tailed type. (iv) For the Fréchet type, it exhibits a fat tail on the right side of the density function. 

We can adopt Fréchet distribution to model negative returns. (v) The GEV model provides a market-

implied tail index (𝜉−1), and this index can be used to interpret market conditions in each period. (vi) It 

removes pricing biases associated with the Black-Scholes model.  

There is also another approach within the Extreme Value Theory framework. Instead of 

considering a whole distribution of sample maxima which results in GEV distribution, we may use a 

method called Peak over Threshold (Davison and Smith (1990)) to examine the behavior of the 

exceedances of a random variable over a high threshold value. That is, we narrow our focuses only on 

the tail of the distribution. Pickands III (1975) states that, for most of any random variables, given a 

high threshold value, the distribution of their exceedances over that threshold converges to the 

Generalized Pareto (GP) distribution. Similar to the GEV distribution, the GP distribution provides the 

tail index (𝜉) to determine the tail heaviness of the distribution. However, the main limitation of GP 

distribution is that its domain does not support the whole real axis. In order to apply GP distribution 

into the option pricing context, we need an extension method to deal with this problem. 

 In this paper, we adopt the method called the Hybrid Pareto model by Carreau and Bengio 

(2009) to price European-style options. It is a combination of the Normal distribution and the 

Generalized Pareto distribution. Instead of using the basic weighted sum method from previous 

research, they developed this model by stitching a GP tail to a Normal distribution at some proper 

threshold. We call the GP tail component above the threshold as a tail model since it contains all 

extreme values. The Normal distribution component below the threshold is called bulk model 
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describing all the rest non-extreme values. The advantages of using the Hybrid Pareto model in option 

pricing can be discussed as follows: (i) It provides a closed-form solution. (ii) Initially, this model has 

five parameters to estimate: the threshold value (𝛼), the mean of Normal component (𝜂), the variance 

of Normal component (𝛽), the tail index in GP component (𝜉) and the scale parameter (𝜎). However, 

after adding two constraints in order to make a whole density smooth and continuous at the threshold, 

the set of parameters reduce to three (𝜂, 𝜎 and 𝜉). (iii) Consequently, it provides more flexibility to 

model the tail behavior compare to the GEV model.  

 In conclusion, this paper proposes a new alternative model for option pricing. Under the 

Extreme Value Theory framework, stock losses (or negative return) under the risk-neutral measure are 

assumed to follow the Hybrid Pareto distribution. Using the risk-neutral pricing method, one can derive 

a closed-form pricing formula. Given observed historical data on option prices in the market, the 

implied-risk neutral density can be obtained using the optimization approach. We use the GEV model 

by Markose and Alentorn (2010) as a benchmark. By using the Hybrid Pareto model, we aim to archive 

better performances in terms of in-sample pricing evaluated root-mean-square error (RMSE). 

 

1.1 Research Objective 

 Using the GEV model as a benchmark, this paper proposes a new alternative model with a 

hybrid method and aims to improve model performance by reducing root-mean-square error and 

pricing bias. 

 

Table 1: Detail of models used in this paper. 

Model Type Model Name 

Distribution Parameters 

Bulk Model Tail Model 𝜼 𝜷 𝝃 𝝈 

1. Benchmark Model GEV Generalized Extreme Value - - ✔ ✔ 

2. Proposed Model Hybrid Pareto  Normal Generalized Pareto ✔ ✔ ✔ - 

 

1.2 Research Hypothesis 

 Due to an effort we provided for the tail component in the Hybrid Pareto model, we expect 

that our proposed model would outperform the benchmark model in two aspects. 

 1.2.1 It provides better performances in terms of average RMSE for deep out-of-the-money 

options. 

 1.2.2 It provides better performances in terms of average RMSE for long expiration time (90 

days).  

 The rest of this paper is organized as follows: Section 2 provides the theory of no-arbitrage 

pricing under risk-neutral and previous related models. Besides, it exhibits some applications of 

Extreme Value Theory in financial areas. Section 3 describes the data used in our study. Section 4 

shows how to derive the closed-form option pricing formula from our proposed model. Then provides a 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

method to extract model parameters and its implied risk-neutral density using an optimization 

technique. Section 5 discusses about the results we got from mentioned methodology. Section 6 is the 

conclusion for our study.  

 

2. LITERATURE REVIEWS 

2.1 The First Fundamental Theorem of Asset Pricing (FTAP I) 

Let 𝑆𝑇 denote a price of an underlying asset at time 𝑇, 𝐶𝑡(𝑇, 𝐾) and 𝑃𝑡(𝑇, 𝐾) denote  European 

call and put option price observed at time 𝑡 with maturity date 𝑇 and strike price 𝐾. In this paper, we 

assume a constant interest rate 𝑟. According to Harrison and Pliska (1981), for a no-arbitrage market, 

there must exist the probability measure ℙ̃ corresponding to the risk-neutral density function 𝑓(∙) such 

that the option prices are given by the expected discounted payoff: 

 

𝐶𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)𝔼̃ℙ[(𝑆𝑇 − 𝐾)

+│𝑆𝑡] 

= 𝑒−𝑟(𝑇−𝑡)∫ (𝑆𝑇 − 𝐾)
∞

𝐾

𝑓(𝑆𝑇)𝑑𝑆𝑇 (2.1) 

 and 

𝑃𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)𝔼̃ℙ[(𝐾 − 𝑆𝑇)

+│𝑆𝑡] 

= 𝑒−𝑟(𝑇−𝑡)∫ (𝐾 − 𝑆𝑇)
𝐾

−∞

𝑓(𝑆𝑇)𝑑𝑆𝑇 . (2.2) 

 

2.2 Implied Risk-Neutral Density from Option Price 

According to the first fundamental theorem of asset pricing (FTAP I), the existence of risk-

neutral density (RND) implies no-arbitrage condition on the market. Following this theory, all the 

discounted asset prices are martingale under the risk-neutral probability measure ℙ̃. In the real world, 

we cannot observe the RND directly. It needs market data to imply its structure. In this section, we 

review the previous methods for recovering the RND from the given options price. 

Jackwerth (1999) suggested that the methods can be categorized into two approaches: 

parametric and non-parametric methods. 

 

2.2.1 Parametric Approach 

The parametric approach can be divided into three groups. 

The first method is the expansion method. This method generally starts with some basic 

distribution (e.g., log-normal, normal) and then adds correlation terms in order to make the model more 

flexible and well fit to the observed data. A drawback of the expansion method is that as some 

conditions are added, the RND function can take on a negative value. Abadir and Rockinger (1997) 

assumed that RND follows the density functional based on the confluent hypergeometric function 

(DFCH). Also, Bu and Hadri (2007) used the DFCH method to compare the estimation performance 

with the smoothed implied volatility smile method (SML) and found that the DFCH method 

outperforms the SML method by extracting RND function from option price. 
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The second method is the generalized distribution method. It provides more flexibility to fit 

market data. In spite of using only two basic parameters, which are mean and volatility, the 3rd moment 

(skewness) and the 4th moment (kurtosis) are included in this method. Aparicio and Hodges (1998) 

used a generalized beta distribution. Bookstaber and McDonald (1987) used the log-normal, gamma, 

and exponential distribution along with several burr type distributions. Markose and Alentorn (2010) 

introduced the Generalized Extreme Value (GEV) distribution for estimating RND function. They 

assumed that a simple negative return follows GEV distribution. Then, they derived a closed-form 

pricing formula from it. The advantage of using a GEV distribution is that we can obtain tail index 𝜉, 

which can be used to describe market conditions in each period. 

The third method is the mixture method. It is a combination of two or more distributions to 

create a new distribution. Typically, the weighted average is widely used. Melick and Thomas (1997) 

used mixtures of three log-normal distributions. Ritchey (1990) applied mixtures of normal 

distributions for log return. Even though this method is more flexible in terms of the shape of a density 

function, it suffers from a large number of parameters. Thai is, the mixtures of two log-normal 

distributions method need five parameters, but, considering one step further, the mixtures of three log-

normal distribution method needs eight parameters. Santos and Guerra (2015) compared the 

performance of the mixture of log-normal distributions (MLN), the smoothed implied volatility smile 

(SML), the density functional based on the confluent hypergeometric function (DFCH) and the 

Edgeworth expansion  (EE). They found that DFCH and MLN have outperformed the other two. 

 

2.2.2 Non-Parametric Approach 

Without any assumption on the RND function, the non-parametric method aims to fit the model 

with less restriction. It allows a more general form of option pricing formula. This approach can be 

divided into three groups.  

The first method is the Kernel method. It uses a regression technique to fit a function to 

observed data. The farther away the observed data are from, the less likely a proper function is. Aït‐

Sahalia and Lo (1998) used five dimensions in the regression process: stock price, strike price, time to 

maturity, interest rate, and dividend yield. Rookley (1997) used a bivariate kernel estimator across 

expiration time and moneyness.  

The second method is the maximum-entropy method. This method is similar to the Bayesian 

approach. It requires the prior distribution of the density function. Furthermore, the posterior RND is 

derived from maximizing a cross-entropy subject to three constraints: positivity of density function, 

integrating the density to one, and the correction in terms of the option price. Buchen and Kelly (1996) 

used the uniform and the log-normal distribution as prior distributions. Stutzer (1996) used the 

historical distribution of the asset price as prior. Only a price constraint was used in his study. 

The third method is the curve fitting method. This method usually uses some general 

polynomial functions to fit the observed data. Shimko (1993) employed the quadratic polynomial 

function to fit the implied volatility smile and then used it to compute option prices. The risk-neutral 
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density can be derived from taking the second derivative of the option prices with respect to strike 

prices. Campa, Chang, and Reider (1998) used cubic splines to fit the volatility smile. Rubinstein 

(1996) tried to estimate the RND directly by minimizing the error of discretized probabilities to the 

log-normal prior distribution subject to the option prices and underlying asset constraints. 

 

2.3 Extreme Value Framework 

2.3.1 Generalized Extreme Value (GEV) Distribution 

 In this topic, we discuss how generalized extreme value distribution was derived based on the 

book named Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk, with 

implication on R and MATLAB by Danielsson (2011).  

 Consider IID 𝑇 random variables 𝑋1, 𝑋2, … ,  𝑋𝑇. Let 𝑀𝑇 denote maxima in 𝑇 samples: 

𝑀𝑇 = max(𝑋1, 𝑋2, … , 𝑋𝑇) . (2.3) 

 From the Fisher and Tippet (1928) and Gnedenko (1943) theorem, it states that if the sample 

size is large (𝑇 → ∞). Then, standardized maxima asymptotically distributed as generalized extreme 

value distribution 𝐹(∙): 

𝐹(𝑥) = lim
𝑇→∞

ℙ(
𝑀𝑇 − 𝑎𝑇
𝑏𝑇

≤ 𝑥) , (2.4) 

where the constants 𝑎𝑇 > 0 and 𝑏𝑇 > 0 exists and are defined as 𝑎𝑇 = 𝑇𝔼(𝑋1) and 𝑏𝑇 = √Var(𝑋1). 

Let 𝜉 denote a shape parameter. The limiting cumulative distribution 𝐹(∙) becomes the 

generalized extreme value (GEV) distribution: 

𝐹(𝑥│𝜉) = {
exp {−(1 + 𝜉𝑥)

−
1
𝜉} , 𝜉 ≠ 0

exp(− exp(−𝑥)) , 𝜉 = 0

. (2.5) 

 According to Mises (1936), given the location parameter 𝜇 ∈ ℝ, scale parameter 𝜎 > 0 and 

tail shape parameter 𝜉 ∈ ℝ, the standardized GEV distribution is given by: 

𝐺(𝑧│𝜉, 𝜇, 𝜎) =

{
 
 

 
 
exp{−(1 +

𝜉(𝑧 − 𝜇)

𝜎
)

−
1
𝜉

} , 𝜉 ≠ 0

exp {−𝑒(−
𝑧−𝜇
𝜎 )} , 𝜉 = 0

, (2.6) 

defined on {𝑧: 1 + 𝜉(𝑧 − 𝑢)/𝜎 > 0}. 

 By taking the first derivative of the cumulative density function 𝐺(∙), we get the following 

probability density function 𝑔(∙): 

𝑔(𝑧│𝜉, 𝜇, 𝜎) =

{
 
 

 
 1

𝜎
(1 +

𝜉(𝑧 − 𝜇)

𝜎
)

−
1
𝜉
−1

exp{−(1 +
𝜉(𝑧 − 𝜇)

𝜎
)

−
1
𝜉

} , 𝜉 ≠ 0

1

𝜎
𝑒(−

𝑧−𝜇
𝜎 ) exp {−𝑒(−

𝑧−𝜇
𝜎 )} , 𝜉 = 0

. (2.7) 
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2.3.2 Extreme Value Theory (EVT) in Financial Market 

 Rocco (2014) surveyed the uses of extreme value theory for testing the distributional 

assumption, value-at-risk and expected shortfall calculation, asset allocation under safety-first 

constraints, and the study of contagion and dependence. In our study, we focus on an application to test 

the distributional assumption. 

Koedijk, Schafgans, and De Vries (1990) employed the extreme value theory approach to 

examine the amount of tail-fatness. Using bilateral foreign exchange rates of the European monetary 

system from 1971 to 1987, they found that the tail index parameter is most likely around two and 

possibly lower than two. This result implies that we should reject the assumption of normal and of the 

log-normal distribution. 

Vilasuso and Katz (2000) studied stock market index prices in 17 countries from 1980 to 1997 

and tested the hypothesis of whether their returns favor the heavy-tailed stable distribution or not. They 

concluded that the results better fit with Student 𝑡 and ARCH processes, which are in the fat-tailed 

family. 

LeBaron and Samanta (2005) also adopted the EVT to estimate the level of "fatness" in the 

tails in the equity market. They suggested that, as returns are known to be fat-tailed, we can limit our 

study only on the Frechét type, where the shape parameter 𝜉 is greater than zero. 

  

2.3.3 Implied RND Function from Option Price Using GEV Distribution 

 Markose and Alentorn (2010) employed the GEV distribution approach to obtain an option 

pricing formula. First, they assumed that negative simple returns 𝐿𝑇 follow the GEV distribution in 

(2.7) when it is a Frechét type (𝜉 > 0): 

𝑓(𝐿𝑇│𝜉, 𝜇, 𝜎) =
1

𝜎
(1 +

𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉
−1

exp{−(1 +
𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉

} , (2.8) 

where we define 𝐿𝑇: 

𝐿𝑇 = −
𝑆𝑇 − 𝑆𝑡
𝑆𝑡

= 1 −
𝑆𝑇
𝑆𝑡
. (2.9) 

 We can transform the density function of 𝐿𝑇 in (2.8) to the density function of an underlying 

price at time 𝑇 by: 

𝑔(𝑆𝑇) = 𝑓(𝐿𝑇) |
𝜕𝐿𝑇
𝜕𝑆𝑇

| =
1

𝑆𝑡
𝑓(𝐿𝑇). (2.10) 

 In order to obtain the RND function of 𝑆𝑇, we substitute (2.8) into (2.10). Then 𝑔(𝑆𝑇) 

becomes: 

𝑔(𝑆𝑇) =
1

𝑆𝑡𝜎
(1 +

𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉
−1

exp {−(1 +
𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉

} , (2.11) 

with the condition:  

1 +
𝜉(𝐿𝑇 − 𝜇)

𝜎
= 1 +

𝜉

𝜎
(1 −

𝑆𝑇
𝑆𝑡
− 𝜇) > 0. (2.12) 
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From (2.12), the upper bound of 𝑆𝑇 becomes: 

𝑆𝑇  < 𝑆𝑡 (1 − 𝜇 +
𝜎

𝜉
) . (2.13) 

We can compute a European call option price by using the risk-neutral pricing equation in 

(2.1) along with the RND function of underlying asset price given by (2.11) and the upper limit of 𝑆𝑇 

in (2.13): 

𝐶𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)∫ (𝑆𝑇 − 𝐾)

𝑆𝑡(1−𝜇+
𝜎
𝜉
)

𝐾

1

𝑆𝑡𝜎
(1 +

𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉
−1

 

× exp{−(1 +
𝜉(𝐿𝑇 − 𝜇)

𝜎
)

−
1
𝜉

}𝑑𝑆𝑇 (2.14) 

 

 For simplicity, we do the change of variable given by: 

𝑦 = 1 +
𝜉(𝐿𝑇 − 𝜇)

𝜎
= 1 +

𝜉

𝜎
(1 −

𝑆𝑇
𝑆𝑡
− 𝜇) . (2.15) 

 Then we have: 

𝐶𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)∫ (𝑆𝑡 (1 − 𝜇 −

𝜎

𝜉
(𝑦 − 1)) − 𝐾)

0

𝐻

 

×
1

𝑆𝑡𝜎
(𝑦

−1−
1
𝜉) exp (−𝑦

−
1
𝜉) (−

𝑆𝑡𝜎

𝜉
)𝑑𝑦, (2.16) 

where: 

𝐻 = 1 +
𝜉

𝜎
(1 −

𝐾

𝑆𝑡
− 𝜇) . (2.17) 

 (2.16) can be simplified to: 

𝐶𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡) {𝑆𝑡 ((1 − 𝜇 +

𝜎

𝜉
) 𝑒−𝐻

−1/𝜉
−
𝜎

𝜉
Γ(1 − 𝜉,𝐻−1/𝜉)) − 𝐾𝑒−𝐻

−1/𝜉
} , (2.18) 

where Γ(𝑎, 𝑏) is an incomplete Gamma function given by: 

Γ(𝑎, 𝑏) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥
∞

𝑏

. (2.19) 

  

Following by the same method above, the formula for the European put option yields: 

𝑃𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡) 

× (𝐾(𝑒−ℎ
−
1
𝜉
− 𝑒−𝐻

−
1
𝜉
) − 𝑆𝑡 ((1 − 𝜇 +

𝜎

𝜉
)(𝑒−𝐻

−
1
𝜉
− 𝑒−ℎ

−
1
𝜉
) −

𝜎

𝜉
Γ(1 − 𝜉, ℎ

−
1
𝜉 , 𝐻

−
1
𝜉))) (2.20) 

 

where Γ(𝑎, 𝑏, 𝑐) is the generalized Gamma function given by: 

Γ(𝑎, 𝑏, 𝑐) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥
𝑐

𝑏

, (2.21) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 

and 

ℎ = 1 +
𝜉

𝜎
(1 − 𝜇) > 0. (2.22) 

 Here, we can use the fact that the futures price of an underlying at time 𝑡 (𝐹𝑡) is equal to the 

expectation of underlying prices at maturity date 𝑇 under the risk-neutral measure: 

𝐹𝑡 = 𝔼̃
ℙ(𝑆𝑇│𝑆𝑡) 

=  1 − 𝑆𝑡𝔼̃
ℙ(𝐿𝑇) 

= 1 − 𝑆𝑡 (𝜇 + (
Γ(1 − 𝜉) − 1

𝜉
)𝜎) . (2.23) 

 From (2.23), we can get rid of the location parameter 𝜇 from the model by using the observed 

futures prices as follow: 

𝑢 = 1 −
𝐹𝑡,𝑇
𝑆𝑡

− (
Γ(1 − 𝜉) − 1

𝜉
)𝜎. (2.24) 

 In the end, one can estimate the model parameters by minimizing the sum squared error (SSE) 

between the option prices given by market data and the prices estimated by the GEV model. Denote 

𝐶̂𝑡(𝑇, 𝐾), and 𝑃̂𝑡(𝑇, 𝐾) as the estimated call and put option prices from the GEV model. The SSE can 

be computed by: 

𝑆𝑆𝐸𝑡 = min
𝜉,𝜎

{(∑( 𝐶̂𝑖,𝑡(𝑇, 𝐾│𝜉, 𝜎) − 𝐶𝑖,𝑡(𝑇, 𝐾))
2

𝑁

𝑖=1

) + (∑( 𝑃̂𝑗,𝑡(𝑇, 𝐾│𝜉, 𝜎) − 𝑃𝑗,𝑡(𝑇, 𝐾))
2

𝑀

𝑗=1

)} , (2.25) 

where 𝑁 and 𝑀 are the number of observed call and put option prices at time 𝑡. 

 

2.3.4 Peak Over Threshold (PoT) Method and Generalized Pareto Distribution 

 This method is first developed by Todorovic and Zelenhasic (1970). Instead of using the 

maxima, it considers the exceedance over a given high threshold (𝛼) to model extreme events. Given 

any random variable 𝑥, we consider a probability of 𝑥 exceeding 𝛼 conditional on 𝑥 being greater than 

𝛼: 

𝑃(𝑋 − 𝛼|𝑋 > 𝛼). (2.26) 

 Davision and Smith (1990) suggested that we can model those excesses by using Generalized 

Pareto (GP) distribution, which is also a limiting distribution as with the GEV distribution case. The 

GP density function above 𝛼 is given by Carreau and Bengio, 2009: 

𝑔(𝑥 − 𝛼│𝜉, 𝜎) =

{
 
 

 
 1

𝜎
(1 +

𝜉

𝜎
(𝑥 − 𝛼))

−1/𝜉−1

, 𝜉 ≠ 0

1

𝜎
exp (−

𝑥 − 𝛼

𝜎
) , 𝜉 = 0

, (2.27) 

define on {𝑥: 𝑥 ≥ 𝛼} when 𝜉 ≥ 0 and {𝑥: 𝛼 ≤ 𝑥 ≤ 𝛼 − 𝛽/𝜉} when 𝜉 < 0.  
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2.4 Extremal Mixture Model 

In statistics, extreme events occur with a small probability. In this section, we review papers that 

studied the extremal mixture models. In order to describe the tail event more efficiently, we split the 

density function into two components. First, the bulk model contains all non-extreme events. Second, 

the tail model contains all the excess events from the bulk model at a given threshold 𝛼. 

 

2.4.1 Behrens et al. (2004) 

 They proposed a two-component model by using the Bayesian approach. Under a threshold 𝛼, 

the cumulative density function is given by a particular distribution 𝐻(∙) with a set of parameters Θ. 

For the data above a given threshold, they were assumed to follow generalized Pareto distribution 𝐺(∙) 

with parameters 𝜉, 𝜎, and 𝜇. Therefore, the whole cumulative density function 𝐹(∙) can be written as: 

𝐹(𝑥│Θ, 𝜉, 𝜎, 𝜇) = {
𝐻(𝑥|Θ), 𝑥 ≤ 𝛼

𝐻(𝛼|Θ) + [1 − 𝐻(𝛼|Θ)]𝐺(𝑥│𝜉, 𝜎, 𝜇), 𝑥 > 𝛼
. (2.28) 

 This model is simple and straightforward. However, it fails to satisfy the continuity condition 

and suffers from obtaining an explicit form of density function 𝑓(∙ │Θ, 𝜉, 𝜎, 𝜇). 

 

2.4.2 Carreay and Bengio (2009) 

 Their study employed the Peak over Threshold (PoT) method to model events that excess 

from a threshold 𝛼 (tail model). The probability of a random variable 𝑋 excessing 𝛼 given 𝑋 > 𝛼 is 

modeled by generalized Pareto distribution 𝑔(∙) with two parameters 𝜉 and 𝜎:  

ℙ(𝑥 − 𝛼│𝑥 > 𝛼)~ 𝑔(𝑥 − 𝛼│𝜉, 𝜎), (2.29) 

 where the generalized Pareto distribution 𝑔(∙) is given by (2.27). 

 For the bulk model, the author used the normal distribution ℎ(∙ │𝜂, 𝛽) with two parameters, 

which are mean (𝜂) and variance (𝛽). In order to make a model smooth and continuous at 𝑥 = 𝛼, the 

two conditions must hold. The first condition is: 

ℎ(𝛼|𝜂, 𝛽) =  𝑔(0│𝜉, 𝜎) 

1

√2𝜋𝛽
exp(−

(𝛼 − 𝜂)2

2𝛽2
 ) =

1

𝜎
 

exp(−
(𝛼 − 𝜂)2

2𝛽2
 ) = 

√2𝜋𝛽

𝜎
, (2.30) 

and the second one is: 

ℎ′(𝛼|𝜂, 𝛽) =  𝑔′(0│𝜉, 𝜎) 

−
(𝛼 − 𝜂)

√2𝜋𝛽3
exp (−

(𝛼 − 𝜂)2

2𝛽2
 ) = −

(1 + 𝜉)

𝜎2
. (2.31) 

 As a result of the two constraints above, we can obtain the values of 𝜎 and 𝛼 in terms of other 

parameters by combining (2.30) and (2.31): 
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𝜎(𝜉, 𝛽) =
𝛽(1 + 𝜉)

√𝑊(𝑧)
, and (2.32) 

𝛼(𝜉, 𝜂, 𝛽) = 𝜂 + 𝛽√𝑊(𝑧), (2.33) 

where 𝑧 = (1 + 𝜉)2/2𝜋  and 𝑊(𝑧) is the Lambert W function. 

 We leave three parameters 𝜉, 𝜂, and 𝛽 to be model parameters. Therefore, the whole hybrid 

Pareto distribution 𝑓(∙) is given by: 

𝑓(𝑥│𝜂, 𝛽, 𝜉) =

{
 

 
1

𝛾
ℎ(𝑥|𝜂, 𝛽), 𝑥 ≤ 𝛼

1

𝛾
𝑔(𝑥 − 𝛼│𝜉), 𝑥 > 𝛼

, (2.34) 

where 𝛾 is added so that the density integrates to one and is given by: 

𝛾(𝜉) = 1 +
1

2
(1 + 𝐸𝑟𝑓 (√

𝑊(𝑧)

2
)) , (2.35) 

where 𝐸𝑟𝑓(∙) is the error function defined by: 

𝐸𝑟𝑓(𝑎) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡.

𝑎

𝑜

(2.36) 

 

3. DATA 

 In this study, all the financial products used are priced in USD. In addition, quarterly -period 

data are selected for calibrating the model parameters.  There are four categories. 

  

3.1 Underlying Asset 

S&P 500 index closing prices from December 2001 to December 2015 are used. During this 

period, they are two significant crises: the 9/11 attack in 2001 and the subprime crisis in 2008. These 

events can be considered as extreme events.   

 

3.2 Futures Contract 

 The futures contracts can be used in the GEV model (benchmark) to reduce the number of 

parameters, as suggested in (2.23). Let 𝐹𝑡,𝑇 be the S&P 500 futures prices observed at time 𝑡 with 𝑇 

years to maturity. Their expiration date is on the 3rd Friday on a 3-month basis (March, June, 

September, and December). The data are provided by Bloomberg. 

  

3.3 European option on S&P 500 

  Along with the futures contracts, the options also expire on the same schedule. We apply four 

conditions suggested by Markose and Alentorn (2010) to filter the data. Options with the following 

properties are eliminated. First: Options with zero volume traded on any given days. Second: Options 
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quoted at zero prices. Third: Option prices that violate the monotonicity condition. Here, two cross-

section analyses are made to the options data. 

 

3.3.1 Time-to-Maturity 

We divide options into three types: 

 (i) Short time to maturity: options with 30 days left until the expiration date. 

 (ii) Medium time to maturity: options with 60 days left until the expiration date. 

 (iii) Long time to maturity: options with 90 days left until the expiration date. 

 

3.3.2 Moneyness 

According to Figlewski (2002), the moneyness of an option can be computed by: 

Moneyness =
1

𝜎𝐵𝑆√𝑇
ln (

𝑆𝑡
𝐾𝑒−𝑟𝑇

) , (3.1) 

where 𝜎𝐵𝑆 is an implied volatility obtained by the Black-Scholes model. 

 

The options can be divided into five moneyness categories based on the current underlying 

asset price 𝑆𝑡: 

 (i) Deep out-of-the-money (Deep OTM): be more than 1.5𝜎 out of the money. 

  (ii) Out-of-the-money (OTM): be within 0.5𝜎 − 1.5𝜎 out of the money.  

  (iii) At-the-money (ATM): be within 0.5𝜎 for both directions.   

  (iv) In-the-money (ITM): be within 0.5𝜎 − 1.5𝜎 in the money. 

  (v) Deep in-the-money (Deep ITM): be more than 1.5𝜎 in the money. 

 

3.4 Risk-Free rate 

 The London InterBank Offered Rate (LIBOR) in USD provided by global-rates.com is used.  

At each quarterly time 𝑡, let 𝑟𝑡,30, 𝑟𝑡,60 and 𝑟𝑡,90 denote the monthly-average spot risk-free rates with 1 

month, 2 months, and 3 months maturities respectively. 
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4. METHODOLOGY 

4.1 Option Pricing with GEV Distribution (Benchmark model) 

 We use the method from Section 2.3.3. The model parameters can be obtained by solving the 

optimization in (2.25), while the estimated call and put prices are given by (2.18) and (2.20). 

 

4.2 Option Pricing with Hybrid Pareto Distribution (Proposed Model) 

 Similar to the GEV model, negative returns are assumed to follow the hybrid Pareto 

distribution in (2.34). Hence, the density function of 𝐿𝑇 becomes:  

𝑓(𝐿𝑇│𝜉, 𝜂, 𝛽) =

{
 

 
1

𝛾
ℎ(𝐿𝑇|𝜂, 𝛽), 𝐿𝑇 ≤ 𝛼

1

𝛾
𝑔(𝐿𝑇 − 𝛼│𝜉, 𝜎), 𝐿𝑇 > 𝛼

, (4.1) 

where ℎ(∙ |𝜂, 𝛽) is the density function of normal distribution and 𝑔(∙ | ξ, σ ) is the density function of 

generalized Pareto distribution.  

Using the same technique in (2.10), the density function of an underlying asset 𝑗(∙) is given 

by: 

𝑗(𝑆𝑇) =
1

𝑆𝑡
𝑓(𝐿𝑇│𝜉, 𝜂, 𝛽 ) =

{
 

 
1

𝛾𝑆𝑡
ℎ(𝐿𝑇│𝜂, 𝛽), 𝑆𝑇 ≥ 𝑆𝑡(1 − 𝛼)

1

𝛾𝑆𝑡
𝑔(𝐿𝑇 − 𝛼| ξ, σ ), 𝑆𝑇 < 𝑆𝑡(1 − 𝛼)

. (4.2) 

 Applying the no-arbitrage condition for a European call option from (2.1), the pricing formula 

becomes:   

𝐶𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)∫ (𝑆𝑇 − 𝐾)

∞

𝐾

𝑗(𝑆𝑇)𝑑𝑆𝑇. (4.3) 

Because the integral depends on whether 𝐾 is below or above a threshold 𝑆𝑡(1 − 𝛼), then the 

limits of the integral in equation (4.3) can be written with min , 𝑚𝑎𝑥 functions as follows: 

𝐶𝑡(𝑇, 𝐾) =
1

𝛾
𝑒−𝑟(𝑇−𝑡) 

× ((∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡
𝑔(𝐿𝑇 − 𝛼)𝑑𝑆𝑇

𝑆𝑡(1−𝛼)

min(𝑆𝑡(1−𝛼),𝐾)

) + (∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡
ℎ(𝐿𝑇)𝑑𝑆𝑇

∞

max(𝑆𝑡(1−𝛼),𝐾)

)) . (4.4) 

 Let 𝐴 denote the first integral. Again, we consider the case where 𝜉 > 0: 

𝐴 = ∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡
𝑔(𝐿𝑇 − 𝛼)𝑑𝑆𝑇

𝑆𝑡(1−𝛼)

min(𝑆𝑡(1−𝛼),𝐾)

 

= ∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡𝜎
(1 +

𝜉

𝜎
(𝐿𝑇 − 𝛼))

−
1
𝜉
−1

𝑑𝑆𝑇.
𝑆𝑡(1−𝛼)

min(𝑆𝑡(1−𝛼),𝐾)

(4.5) 

 Consider the change of variable: 

𝑦 = 1 +
𝜉

𝜎
(𝐿𝑇 − 𝛼) = 1 +

𝜉

𝜎
(1 −

𝑆𝑇
𝑆𝑡
− 𝛼) , (4.6) 
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(4.5) becomes: 

𝐴 = −∫ (𝑆𝑡 (1 − 𝛼 −
𝜎

𝜉
(𝑦 − 1)) − 𝐾)

1

𝑆𝑡𝜎
(𝑦

−
1
𝜉
−1
)

1

max(1,1+
𝜉
𝜎(
1−

𝐾
𝑆𝑡
−𝛼))

𝑆𝑡𝜎

𝜉
𝑑𝑦. (4.7) 

After grouping the terms, (4.7) becomes: 

𝐴 =
1

𝜉
(
𝑆𝑡𝜎

𝜉
∫ 𝑦 (𝑦

−
1
𝜉
−1
)𝑑𝑦

1

max(1,1+
𝜉
𝜎(
1−

𝐾
𝑆𝑡
−𝛼))

− (𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
) − 𝐾)∫ 𝑦

−
1
𝜉
−1
𝑑𝑦

1

max(1,1+
𝜉
𝜎(
1−

𝐾
𝑆𝑡
−𝛼))

) .(4.8) 

Let 𝑑1 = max(1,1 +
𝜉

𝜎
(1 −

𝐾

𝑆𝑡
− 𝛼)). The solution of integral in (4.8) becomes: 

𝐴 =
1

𝜉
[
𝑆𝑡𝜎

(𝜉 − 1)
(1 − 𝑑1

−
1
𝜉
+1

) − (𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
) − 𝐾) (−𝜉) (1 − 𝑑1

−
1
𝜉
)] 

= 
𝑆𝑡𝜎

𝜉(𝜉 − 1)
(1 − 𝑑1

−
1
𝜉
+1

) + (𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
) − 𝐾)(1 − 𝑑1

−
1
𝜉
) . (4.9) 

Let 𝐵 denote the second integral with the normal distribution: 

𝐵 =  ∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡
𝑓(𝐿𝑇)𝑑𝑆𝑇

∞

max(𝑆𝑡(1−𝛼),𝐾)

 

= ∫ (𝑆𝑇 − 𝐾)
1

𝑆𝑡

1

√2𝜋𝛽
exp (−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇

∞

max(𝑆𝑡(1−𝛼),𝐾)

 

= ∫
𝑆𝑇

𝑆𝑡√2𝜋𝛽
exp (−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇

∞

max(𝑆𝑡(1−𝛼),𝐾)

−𝐾∫
1

𝑆𝑡√2𝜋𝛽
exp(−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇.
∞

max(𝑆𝑡(1−𝛼),𝐾)

(4.10)

 

Consider the change of variable: 

𝑦 =
(𝐿𝑇 − 𝜂)

𝛽
=
1 −

𝑆𝑇
𝑆𝑡
− 𝜂

𝛽
. (4.11) 

The equation in (4.11) becomes: 

𝐵 = −∫ 𝑆𝑇
1

√2𝜋
exp(−

𝑦2

2
)𝑑𝑦

−∞

min(
𝛼−𝜂
𝛽

,
1−

𝐾
𝑆𝑡
−𝜂

𝛽
)

+ 𝐾∫
1

√2𝜋
exp(−

𝑦2

2
)𝑑𝑦

−∞

min(
𝛼−𝜂
𝛽

,
1−

𝐾
𝑆𝑡
−𝜂

𝛽
)

 

= −𝑆𝑡∫ (1 − 𝜂 − 𝑦𝛽)
1

√2𝜋
exp(−

𝑦2

2
)𝑑𝑦

−∞

min(
𝛼−𝜂
𝛽

,
1−

𝐾
𝑆𝑡
−𝜂

𝛽
)

− 𝐾𝒩(min(
𝛼 − 𝜂

𝛽
,
1 −

𝐾
𝑆𝑡
− 𝜂

𝛽
)) . (4.12) 

Let 𝑑2 = min(
𝛼−𝜂

𝛽
,
1−

𝐾

𝑆𝑡
−𝜂

𝛽
) . Then (4.12) becomes: 

𝐵 = 𝑆𝑡(1 − 𝜂)𝒩(𝑑2) −
𝛽𝑆𝑡

√2𝜋
∫ 𝑦
𝑑2

−∞

exp (−
𝑦2

2
)𝑑𝑦 − 𝐾𝒩(𝑑2) 

= 𝑆𝑡(1 − 𝜂)𝒩(𝑑2) +
𝛽𝑆𝑡

√2𝜋
exp (−

𝑑2
2

2
) − 𝐾𝒩(𝑑2) 
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= (𝑆𝑡(1 − 𝜂) − 𝐾)𝒩(𝑑2) +
𝛽𝑆𝑡

√2𝜋
exp(−

𝑑2
2

2
) . (4.13) 

 Where 𝒩(∙) is a cumulative density function (CDF) of a standard normal distribution. 

Therefore, the call option pricing formula under hybrid Pareto distribution becomes: 

𝐶𝑡(𝑇, 𝐾│𝜉, 𝜂, 𝛽) =
1

𝛾
𝑒−𝑟(𝑇−𝑡)[𝐴 + 𝐵], (4.14) 

where: 

𝐴 = 
𝑆𝑡𝜎

𝜉(𝜉 − 1)
(1 − 𝑑1

−
1
𝜉
+1 

) + (𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
) − 𝐾)(1 − 𝑑1

−
1
𝜉
) , 

𝐵 = (𝑆𝑡(1 − 𝜂) − 𝐾)𝒩(𝑑2) +
𝛽𝑆𝑡

√2𝜋
exp(−

𝑑2
2

2
) , 

𝑑1 = max(1,1 +
𝜉

𝜎
(1 −

𝐾

𝑆𝑡
− 𝛼)) , 

𝑑2 = min(
𝛼 − 𝜂

𝛽
,
1 −

𝐾
𝑆𝑡
− 𝜂

𝛽
), 

for the continuous condition (2.32), (2.33) and (2.35) to hold. Note that this model needs only three 

parameters (𝜉, 𝜂, 𝛽) to be estimated. 

 

4.3 Model Estimation 

 Quarterly period data of option prices from December 2001 to December 2015 gives us 60 

data points. Let 𝑡 ∈ {1,2, … ,60} be the time-period. Denote Θ1,𝑡.30 = {𝜉1,𝑡,30, 𝜎𝑡,30} as the parameter set 

of the GEV model estimated by 30 days to expiration options at time 𝑡 and Θ2,𝑡,30 =

{𝜉2,𝑡,30, 𝜂𝑡,30, 𝛽𝑡,30} as that of the hybrid Pareto model. At each time 𝑡, we calibrate the model 

parameters by the observed prices with 30, 60, and 90 days to expiration respectively. By minimizing 

the sum square errors (𝑆𝑆𝐸𝑡), Θ𝑖,𝑡 can be obtained by this optimization:  

𝑆𝑆𝐸𝑡 = min
Θ𝑡

{(∑( 𝐶̂𝑖,𝑡(𝑇, 𝐾│Θ𝑡) − 𝐶𝑖,𝑡(𝑇, 𝐾))
2

𝑁

𝑖=1

) + (∑( 𝑃̂𝑗,𝑡(𝑇, 𝐾│Θ𝑡) − 𝑃𝑗,𝑡(𝑇, 𝐾))
2

𝑀

𝑗=1

)} . (4.15) 

This optimization is archived by the non-linear least square method from the MATLAB 

optimization toolbox. If there are no options matched in that time horizons, the nearest date is used 

instead. Note that, 𝑇 is a time-to-maturity in years. 

 

4.4 In-Sample Pricing 

 For the in-sample pricing, we use all the data provided at period 𝑡 to estimate Θ1,𝑡, and Θ2,𝑡. 

Then use them to compute the estimated call and put option prices.  
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4.5 Model Performance 

 The model performance can be examined in three values: 

 

4.5.1 The Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸𝑡 = √
𝑆𝑆𝐸𝑡

𝑁̃
, (4.16) 

where 𝑆𝑆𝐸𝑡 is the sum square errors computed at time 𝑡 and is given by (4.15). 

 This value measures how far estimated prices deviate from the market value. The less this 

number is, the better the model fits to the data. 𝑁̃ here is the number of observed prices at period 𝑡. 

 

4.5.2 Pricing Bias 

Price Bias = Market Price − Estimated Price (4.17) 

Pricing biases report the error in a unit of USD. If it turns out to be a negative value, then it 

implies that our model overprices the option and vice versa. 

 

4.5.3 Percentage of Pricing Error 

Percentage of Pricing Error =
│Market Price − Estimated Price│

Market Price
(4.18) 

  

 This value reports how much the pricing error is comparing to its market price.  
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5. RESULTS 

5.1 Observed Data 

Table 2: Observed Data 

Categories 
Number of observations 

calls puts total 

Time to Maturity    

30 days 2,673 4,151 

     

6,824  

60 days 1,684 2,663 

     

4,347  

90 days 1,641 2,279 

     

3,920  

    

total 5,998 9,093 15,091 

Moneyness    

Deep ITM 1,726 1,020 

     

2,746  

ITM 436 214 

         

650  

ATM 397 374 

         

771  

OTM 307 539 

         

846  

Deep OTM 3,132 6,946 

   

10,078  

    

total 5,998 9,093 15,091 

 

 

 Table 2 above summarizes the total numbers of options used in this study, which are selected 

by the criteria described in Section 3. In addition, we use mid-prices as representatives of option prices. 

Overall, 60.25% of data are puts, and the rest 39.75% are calls. We can see that the number of data 

points for the put options is about 1.5 times more than that for the call options. One possible reason 

here is that people use the puts as protection for their investment. The 30-day options account for 

45.21% of the entire data set. In terms of the moneyness, 66.78% of observed data are in the deep 

OTM category. In contrast, ITM options have the least numbers of observation, which is 4.30%. The 

average number of options in each period is 251. In comparison, the maximum and minimum numbers 

are 546 and 93, respectively. 
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5.2 In-sample Pricing Performance  

 The in-sample model performances can be analyzed in four aspects: 

 5.2.1 Time -to-maturity  

Table 3: In-sample pricing performance (time-to-maturity) 

Time-to-expiration 30 days 60 days 90 days All  

Model GEV HP GEV HP GEV HP GEV HP 

Avg. 

RMSE 

Calls 2.07 1.04 1.58 1.81 0.88 1.75 1.51 1.53 

Puts 1.77 0.86 0.99 1.17 0.81 1.46 1.19 1.16 

All 1.90 0.94 1.32 1.53 0.85 1.60 1.36 1.36 

Avg. Pricing Error  37.05% 31.74% 16.49% 21.97% 16.46% 23.51% 25.06% 26.10% 

Avg. Absolute 

Pricing Biases 
1.59 0.71 0.92 0.95 0.86 1.13 1.16 0.90 

 

Table 3 displays two model performances of each time horizon. The performances evaluated by 

RMSE of the two models is about the same, but the overall average pricing bias from the HP model is 

22.41% lower compared to the GEV model.  In addition, the Hybrid Pareto pricing model (HP) 

outperforms the Generalized Extreme Value pricing model (GEV) by 50.52% in a 30-day to 

expiration. While the HP model has an average RMSE of 0.94 USD, GEV model’s RMSE is 

approximately two times bigger, at 1.90 USD.  However, the GEV model performance improves when 

the time to maturity increases. The HP model performs poorly with a longer time to maturity. At a 90-

day horizon, the GEV model produces the lowest RMSE and pricing bias at 0.85 and 0.86 USD. The 

HP model’s fitting performance decreases by about 70.21% to 1.60 USD. Because the short time-to-

maturity option contains less time value, then its density clusters around the bulk part of its 

distribution. Therefore, the HP model with a taller body has an advantage in this time horizon.  Another 

observation is that both models produce smaller error in put options than in the calls. This might be 

caused by the huge differences between calls and puts in the observed data. The percentage errors in 

30-day to expiration is high compared the others. 
 5.2.2 Moneyness  

Table 4: In-sample pricing performance (moneyness) 

Moneyness Deep ITM ITM ATM OTM Deep OTM 

Model GEV HP GEV HP GEV HP GEV HP GEV HP 

Avg. 

RMSE 

Call 2.78 1.30 1.59 0.74 1.34 0.80 1.35 1.25 1.10 1.78 

Put 2.87 1.46 1.85 0.98 1.44 0.59 1.46 0.85 0.97 1.23 

All 2.83 1.38 1.72 0.86 1.39 0.70 1.40 1.05 1.04 1.50 

Avg. Pricing 

Error 
3.56% 1.24% 4.11% 1.69% 3.45% 1.75% 39.52% 45.88% 35.77% 38.27% 

Avg. Absolute 

Pricing Biases  
2.54 0.90 2.36 1.08 1.18 0.65 0.95 1.26 0.76 0.90 
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Table 4 reports the performance of two models for five moneyness categories. The HP model 

outperforms the GEV model in all moneyness except the deep OTM options. Besides, it also produces 

lower pricing biases by 64.57%, 54.23% and 44.92% in the Deep ITM, ITM and ATM options. While 

the GEV model shows less pricing biases by 24.60% and 15.55% in the OTM and deep OTM options 

compared to the HP model. The average RMSE of the HP model decreases when options are at-the-

money. On the other hand, the GEV model performs well when the options move out of the money. It 

shows 30.67% less RMSE compared to the HP model. This implies that the GEV model performs 

better with extreme samples than a normal one. However, we can see the high percentage of pricing 

errors in the OTM and deep OTM options. The explanation is that options in this type typically trade at 

low prices. When we compute the error compared to their market prices, it turns out to be huge 

numbers. While in three other cases, all of them have less than five percent pricing error. (see more 

details in Section 5.2.4) 

 

 5.2.3 Pricing Biases 

  (i) Average calls price biases in terms of moneyness  

Figure 1: Pricing biases of 30 days to expiration in-sample call options 
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Figure 2: Pricing biases of 60 days to expiration in-sample call options 

 

Figure 3: Pricing biases of 90 days to expiration in-sample call options 

 

Figures 1-3 show pricing errors in terms of pricing biases defined in (4.17). The graphs above 

are derived by the same technique suggested by Markose and Alenton (2011). That is, for each 

observations date, we use a Curve Fitting Toolbox form MATLAB in order to fit a spline to pricing 

biases as a function of moneyness on that date. In the end, we take an average value of these 60 splines 

across moneyness between −2.5 to +2.5. The results show that both models overprice ITM call 

options and underprice OTM call options. Besides, the magnitude of biases in the deep OTM side is 
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relatively small compared to the deep ITM. This evidence supports the idea that the fat-tailed model 

favors extreme outcomes. 

Another observation is that the pricing biases are larger when moneyness moves away from 

around −1 or when the time horizon increases. Nevertheless the GEV model appears to be less 

dependent on the time horizon. The pricing biases of the HP model are between +3 USD and −1 USD. 

For the GEV model, they are between +2 USD and −1 USD.  

  (ii) Average puts price biases in terms of moneyness 

Figure 4: Pricing biases of 30 days to expiration in-sample put options 

 

Figure 5: Pricing biases of 60 days to expiration in-sample put options 
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Figure 6: Pricing biases of 90 days to expiration in-sample put options 

 

Figures 4-6 show pricing errors in terms of pricing bias of put options. As we can see, both 

models overprice OTM put options and underprice ITM put options. Again, the pricing biases are 

larger when the moneyness moves away from around 1 to 1.5. The pricing biases of the HP model are 

between around +1 USD and −3 USD. For the GEV model, they are between +1 USD and −2 USD. 

The magnitude of biases in the deep OTM side are smaller than the deep ITM. This confirms previous 

finding in the call option. 

 5.2.4 Pricing Error and Option Prices 

Figure 7: Log of estimated price and market price from the GEV model  
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Figure 8: Log of estimated price and market price from the HP model 

 

Table 5: Pricing errors and option prices 

 Low Mid Large Very Large 

Price Range (USD) 0.025-1 1-10 10-50 > 50 

Number of data 2718 4676 4811 2761 

Model GEV HP GEV HP GEV HP GEV HP 

Avg. Pricing Error 

(%) 
74.51% 75.12% 27.92% 32.12% 6.22% 5.75% 2.37% 1.07% 

Avg. Absolute 

Pricing Biases 
0.26 0.27 0.89 1.05 1.34 1.08 2.22 0.94 

 

 Figure 7-8 display scatter plots of the natural log of estimated prices and market prices. We 

can see that the low-priced options plots are more dispersed compare to the high-priced. Also, Table 5 

reports the average percentage of pricing error defined in (4.18). We divide our 60-period observed 

data by their price into four groups and compare them across all time-to-maturity and moneyness. Both 

models show that the bigger price the options are, the lower the pricing error is. When the models try to 

fit the low-priced option, most of the time, they come up with zero USD instead. For example, 557 

estimated prices (20.49%) from the low-priced have less than 0.001 USD. Consequently, this makes 

the percentage of pricing error go higher. On the other hand the HP provides less pricing biases by 

19.40% and 57.66% for the large and very large option prices compared to the GEV model.  Because 

the high-priced options are usually in the in-the-money, this evidence supports results from Table 4 that 

the HP model prefers ITM options to OTM options. 
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5.3 Implied Risk-Neutral Density During the Crisis Event 

 5.3.1 Implied Risk-Neutral Density in 2005 and 2008 

Figure 9: 30 days implied risk-neutral density in June 2005 and 2008 

  
Figure 9 displays one-year implied risk-neutral density of the loss (negative returns) of the 

S&P 500 index estimated in June 2005 and 2008. In 2005, a stable period, the GEV distribution 

exhibits a fatter tail on the left-hand side comparing to the HP model. In contrast, the density of the HP 

model is much taller in the body part. On the right-hand side, the HP model exhibits a fatter tail than 

that of the GEV model, but the difference between them is relatively small. This is because the tail 

shape parameters of these two models are similar in terms of the density function. 

In 2008, during the subprime crisis, the body parts of the two models decrease in their sizes. 

Both tails are also thicker than those in the stable period. This result implies that, when a crisis occurs, 

it is less likely to observe the usual outcome than in the stable period. 

5.3.2 Model Performance in 2005 and 2008 

Table 6: Model performances in terms of average RMSE in 2005 and 2008 

 
2005 2008 

GEV HP GEV HP 

Calls 1.11 1.03 1.50 2.41 

Puts 0.90 0.73 1.62 2.63 

All 1.00 0.88 1.56 2.52 

 

Table 6 reports the performance comparison between two models in 2005, stable period, and 

2008, crisis period. The HP model outperforms the GEV model in the stable period, by 13.63% 

However, in the subprime crisis period in 2008, the GEV model has less pricing error, which is 

38.09% lower than the HP model. Since the two models’ tails are about the same, the differences 

between their performances mainly come from the body part. As shown in Figure 7, the GEV model 

exhibits small density in the middle compared to the HP model. This implies that the GEV model 

provides more possibilities for the return to deviate from its mean. Consequently, during the crisis, the 

GEV model is preferred.  
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6. CONCLUSIONS 

This paper develops a new European option pricing model based on the Extreme Value 

Theory. We use the Generalized Extreme Value (GEV) model by Markose and Alenton (2011) as a 

benchmark model. Then, we adopt the Hybrid Pareto (HP) model by Carreau and Bengio (2009) as our 

proposed model. We derive closed-form pricing formulas for call and put options with an assumption 

that the tail shape parameter (𝜉) is greater than zero (the Frechét type). Using the optimization method, 

in each period, we estimate the model parameters by minimizing the root-mean-squared error (RMSE). 

In the end, we compare the results in two aspects, time-to-maturity and moneyness. 

According to the results in Section 5, the HP model clearly outperforms the GEV model in a 

short time horizon, a 30-day to expiration option. This might be because option with a short time to 

maturity contains less time value and less uncertainty. Hence, if it is a deep OTM option, its price will 

be a small number. If there is mispricing from a model, an error possibly be s small number too. In the 

deep ITM case, its price mainly comes from the intrinsic value and will not move much till the 

expiration date. Therefore, the best model could be decided by which one is good at pricing ATM 

options. As displayed in Figure 9, our result shows that the HP distribution always exhibits a taller 

body part comparing with the GEV distribution. This result implies that the HP model provides more 

possibilities that options will be strict at their current prices. Moreover, our fitting result supports the 

conclusion above since it shows that the HP model is the best fit for ATM options. Besides, the HP 

model provides lower absolute pricing biases by 22.41% compared to the GEV model across all time-

to maturity and moneyness, although the fitting performances from two models evaluated by RMSE are 

about the same. However, our proposed model did not perform well with the low-priced options (deep-

out-of-the-money options). Having a special case of pricing formula might solve this issue. 
In the crisis period, the GEV model still has an advantage. The reason that the HP model is 

outperformed by the GEV model can be described by the shape of its distribution explained above. 

When an extreme event occurs, there is less probability that we see the normal outcome.  
For further studies, to improve the performance of the Hybrid Pareto model, one may drop out 

an assumption that the tail shape parameter (𝜉) is greater than zero. As a result, it allows the model to 

be either thin-tailed or normal-tailed. Also, this provides more flexibility to the model to be well-

performed in any economic scenario. Consequently, there are two pricing formulas to be derived. The 

first one is the pricing formula when the tail shape parameter is equal to zero. The second is when it is 

less than zeros. Furthermore, we may study more details about when we should use a fat, thin, or 

normal tail. 
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APPENDIX 

 

A1. The formula for European put option pricing 

Applying the no-arbitrage condition for a European put option, the pricing formula becomes:   

𝑃𝑡(𝑇, 𝐾) = 𝑒
−𝑟(𝑇−𝑡)∫ (𝐾 − 𝑆𝑇)

𝐾

−∞

𝑗(𝑆𝑇)𝑑𝑆𝑇 . (𝐴 1.1) 

 The integral depends on the value of 𝐾 and a threshold 𝑆𝑡(1 − 𝛼), then limits of the integral in 

equation (4.3) can be written with min , 𝑚𝑎𝑥 functions as: 

𝑃𝑡(𝑇, 𝐾) =
1

𝛾
𝑒−𝑟(𝑇−𝑡) 

× [(∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡
𝑔(𝐿𝑇 − 𝛼)𝑑𝑆𝑇

min(𝑆𝑡(1−𝛼),𝐾)

−∞

) + (∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡
ℎ(𝐿𝑇)𝑑𝑆𝑇

𝐾

min(𝑆𝑡(1−𝛼),𝐾)

)] (𝐴 1.2) 

 

 Let 𝐶 denote the first integral: 

𝐶 = ∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡
𝑔(𝐿𝑇 − 𝛼)𝑑𝑆𝑇

min(𝑆𝑡(1−𝛼),𝐾)

−∞

 

𝐶 = ∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡𝜎
(1 +

𝜉

𝜎
(𝐿𝑇 − 𝛼))

−
1
𝜉
−1

min(𝑆𝑡(1−𝛼),𝐾)

−∞

 𝑑𝑆𝑇 . (𝐴 1.3) 

Consider the change of variable: 

𝑦 = 1 +
𝜉

𝜎
(𝐿𝑇 − 𝛼) = 1 +

𝜉

𝜎
(1 −

𝑆𝑇
𝑆𝑡
− 𝛼) , (𝐴 1.4) 

(𝐴 1.4) becomes: 

𝐶 = ∫ (𝐾 − 𝑆𝑡 (1 − 𝛼 −
𝜎

𝜉
(𝑦 − 1)))

1

𝑆𝑡𝜎
(𝑦)

−
1
𝜉
−1

∞

max(1,1+
𝜉
𝜎(
1−

𝐾
𝑆𝑡
−𝛼))

 (
𝑆𝑡𝜎

𝜉
)𝑑𝑦. (𝐴 1.5) 

 

After grouping the terms, (𝐴 1.5) becomes: 

 

𝐶 =
1

𝜉
[
𝑆𝑡𝜎

𝜉
∫ 𝑦 (𝑦

−
1
𝜉
−1
)𝑑𝑦

∞

𝑑1

+ (𝐾 − 𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
))∫ 𝑦

−
1
𝜉
−1
𝑑𝑦

∞

𝑑1

] 

=
1

𝜉
[
𝑆𝑡𝜎

(𝜉 − 1)
(0 − 𝑑1

−
1
𝜉
+1

) + (𝐾 − 𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
)) (−𝜉) (0 − 𝑑1

−
1
𝜉
)] 

= (𝐾 − 𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
))𝑑1

−
1
𝜉
−

𝑆𝑡𝜎

𝜉(𝜉 − 1)
𝑑1
−
1
𝜉
+1

. (𝐴 1.6) 
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Let 𝐷 denote the second integral with the normal distribution: 

𝐷 = ∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡
ℎ(𝐿𝑇)𝑑𝑆𝑇

𝐾

min(𝑆𝑡(1−𝛼),𝐾)

 

= ∫ (𝐾 − 𝑆𝑇)
1

𝑆𝑡

1

√2𝜋𝛽
exp (−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇

𝐾

min(𝑆𝑡(1−𝛼),𝐾)

 

  = 𝐾∫
1

𝑆𝑡√2𝜋𝛽
exp(−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇

𝐾

min(𝑆𝑡(1−𝛼),𝐾)

−∫
𝑆𝑇

𝑆𝑡√2𝜋𝛽
exp (−

1

2
(
𝐿𝑇 − 𝜂

𝛽
)
2

)𝑑𝑆𝑇 .
𝐾

min(𝑆𝑡(1−𝛼),𝐾)

(𝐴 1.7)

 

 

Consider the change of variable: 

𝑦 =
(𝐿𝑇 − 𝜂)

𝛽
=
1 −

𝑆𝑇
𝑆𝑡
− 𝜂

𝛽
, (𝐴 1.8) 

Let 𝑑3 = max(
𝛼−𝜂

𝛽
,
1−

𝐾

𝑆𝑡
−𝜂

𝛽
 ). Then the equation in (𝐴 1.7) becomes: 

𝐷 = 𝑆𝑡∫ (1 − 𝜂 − 𝑦𝛽)
1

√2𝜋
exp(−

𝑦2

2
)𝑑𝑦

1−
𝐾
𝑆𝑡
−𝜂

𝛽

𝑑3

− 𝐾∫
1

√2𝜋
exp (−

𝑦2

2
)𝑑𝑦

1−
𝐾
𝑆𝑡
−𝜂

𝛽

𝑑3

 

= 𝑆𝑡(1 − 𝜂)

(

 
 
𝒩(

1 −
𝐾
𝑆𝑡
− 𝜂

𝛽
) −𝒩(𝑑3)

)

 
 
−
𝛽𝑆𝑡

√2𝜋
∫ 𝑦

1−
𝐾
𝑆𝑡
−𝜂

𝛽

𝑑3

exp(−
𝑦2

2
)𝑑𝑦

− 𝐾

(

 
 
𝒩(

1−
𝐾
𝑆𝑡
− 𝜂

𝛽
)−𝒩(𝑑3)

)

 
 

 

=

(

 
 
𝒩(

1−
𝐾
𝑆𝑡
− 𝜂

𝛽
)−𝒩(𝑑3)

)

 
 
(𝑆𝑡(1 − 𝜂) − 𝐾) −

𝛽𝑆𝑡

√2𝜋
(𝑒−

𝑑3
2

2 − 𝑒
−
(1−

𝐾
𝑆𝑡
−𝜂)

2

2𝛽2 ) . (𝐴 1.9) 

Therefore, the put option pricing formula under the hybrid Pareto distribution becomes: 

𝑃𝑡(𝑇, 𝐾│𝜉, 𝜂, 𝛽) =
1

𝛾
𝑒−𝑟(𝑇−𝑡)[𝐶 + 𝐷], (𝐴 1.10) 

where: 

𝐶 =  (𝐾 − 𝑆𝑡 (1 − 𝛼 +
𝜎

𝜉
))𝑑1

−
1
𝜉
−

𝑆𝑡𝜎

𝜉(𝜉 − 1)
𝑑1
−
1
𝜉
+1

, 

𝐷 = (𝒩(
1−

𝐾

𝑆𝑡
−𝜂

𝛽
) −𝒩(𝑑3)) (𝑆𝑡(1 − 𝜂) − 𝐾) −

𝛽𝑆𝑡

√2𝜋
(𝑒−

𝑑3
2

2 − 𝑒
−
(1−

𝐾
𝑆𝑡
−𝜂)

2

2𝛽2 ).  
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A2. Time Series of estimated parameters from the Generalized Extreme Value model 

Figure 10: Estimated tail shape parameter from the GEV model 

 

Figure 11: Estimated scale parameter from the GEV model 
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A3. Time series of estimated parameters from the hybrid Pareto model 

Figure 12: Estimated tail shape parameter from the HP model 

 

 

Figure 13: Estimated scale parameter from the HP model 
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Figure 14: Estimated location parameter from the HP model 

 

 

A4. Time series of average RMSE 

 

Figure 15: Time series of average RMSE 
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