Chapter 4
Computation fluid dynamics (CFD) technigue

4.1 ral

Computation fluid dynamics (CFD) technique, as defined by Anderson [1995],
is the art of replacing the integrals or partial derivatives in conservation equation of
fluid flow (such as described in Chapter 3) with discretised algebraic form, which in
turn are solved to obtain “numbers” for the flow field value at discrete point/volume
in time and/or space. The end product of CFD is indeed a collection of numbers
which are the main objective of most engineering analyses, the quantitative
description of the problem.

There are many potential CFD softwares aveilable for academic and
commercial application. In this study, a CFD software “PHOENICS 2.1 is employed.
This software provide specific finite volume discretization technique with equation
solver suitable for multiphase flow problem called IPSA (Inter-Phase Slip
Algorithm). This IPSA. is employed to handle two phase pipe flow conservation
equations described in Chapter 3.

The material of this Chapter is confined to the IPSA and CFD subject related.
For basic concept and complete subject of finite volume CFD, the work of Patanka
{1980] is recommended. PHOENICS 2.1 Lecture note provided in the software give
the complete knowledge of its CFD code is frequently referred in this chapter. The
original paper of IPSA written by Spalding [1980] is also the main source of material
in this chapter.

4.2 ition of gri nd control vol

In flow volume considered at which pressure and other scalar dependent
variables prevails, if this volume is subdivided into many “finite” cell volume and the
dependent variables locate “within” and “represent for” each cell volume is computed
and added together, the flow field values of the whole space-time domain are
therefore obtained. Diagram shown in Figure 4.1 illustrate this concept, however, it
must not be supposed that cells are always equal in size , or rectangular in shape. The
grid and node system use in this CFD code is called “staggered grid” as diagram
shown in Figure 4.2 . The diagram illustrates a single cell with four of its neighbors.
Temperature, pressure and concentration are calculated and then located at the “grid
node” P, N, E, W which lie within cell but west to east velocities are evaluated for
the cell wall locations like w and e. and south to north velocities are evaluated for the
cell faces s and n, For three dimension cell, additional high and low neighbors at the
node H and L and velocities evaluated at cell faces h and 1 are presented.
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Figure 4.1

Figure 4.2
Staggered grid arrangement

The cylindrical coordinate require grid transformation. In this CFD code grid
transformation between cylindrical and Cartesian coordinate (conceptually the same
as method in Appendix A1) is available. User can specify cylindrical grid geometry in
to the code which automatically transform the geometry and information to Cartesian
coordinate for ease of computation,
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A discretized control volume in cylindrical coordinate is shown in Figure 4.3,
The notation in the Figure is analogous to Figure 4.3 which will be discussed later.

Ll ng

' Figure 4.3
Discretized control volume in cylindrical coordinate

- 4.3 Finite volume equation

In thls section the formulation of discrete finite volume equation for IPSA is
discussed. Consider a general form of d1fferent1al conservation equation :

3, | |
5(p10) +Vlorve) = V.(Tyve) +@  an

@; stand for any conserved property for phase i.T,, stand for dlffusmty of .
Integratlon of equation (4. 1) over control volume V yleld

Iy[_a_:( P,%ﬂpi) -+ V.(p,yiv@i - T(p'yiV(p,.) — (Din‘V =0 (42)
From divergence theorem |
fjj V.(pve - Tor, Vo) i g (pyve, 7 T¢7iV<Pi)ndS (43)
Substitute expression (4.3) into (4.2)

Hj[g;(ﬂymi) - (Di:ld(V + H(P.’YiVi(P; = Tfp'YiV(Pi)ndS' =0 (44

Integral solution of equation (4.4), for steady flow, transxent term is set to
zero, can be written in discrete-algebraic form as follows
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The terms .U (P.'YiV;(Pa — T(p'yiV(pi) df, integration of convection-
S n

diffusion terms, yield sum for all faces of face area multiply with area and time

average for the face of outward component of convection-diffusion term which can be
written as

All A

H(py‘v,(p, q,«yV(p)cLS ZA( Py P, — Tqu),) @.5)

The discrete integration of other source term yield total source term in control

volume ;

| W =D | 456)

Substitute Expression (4.5), (4.6) in (4.4), yield Discretized finite volume
equation. For steady flow, the equation is written as;

Mf (py,v,cp, =Dy, ch) ® =0 | | @.7)

4.4 Interpolation rules

Before finite volume equations such as equation (4.7) are solved, some
interpolation rules need to be established. These interpolation rules are unnecessary
for analytical equation solving which yield exact solution, on the other hand, in
solving discretized equation, the piecewise solutions are given which are somewhat
differ from the continuos exact solutions. In order to yield “physical realistic”
plecewme solutlons interpolation rules of discretized equation are therefore required.

For ease of illustration, one dlmensmnal Discretized control volume is shown
in Figure 4.4,

Contiol volume =

w p/ /‘
l-——- _ u.xlw --—41-—-_. (hxd, --{
Figure 4.4

* One dimensional Discretized contro! volume.

T —
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Interpolation rule (i)

Consider a time step or space marching step for which the given (or known)
value is denoted as ¢°p and the new (or unknown) value is denoted as tp'p, then:

P =0 (4.8)

This rule will be called Fully Implicit scheme, implies that new value of @p
prevails over the entire time or space marching step for which any value depended on
pp should be iteratively recalculated from ¢'p.

Interpolation rule (ii)

Let F;.=pyv;. indicate the strength of convection and D; ~T,/5x, indicate the
strength of diffusion.

The Upwind scheme is defined by following assumption:

The value of ¢y at an interface is equal to the value of ¢; at the node on
upwind side. Thus writing in notation given in Figure 4.4

¢,=9, if £, <0 (Vieisin outward direction) (4.98)
Q. =, it F, >0 (Vi s in inward direction) (4.9b)

It should be noted that no minus sign is attached to P,N, E, ...etc. for upwind
scheme.

The Central difference scheme is defined by following assumption:

9.=;(0.+0)
(4.10)

9. =5 (0:+0.)

The central difference scheme interpolates ¢; between the interface in straight
-forward manner using arithmetic mean. The above expressions are based on the
assumption that face e lie midway between P and E.

Patankar (1980) suggested that each scheme yields better physical realistic
solution within each range of flow parameter. The Hybrid scheme is therefore
developed to provide good physical realistic solution in all range of flow parameter,
Hybnd scheme characterize the combination of upwind scheme and central
difference. However, it is best to consider the hybrid scheme as the three lines
approximation to the exponential curve of exact solution. The hybrid scheme can be
simply represented by the following criteria :

1 45021303




Define dimensionless Peclet number

Fio
R, = E): (4.11}
Hybrid scheme is the combination of
Central difference scheme If ~2 <P, <2 (4.12a)
Upwind scheme If P, <2 or P, ,>2 (4.12b)

For brevity, the discretization treatment in the next section will be done on the
basis of upwind scheme, since it is used as a default for IPSA, eventhough the hybrid
scheme is provided as a default in single phase flow for CFD code employed.

Interpolation rule (iii)

For diffusion term in equation (4.7), consider one dimensional discretized
control volume as shown in Figure 4.4, the diffusion quantity through face area ¢ is

PALY T, Al
pnAe'YiTq) %P = (7 q,S);.( P )

The question is arisen out of what value of v;.T,,. is used for the right hand
side of equation (4.13). Interpolation of diffusivity term is therefore the essence of
this rule. Consider the control volume in Figure 4.4, assume that the volume
surrounding point P contain the material of uniform diffusivity Top and for point E of
uniform diffusivity Tz, keep in mind that diffusion flux is constant and face e lie
midway between P and E. Diffusion flux balance of composite slab between E to e
and e to P yield diffusivity at interface T, :

1 1 1
Y.L - “(v;r.., 3 7...T..,J

~ 1 )T
or YT- —2(7 T +7v T )

WP e We e

(4.13)

(4.14)

Equation (4.14) show that T,; . is the “harmonic mean” of Teipand To .
Interpolation rule (iv)
The source terms ®; in equation (4.7) must be linear function. If ®; are

nonlinear function of ;, source term linearization is strictly required. In this CFD
code, the linearized expression of ¢-dependent source term is written as: -
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D, = -as((‘Pi.P - (Prf) (4.15)
Where 8, is source term coefficient and ¢, is reference value of ;.

These four interpolation rules are applied to conserve scalar property at
interface @;.. The next two interpolation rules are in order for velocity equation based
upon displaced control volumes arisen out of staggered grid for which the velocities
are located at cell interface.

Interpolation rule (v)

For displaced control volume, it is preferable to take arithmetic mean for
convection terms (pyy,v;) between two opposite cell face to obtain connection term at
the grid node P,E,...etc.. As a result;

v (pyw), +(pys).

: (4.16)

(pl'Y'Vi

Interpolation rule (vi)

The pressure gradient term should be obtained from the difference of the
pressures between two grid node which lie on cell face of displaced control volume,

4.5 Final form of discretized finite volume equation

In this section, final form of Discretized finite volume equation of various
conserved properties are described. The word “final” form implies that the general
discretized equation such as equation (4.7) is manipulated by application of
appropriate interpolation rules. These final form equations are prepared by CFD code
at the commencement of solution procedure.

4.5.1 Scalar equation

Application of the i-iv interpolation rules to equation (4.5) result in final form
of discretized scalar property equation, The most important scalar property is enthalpy
which is out of the scope of this study. However, the enthalpy equation has to be
derived first in a generic form to be used as a basis for next equation derivation,

In order the equation can be written in compact form, some notations are
introduced as follows:

(( f(x) )) stand for logical expression that (( f{x) )) equal f{x) if f{x) is positive
and equal to zero if f{x) is negative,
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Thus, convection-diffusion coefficient °

&y = {((—p-.N'Yi,N Vi.n)) + %}An (4.17a)
and correspondingly
)
by = {(( pl',,'yi',,vi'n)) + 15";—};& (4.17b)

The above expressions imply that the convection part of by, is zero when ay is
finite, and vice versa. Thus, the upwind scheme is satisfied. For source term,
coefficient can be directly applied from equation (4.15). The final form of scalar
equation is derived by applying interpolation rule i-iv and expression (4.17a and b) to
equation 4.7 resulting

_ QP toP s + 3:Pe + 8P,y + agP,
W by + b, + b + by, +8g

(4.18)

4.5.2 Volume fraction equation

Final form of y; has a similar form to that of g; equation except that a’s and b’s
in equation (4.17) must be defined without v,’s. As a result :

e 7. B {(("P..Nvi,n)) + STT}A (4.19a)
byn = {((p,_,,v-u,,)) + ;; }An (4.19b)

"

Thus, final discretized y; equation, written on the same form as equation (4.18)

_ oY FaysYis F oy Yie HaywYw tayoY.
b’y,N + b-y" + leE + b?*w + B.!'(p

Yie (4.20)

It should be noted that v;, for each phase is solved separately, so that non
physical values of y;» can be generated , for example, v;p exceed to unity or become
negative or sum for all phases of y; p may not equal to unity. Therefore, some “trap”
are requined during solution procedure in order to force computed value into
constraint,
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4.5.3 Velocity equation

Final form of discretized velocity equation take a similar form to that equation
(4.18) but is written on displaced control volume. Especial interest attached to the
roles of the pressure and interphase momentum transfer terms which form part of
momentum source term but need special treatment.

A displaced control volume on staggered grid for x- and y- velocity are
represented in Figure 4.5 . The displaced control volume faces now lie on the grid line
where grid nodes of main control volume are located. This layout realized one of the
main advantage of staggered grid : pressure gradient py-pg can directly represent for
x-direction momentum driving force for displaced control volume considered. The
other term which need special treatment is interphase momentum transfer source term
which is written as:

(Di.intorphm 7 25_.,(", u Vi) | (4.21)
#i

‘('p

Figure 4.5
Displaced control volume for x-velocity (e-w) and y-velocity {s-n)

Interphase momentum transfer i for example, the relaxation time in
momentum equation, is a function of lvj - v; |. This make the multiphase velocity
equation tightly couple. The arithmetic mean interpolation of phase bulk density
between grid nodes is employed to determine & at the e’s Jocation.

The convection and diffusion terms for velocity equation is somewhat
different from those of scalar equation as it depend on direction of the flow. For
example, only the convection terms of the ieft and right neighbor velocities of x-
direction (e-w) velocities shown in Figure 4.5 transfer into/out of the displaced
control volume, and only shear stress terms due to viscous diffusion of upper and
lower neighbor transfer in to/ out of the displaced control volume. The interpolation

Tule (v) is applied in order to determine the convection term at the grid node face
area. Final form of x-direction velocity equation is then written as : I
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(% anbVi,nb) + ¢i,o + 'Yi,oAa(pP - pE) + _NiEJ'Vj..
" gb, + %&,

(4.22)

L
i

Coefficient ay, and b, can be expressed as follows;

If v; b is on the same grid line as v;, in x-direction

By = (('Yipu"i)),,h
and correspondingly (4.23)

o, =((~yipv)).

If vigyis on the same grid line as v, in y-direction

()

and correspondingly (4.24)

€

The momentum source term considered in this study is gravity term which
also require arithmetic mean interpolation between grid node value.

4.5.4 Overall continuity eguation

Final form of discretized overall continuity equation start from the definition
that summation of all phase mass diffusion terms equal to zero and net mass source in
control volume must be zero . Therefore, sum for all phase of (' sum for all faces of
(face area multiply with outward normal component of ¥;p;v; )) equal to zero, Writing
in final form of discretized equation ;

2 (Bi,nv‘ + Bi,svi,s + Bi.cvi,o + Bi.wvi,w) =0 (4.25)
—-— in :

Here the definition of B; ,...can be deduced from above descriptive expression.
4.5.5 Boundary condition

There are many ways to introduce boundary value to flow field equation. The direct
method is to store value in the boundary grid node which lie upon the boundary line,
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the haif control volume annex to boundary line is therefore create for which its face
lie mid way between boundary grid node and adjacent flow field grid node. The other
method as treated in this CFD codes, treat a boundary value as source term of
varigble in question. Boundary value is therefore not inserted directly, on the other
hand, the boundary value is inserted as a source term at the cell node instead at the
boundary line. Of course, near-boundary cells must be made small enough for the
shift of location to be unimportant. Boundary value is computed by the same equation
form as of source term equation (4.15), except that g, the source term value in cell,
become Pyoumdury and the coefficient belong to boundary condition,

4.6 Solution procedure

Once the final form of discretized finite volume equations were derived in
Section 4.5, its solution procedure are now discussed. The scope of discussion is
confined to which will be directly applied to this study. The major difficulty of
multiphase flow equation solving is arisen out of its non-linearity and interphase
coupling. Therefore, the solution procedure must be performed by iterative ie. “guess
and adjustment” means. In this section IPSA solution procedure is discussed to
illustrate the solution procedure used in this study.

4.6.1 Solution technique for two phase pipe flow

Most of the high Reynolds number pipe flow problem without obstacle can be
classified as parabolic flow problem as the influence of downstream condition to
upstream is very small. But if back flows occur so that the influence of downstream
condition to upstream is large, the flow is classified as elliptic flow problem.

In this CFD code, slabwise parabolic is provided for which each slab (along
pipe axis) variables are calculated for many iteration, After the slabwise iterations are
completed, the next adjacent slab variables along the axial direction are calculated.
This “marching integration” is carried on until reaching outlet boundary. The
slabwise operation, conducted in sequence from lowest slab to highest wiil be called
“sweep”. Parabolic solver is a “single sweep” operation. Since each slab is visited
only one time in calculation, it is usually necessary to conduct several slabwise
iteration sufficiently in order to reduce the imbalances in the equation,

Elliptic pipe flow solver, require no  limited region or direction of marching
solution. The entire domain of flow field are solved “whole field” in each sweep.
Because the ‘equation for values at one slab ordinarily make reference to values at
next-higher slab, later adjustment made at the higher adjustment will invalidate, to
some extent, the adjustment which have just been made at the lower one. For this
feason many sweeps must be needed, until further adjustments are unnecessary,

In this study, parabolic-elliptic mixed solver is employed. The solution
procedure start with a sweep of parabolic computation and then repeated for many
sweep similar to elliptic computation. This mixed solver has been proven for its
ability to accelerate convergence for the flow in which the flow direction is entirely
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positive from lowest slab to highest, and the cell is long and thin along the flow
direction. '

During each slabwise or sweep computation, the equations are solved by
certain computation technique. ADI (Alternated Direction Implicit) technique is
employed in this study. ADI technique solve the two dimensional discretized finite
volume equation using Thomas’ algorithm (TDMA) as described in Appendix A2,
TDMA is capable for solving linear one dimensional finite volume equation since

4 . t Clicsern linm

Figure 4.6
Representation for line-by-fine, ADI method

onfy grid node variable and the other two neighbors are allowed to form tridiagonal
metrix ( for example (g, Pp, Pw ) = (uy, uy, uy), compare with notation in Appendix
2). The first step of ADI is to solve the variable in one spatial coordinate (i.e. x-
direction (e-w)) at the fixed values of the other (y-direction (s-n)). Once a grid line is
chosen, the neighboring line values are assumed to be its latest (or guessed) values, as
shown in Figure 4.6 (dotted for chosen node ,crosses for neighboring node). Assume

‘that there are N grid nodes along x-direction lying on grid line y. TDMA will compute

value on all N grid nodes simultaneously once. After completion, N grid nodes along
x direction on the next y-direction grid line, say, y+1, are then computed . If there are
M grids along y-direction, M times of TDMA are required. The alternating direction
of computation will adjust all values within domain to satisfy its boundary conditions.

A special aspect of multiphase flow is that the interaction coefficient between
the phases is often large. The solution procedure designed for single phase flow only
could lead very slow convergence. The remedy for any tightly coupled pair of
equation caused by interphase interaction is provided in this CFD code called PEA
(Partial Elimination Algorithm). This algorithm form part in IPSA to manipulate pair
of coupled equations such as temperature, velocity in to the form of which the
interaction terms are eliminated. The detail of algorithm is described in Appendix A3.
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As the computation technique necessitate for solution procedure has been
outlined, the solution procedure of each variable equation will be described in the
next section.

4.6.2 Solution procedure for scalar property equation

In this study, enthalpy equation is not included. In the presence of enthalpy
equation, it will be solved first by PEA technique because of the possibility of tight
linkage between the enthalpies of the various phase. After PEA eliminate the tight
interphase linkage, the equation can then be solved by conventional ADI scheme. For
the other scalar property which is influenced by velocity such as turbulence kinetic
energy and its dissipation rate, PEA is not necessary for such scalar quantity since
PEA is applied for velocity equation and interphase coupling is almost eliminated.

4.6.3 Solution procedure for volume fraction eqnation

Equation of the form (4.20) can be solved in straight-forward manner. There is
one such equation for every phases and for every grid nodes but , as a rule, it is
preferable to solve all but one of the phases; the y;’s of the remaining phase is then
deduced from the knowledge thai all the y;’s must sum to unity at every nodes.
However, 1;’s are calculated independently so that “sum to unity” constraint may be
violated cause divergence of solution. In IPSA, a trap is provided to force all y;’s into
“sum to unity” constraint. This “trap” is called BETTER equation.

Equation (4.20) can be written in more compact form:

> (awyi) +h
Yir = Tbu (4.26)
For overall volume fraction
S Tlowy) +
23, = (4.27)

If the above equation set are solved in straight-forward manner, divergence is
likely possible. The BETTER equation is then formulated by introduce a guessed
correction factor f; which will equal to unity at the final solution :

[ 2:.7,.

-+

By

= o 4.28
=5 4.28)

The ¥ terms in equation (4.28) denotes a guessed (or previous cycle ) volume
fraction



Finally, BETTER equation is written as
- 7i,P{

i(?l.pt)

et

(4.29)

The BETTER equation is developed from experience, not from mathematical
logic. This equation accelerate convergence by way that if £>1, y;p will be larger than
¥, cause the computation move to the right direction. f; = 1 in final solution.

4.6.4 Solution procedure for velocity equation

In order to solve the velocity equation, it is necessary to ascribe value to
pressure . the most straight forward of which is to use those pressure value which are
already in store and which result from the pressure correction operation conducted at
the end of previous cycle.

The velocity equation (4.22) , if solved in straight forward manner, yield a
slow converge solution or sometime, diverge solution due to interphase coupling
effect. PEA technique in appendix A3 is therefore necessary. The final form after
applying PEA technique , yield an equation for v, whilst ,;, are eliminated as shown
in equation (A3.5), Writing in the notation of equation (4.22) resulting in:

P@qﬁvw) +@, +yAln _&)J+@§%Vm) +“§‘12. (s ---pe)}‘-1
' it

- -

» M s
(4.30)

Consider equation (4.30) if §; is very large (for example, in solid phase
equation of dilute gas solid flow). the equation is reduced to

(gg(anbvm)t + gdﬁ,‘, "H\.(Pp - De)

Ve = (%Z ) | (4.31)
by

i=1 i,e
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If &; is very small, the velocity equation is approximately in the same form as
equation (4.22) but dropping out interphase momentum transfer term.

For ease of derivation, velocity equation (4.31) after PEA operation can be
written in generic form :

v = n+ Q(Pp - pE)
e ®

(4.32)

4.6.5 Velocity and pressure correction

The velocity equations can be solved only when the pressure field is given or
is somehow estimated. Unless the correction field is employed, the resulting velocity
field will not satisfy the continuity equation. Such an imperfect velocity field based

on a guessed pressure field p_ will be denoted by v: o v:n . This starred velocity field
will result from the equation writing in the form of (4.32):

. n +&(o% —0%)

Vio ® (4.33)
Let propose that the correction pressure p’ is obtained from
P=p +0 V.= v, (4.34)
Subtract equation (4.33) from (4.32)
Alli
(Ei'%amvf,m) + Ci(Ps'a - pl'i)
vi, = ® (4.35)

IPSA is an extension of semi-implicit type of operation in which the term

Afli

Yy a“v;’“] is dropped out. As a result ;

i=1 i,nd ;
Gles —5t)
=T (4.36)

Equation (4.36) will be called the velocity equation formula which can be also
written as:

-+ &{ot —t)

v o ® 4.37)



The remaining task is to obtain a discretization equation for p’ which will be
called pressure correction equation. The velocity fields which have been generated by
the solution of the momentum equation (4.33) based on an incorrect pressure field
cannot satisfy overall continuity equation (4.25): when combine with the in-store
values of the v;’s which are appropriate to the pressure, there is found to be a net
accumulation, or loss, of mass from each cell. IPSA is developed to conquer this
difficulty, by replacing the zero on the right hand side of equation (4.25) by E,, the
symbol stand for mass continuity error for cell P.

It is now supposed that all the pressures in the flow field will be modified so

as to change the bulk densities and the velocities, and thereby to bring about the
elimination of errors. Differentiation of appropriate terms of equation (4.25) lead to

( 6\'i,n aIi.n avi,l a/i [ \
Bi,n ' pg{ + ap p|'° + Bi,svl,s -5;—‘)5 +-a:p$

&

Alli

i=1

" [%,+§i,,_ ')+B (avi,. O )
X i apN Py app Pe s Vis aps Ps app Pp )

(4.38)

The differentiating coefficient can be derived from differentiate velocity
equation (4.32) with respect to pressure :

6vi,l IS avi.n I S,_ ,
B o0 (439)

Equation (4.38) will be called pressure correction equation.

4.6.5 IPSA solution procedure.

IPSA can be regarded as SIMPLE (Semi IMplicit Pressure Linked Equation )
algorithm (Patankar and Spalding [1972]) supplement for solving the coupled
momentum and mass conservation equation. IPSA procedure can be summarized as
follows:

1) Enthalpy equation and other scalar property equations are solved first by the
procedure discussed in Section 4.6.2.
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2) Volume fraction equation is then solved by the procedure described in Section
4.6.3.

3) Pressure field is guessed (which lead to velocities which do not satisfy the
overall continuity equation).

4) Solve for v' velocity equation as desribed in Section 4.6.4,
5) Solve p’ equation (4.38),

6) Compute p from p+ p’ = p , this corrected pressure will be treated as new
guessed pressure in 3) on the next computation cycle.

7) Compute velocity field using velocity correction equation (4.37).
8) Repeat the next cycle from 1)

Solution is considered converge when -E, in (4.38) and all other error
remaining in all equations are acceptably small.

4.6.6 Solution control device

Although solution procedure described above is invented to combat
divergence, it still possibly occur when solving highly non-linear or tightly coupled
equation. In order to prevent divergence or improve convergence, some factor need to
be introduced into algebraic equation during solution process. For ADI scheme, it is
preferable to introduce underrelaxation factor. The word “underrelaxation” implies
that it modulate the computed value and cause slower convergence. There are many
ways of introducing relaxation factor. However, Any computation scheme must
possess this property; the final converged solution, although obtained through the use
of arbitrary relaxation factor, must still satisfy the original discretization equation.
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