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CHAPTER I
INTRODUCTION

There are many notions of fixed point stability in the literatures. The simplest
one can be found in the book by C. Adams and R. Fronzosa in 2007 [1]. Later,
in 2009 [4], P. Chaoha and W. Atiponrat introduced the notion of virtual stability
and used it to define a virtually stable selfmap. As a result, for every virtually
stable map f , the fixed point set of f is a retract of the convergence set of f , and
hence we can investigate some topological structures of the fixed point set of f via
the convergence set. Moreover, in 2014 [7], A.H. Hamza and M. Faris introduced
the concepts of strongly stable, c-stable, and strongly c-stable fixed points.

In 2012 [5], P. Chaoha and P. Chanthorn extended the concept virtual stability
of a selfmap to an iteration scheme to obtain a retraction from the convergence set
of the scheme onto its fixed point set. In particular, the Ishikawa iteration scheme
for a quasi-nonexpansive map is virtually stable.

In this thesis, we will define the notion of a strictly stable fixed point of a self-
map. Then we explore the relationship among all mentioned fixed point stabilities.
We also define the notion of a strictly stable fixed point of an iteration scheme.
Finally, we introduce the concept of a co-strictly stable fixed point of a selfmap
in Banach space setting to ensure virtual stability of well-known iteration schemes
to guarantee the existence of a retraction from its convergence set onto its fixed
point set.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II
PRELIMINARIES

In this chapter, we review some definitions and notions used in this work. For
more details, see in [1], [8], [10] and [12].

2.1 Topological Spaces

Definition 2.1. Let X be a nonempty set and τ a collection of subset of X such
that

1. ∅ ∈ τ and X ∈ τ .

2.
∪
A ∈ τ , for any subcollection A of τ .

3.
∩
A ∈ τ , for any finite subcollection A of τ .

The collection as above τ is called a topology on X, an element U ∈ τ is called
an open set in X, and The pair (X, τ) is called a topological space. We simply
write X when there is no ambiguity.
A subset A of X is called a closed set if Ac = X −A is open, for x ∈ X, an open
set U ∈ τ containing x is called a neighborhood of x.

Definition 2.2. A topological space X is said to be

1. Hausdorff if any two distinct points in X have disjoint neighborhoods.

2. regular if each pair of x ∈ X and a closed set B ⊆ X disjoint from x, there
exist disjoint open sets containing x and B, respectively.

Definition 2.3. Let (X, τX) be a topological space and Y ⊆ X. The subspace
topology of Y is defined by

τY = {U ∩ Y | U ∈ τX}.

We say that (T, τY ) is a subspace of X.

Definition 2.4. For a nonempty set X and B a collection of subset of X. we call
B a basis for a topology on X if it satisfies the following conditions:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1. for each x ∈ X, there is B ∈ B such that x ∈ B.

2. for each B1, B2 ∈ B and x ∈ B1 ∩B2, there is B3 ∈ B such that

x ∈ B3 ⊆ B1 ∩B2.

Denote the set < B > by {U ⊆ X | ∀x ∈ U∃B ∈ B, x ∈ B ⊆ U}, we have < B >

is a topology on X and call it the topology generated by B.

Next, we let X be a nonempty topological space and A a nonpempty subset of
X.

Definition 2.5. A point x ∈ X is called a limit point of A if for each neighbor-
hood U of x,

U ∩ A− {x} ≠ ∅.

The set of all limit points of A is called the derived set of A, denoted by A′.

Definition 2.6. The interior of A, denoted by IntX(A) is defined by

IntX(A) =
∪

{U ⊆ X | U ⊆ A, and U is open}.

The interior of A, denoted by ClX(A) or A is defined by

ClX(A) =
∩

{U ⊆ X | U ⊆ A, and U is closed}.

Remark 2.7. From the definitions, we have

1. A is open in X if and only if A = IntX(A).

2. A is closed in X if and only if A = ClX(A).

Theorem 2.8. Let A,B ⊆ X. Then

(1) A = A.

(2) A ⊆ B ⇒ A ⊆ B.

Next, we will recall concepts of continuity. Let X and Y be topological spaces.

Definition 2.9. A map f : X → Y is said to be continuous at x ∈ X if, for any
neighborhood V of f(x), there exists a neighborhood U of x such that

f(U) ⊆ V.

We say that a map f is continuous if it is continuous at each x ∈ X.
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Definition 2.10. Let A be a nonempty subset of X. A is said to be connected
if there exists no pair of subsets U, V of X such that

1. U ∪ V = A.

2. U ∩ A ̸= ∅ and V ∩ A ̸= ∅.

2. U ∩ V = ∅ and U ∩ V = ∅.

Otherwise, A is said to be disconnected.

Example 2.11. The real line R and the intervals in R are connected. Let a < b < c

be points in an interval I. If we delete the point b, then we obtain a disconnected
set I − {b}. Similarly, R− {b} is also disconnected.

Definition 2.12. Let A be a nonempty subset of X. A is said to be path con-
nected if for every pair of x, y ∈ A, there exists a continuous map p : [0, 1] → X

such that p(0) = x and p(1) = y.

Theorem 2.13. A path connected set is always connected.

Theorem 2.14. Let f : X → Y be continuous. If A is a (path) connected subspace
of X, then f(A) is (path) connected.

Definition 2.15. Let A be a subset X. A continuous map R : X → A is said to
be a retraction if for any a ∈ A, R(a) = a. The set A is said to be a retract of
X.

Notice that R is surjective since R(a) = a.

The next corollary shows that the retract of a (path) connected space is also
(path) connected.

Corollary 2.16. Let R : X → A be a retraction. If X is (path) connected, then
A is also (path) connected.

Proof. Let R : X → A be a retraction and X a (path) connected space. Since R

is surjective, thus R(X) = A is (path) connected by Theorem 2.14.

Definition 2.17. A map f : X → Y is said to be open if for each an open subset
U of X, the set f(U) is open Y . A closed map is defined in the similar manner.

Definition 2.18. The sequence (xn) in X is defined to be a function

(xn) : N → X.

We denote the value (xn)(i) by xi.
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Definition 2.19. The sequence (xn) in X is said to converge to x ∈ X, we write
xn → x or lim

n→∞
xn = x, if for each neighborhood U of x, there exists N ∈ N such

that xn ∈ U for all n ≥ N . When xn → x, we call x a limit of (xn).

Theorem 2.20. A convergent sequence in a Hausdorff space has a unique limit.

Theorem 2.21. Let x ∈ X. If f is continuous and a sequence (xn) converges to
x, then (f(xn)) converges to f(x).

Remark 2.22. We rewrite the result of the previous theorem as:

lim
n→∞

f(xn) = f(x) = f( lim
n→∞

xn).

Definition 2.23. A metric on X is defined to be a function d : X ×X → R such
that

1. d(x, y) ≥ 0 for all x, y ∈ X.

2. d(x, y) = 0 ⇔ x = y.

3. d(x, y) = d(y, x) for all x, y ∈ X.

4. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The pair (X, d) is called a metric space.
Given r > 0, the set Bd(x, r) = {y ∈ X | d(x, y) < r} is called the open r-ball

centered at x. Let τd = {U ∈ X | ∀x ∈ U∃r > 0, Bd(x, r) ⊆ U}. Then τd is a
topology on X, it is called the topology induced by the metric d. When there
is no ambiguity, we will omit d and simply write X.

Example 2.24. The Euclidean metric d on Rn is defined by

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

for all x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) in Rn.

Definition 2.25. Let (X, d) be a metric space. A sequence (xn) in X is called a
Cauchy sequence if for each ε > 0, there is N ∈ N such that

d(xm, xn) < ε,

for all m,n ≥ N .
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Definition 2.26. A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges in X.

Definition 2.27. Let X be a topological space, (Y, d) a metric space and F a set of
continuous maps from X to Y . For x0 ∈ X, the set F is said to be equicontinuous
at x0 if for each ε > 0, there exists a neighborhood U of x0 such that

d(f(x), f(x0)) < ε

for every x ∈ U and f ∈ F . We simply say that F is equicontinuous on X if it
is equicontinuous at each x0 ∈ X.

Definition 2.28. A vector space or linear space ⟨V,+, ·⟩ over R (or C) is a
nonempty set V with vector addition and scalar multiplication by elements of R
(or C).

Vector addition is a map + : V × V → V defined by

(x, y) 7→ x+ y,

a vector x+ y is called sum of x and y, and the following conditions hold.

1. x+ y = y + x for all x, y ∈ V.

2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V.

3. There exists a vector 0 ∈ V is called identity, for any x ∈ V ,

x+ 0 = x = 0 + x.

4. For any x ∈ V , there exists a vector −x such that

x+ (−x) = 0 = (−x) + x.

Scalar multiplication is a map · : R (or C)× V → V defined by

(α, x) 7→ α · x,

a vector α · x (also written αx) is called product of α and x, and the following
conditions hold.

1. α(βx) = (αβ)x for all x ∈ V and α, β ∈ R (or C).

2. 1x = x where 1 is multiplicative identity in R (or C).
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3. α(x+ y) = αx+ αy, for all x, y ∈ V and α ∈ R (or C).

4. (α + β)x = αx+ βx, for all x ∈ V and α, β ∈ R (or C).

Definition 2.29. A topological vector space or linear topological space
⟨X,+, ·⟩ over R (or C) is a nonempty set X with Hausdorff topology such that
vector addition and scalar multiplication by elements of R (or C) are continuous.

Definition 2.30. A norm on a linear space E is defined to be a real-valued
function ||·|| : V → R such that

1. ||x|| ≥ 0 for all x ∈ E.

2. ||x|| = 0 if and only if x = 0.

3. ||ax|| = |a|||x|| for all x ∈ E and a ∈ R (or C).

4. ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ E .

The metric induced by a norm ||·|| is defined by

d(x, y) = ||x− y||.

A normed space ⟨E, ||·||⟩ is a nonempty set E together with a norm ||·|| defined
on it. A Banach space is a complete normed space.

Definition 2.31. Let A be a subset of a linear space V . The set A is said to be
convex if for any x, y ∈ A,

(1− t)x+ ty ∈ A

where t ∈ [0, 1].

Definition 2.32. Let A be a subset of a linear space V . The smallest convex set
in E containing A is called convex hull of A, denoted by co{A}.

Proposition 2.33. Suppose that X is a linear topological space over R, then the
arbitrary intersection of convex sets is convex.

Proof. Let {Cα} be a collection of convex subsets of X, x, y ∈
∩
α∈Λ

Cα and t ∈ [0, 1].

Then x, y ∈ Cα for each α ∈ Λ.
By convexity of each Cα, (1− t)x+ ty ∈ Cα for each α ∈ Λ.
Thus, (1− t)x+ ty ∈

∩
α∈Λ

Cα and hence
∩
α∈Λ

Cα is convex.
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Theorem 2.34. [12] Let A be a subset of a linear topological space X. x ∈ co{A}
if and only if there exist n ∈ N and points x1, x2, . . . , xn ∈ A such that

x =
n∑

i=1

λixi

where λ1, λ2, . . . , λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1.

Theorem 2.35. [12] Let A be a subset of a linear topological space X. If A is an
open set, then the convex hull co{A} is open.

Example 2.36. Suppose that X is a normed linear topological space and d is the
metric induced by norm ||·||.

For each x ∈ X and r > 0, consider an open ball Bd(x, r).
Let x, y ∈ Bd(a, r) and t ∈ [0, 1]. Then

||a− ((1− t)x+ ty)|| = ||(1− t)(a− x) + t(a− y)|| ≤ (1−y)||a− x||+ t||a− y|| < r.

That is (1− t)x+ ty ∈ Bd(a, r). Hence, an open ball Bd(x, r) is convex.

Example 2.37. Suppose that ||·|| induces the Euclidean metric and a < b ∈ R.
Let C = {(x, y)| a < x < b} and (x1, y1), (x2, y2) ∈ C. Note that a < x1, x2 < b.
We have

a < (1− t)x1 + tx2 < b

and (1− t)(x1, y1) + t(x2, y2) = ((1− t)x1 + tx2, (1− t)y1 + ty2) ∈ C.

Thus C is convex.

Theorem 2.38. A convex subset C of a linear topological space X is path connected
and connected.

Proof. For any x, y ∈ C, define p : [0, 1] → X by

p(t) = (1− t)x+ ty.

We have p(0) = x, p(1) = y and C is path connected. Thus C is connected.

2.2 Fixed Point Stability

Let X be a (nonempty) Hausdorff space and f : X → X a continuous selfmap.
The fixed point set and the convergence set of f is defined to be

F (f) = {x ∈ X | f(x) = x} and
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C(f) = {x ∈ X | (fn (x)) converges},

respectively. The composition fn ◦fn−1 ◦ . . .◦fj is denoted by
n∏

i=j

fi . In particular,
n∏

i=1

f is the n-th iterate fn of f . Hence, we naturally get a map f∞ : C(f) → F (f)

given by
f∞ (x) = lim

n→∞
fn(x)

for each x ∈ C(f). A map f∞ may not be continuous in general which is shown
in the next example.

Example 2.39. Consider the map f : R → R defined by f(x) = x2. We have
F (f) = {0, 1} and C(f) = [−1, 1]. But f∞ : [−1, 1] → {0, 1} given by

f∞(x) =

1, if x = −1, 1,

0, otherwise,

is not continuous.

Next, we introduce some terminology and notations of various fixed point sta-
bility used throughout our work. In this work, we always assume that F (f) ̸= ∅.

Definition 2.40. [1] A fixed point p of f is said to be stable if for each neigh-
borhood U of p, there exists a neighborhood V ⊆ U of p such that

fn(V ) ⊆ U

for each n ∈ N.

Definition 2.41. [7] A fixed point p of f is said to be

1. strongly stable if p is stable and there exists a neighborhood V of p such
that a sequence (fn(x)) converges to p for each x ∈ V ,

2. c-stable if for each neighborhood U of p, there exists a neighborhood V of
p such that fn(V ) ⊆ U for each n ∈ N and,

3. strongly c-stable if p is c-stable and there exists a neighborhood V of p

such that a sequence (fn(x)) converges to p for each x ∈ V .

Theorem 2.42. [7] A stable fixed point is always c-stable.
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Proof. Let p ∈ F (f) be stable and U a neighborhood of p.
There is a neighborhood V ⊆ U of p such that

fn(V ) ⊆ U ⊆ U.

Then p is c-stable.

Definition 2.43. [4] A fixed point p of f is said to be virtually f-stable if
for each neighborhood U of p, there exists a neighborhood V of p and a strictly
increasing sequence (kn) in N such that

fkn(V ) ⊆ U

for all n ∈ N. We say that a map f is virtually stable if every its fixed point is
virtually f -stable.

Definition 2.44. [4] A fixed point p of f is said to be uniformly virtually f-
stable if there exists a strictly increasing sequence of natural number (kn) such
that for each neighborhood U of p, there exists a neighborhood V of p with

fkn(V ) ⊆ U

for each n ∈ N. We simply call f uniformly virtually stable if every fixed point
is uniformly virtually f -stable with respect to the same (kn).

The next theorem shows that a virtually stable fixed point is generally more
than a stable fixed point.

Theorem 2.45. A stable fixed point is uniformly virtually stable with respect to
the sequence of all natural number.

Proof. Let p ∈ F (f) be stable and U a neighborhood of p.
There is a neighborhood V ⊆ U of p such that

fn(V ) ⊆ U.

We choose kn = n. Then p is uniformly virtaully stable with respect to (n).

From the previous theorems, we have the following implications of fixed point
stability:

strongly stable ⇒ stable ⇒ uniformly virtually f -stable
⇓ ⇓ ⇓

strongly c-stable ⇒ c-stable virtually f -stable.
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Next, we present some basic maps in a metric space.

Definition 2.46. [3] Let (X, d) be a metric space.

• f is called nonexpansive if d(f(x), f(y)) ≤ d(x, y) for any x, y ∈ X.

• f is called quasi-nonexpansive if d(f(x), p) ≤ d(x, p) for any x ∈ X and
p ∈ F (f).

• f is called virtually nonexpansive if {fn | n ∈ N} is equicontinuous on
F (f).

We have following implications:

nonexpansive ⇒ quasi-nonexpansive ⇒ virtually nonexpansive.

See more details in [3]. In a metric space, we have the following proposition.

Proposition 2.47. [6] Let (X, d) be a metric sapce. Then f is virtually nonex-
pansive if and only if f is uniformly virtually stable with respect to (n).

Theorem 2.48. [4] Suppose X is a regular space. If f is virtually stable, then f∞

is continuous and hence F (f) is a retract of C(f).

By the previous theorem, we can explore some topological structures of con-
vergence sets and fixed point sets of virtually stable maps, see more details in [4].
Next, we introduce the concept of fixed point iteration schemes.

2.3 Fixed Point Iteration Schemes

For a sequence S = (sn) of selfmaps on X (F (sn) ̸= ∅), the fixed point set and
the convergence set of S are defined to be

F (S) =
∩
f∈S

F (f) and

C(S) = {x ∈ X | (sn(x)) converges},

respectively. Hence, we obtain a map r : C(S) → X given by

r(x) = lim
n→∞

sn(x),

for each x ∈ C(S). Clearly, F (S) ⊆ r(C(S)), but r may not be continuous and
r(C(S)) ̸⊆ F (S). So we introduce the notion of an iteration scheme.
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Definition 2.49. [5] Let (fn) be a sequence of selfmaps on X, and S = (sn)

a sequence where sn =
n∏

i=1

fi. A sequence S is called a fixed point iteration

scheme or simply a scheme if ∅ ̸= F (S) = r(C(S)). Moreover, a scheme S = (sn)

is said to be have a continuous subsequence if there is a subsequence of S
consisting of continuous maps.

Example 2.50. The iteration scheme such that fi = f is well-known and usually
called the Picard iteration scheme for f . We have S = (sn) = (fn). If f is
continuous, then

r(x) = lim
n→∞

fn(x) ∈ F (f)

for any x ∈ C(S). Moreover, S has a continuous subsequence, F (S) = F (f) and
C(S) = C(f).

Definition 2.51. [5] A fixed point p of the scheme S is called virtually stable
if for each neighborhood U of p, there exists a neighborhood V of p and a strictly
increasing sequence (kn) in N such that

kn∏
i=j

fi(V ) ⊆ U

for each n ∈ N and j ≤ kn. We say that an iteration scheme S is virtually stable
if every of its fixed point is virtually stable.

Definition 2.52. [5] A fixed point p of a scheme S is said to be uniformly
virtually stable if there exists a strictly increasing sequence of natural number
(kn) such that for each neighborhood U of p, there exists a neighborhood V of p
with

kn∏
i=j

fi(V ) ⊆ U

for each n ∈ N and j ≤ kn. We simply call the scheme S uniformly virtually
stable if every common fixed point of S is uniformly virtually stable with respect
to the same (kn).

Example 2.53. Let S be the Picard iteration scheme for f .
Suppose that p ∈ F (S) = F (f) is uniformly virtually f -stable with respect to (n).
We have

kn∏
i=j

fi = fkn−j+1
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for all j ≤ kn. Since kn − j + 1 is a natural number and p is uniformly virtually
stable, for each neighborhood U of p, there always exists a neighborhood V of p
with

fkn−j+1(V ) =
kn∏
i=j

fi(V ) ⊆ U.

Hence, p is virtually stable.

The next theorem is an extension of Theorem 2.48 from the concept of maps
to schemes.

Theorem 2.54. [5] If X is a regular space and S is a virtually stable scheme
having a continuous subsequence, then the map r : C(S) → F (S) is continuous
and hence F (S) is a retract of C(S).

Next, we introduce some well-known iteration schemes to be used in our work.

Definition 2.55. [11] Let X be a closed convex subset of a Banach space E and
T : X → X a selfmap. Let (α

(k)
i ) be a sequence in [0, 1] for each k = 1, . . . , n.

If S = (
m∏
i=1

fi) is a scheme satisfying:

g
(1)
i = (1− α

(1)
i )I + α

(1)
i T

g
(2)
i = (1− α

(2)
i )I + α

(2)
i Tg

(1)
i

g
(3)
i = (1− α

(3)
i )I + α

(3)
i Tg

(2)
i

...

fi = g
(n)
i = (1− α

(n)
i )I + α

(n)
i Tg

(n−1)
i ,

for each i ∈ N, where I is the identity map, we will call S the n-step iteration
scheme for T associated to sequences (α

(k)
i ) where k = 1, . . . , n. In particular,

• when (α
(n)
i ) = (1) and (α

(k)
i ) = (0) for k = 1, . . . , n − 1, we will call S the

Picard iteration scheme for T , that is

fi = T,

• when (α
(k)
i ) = (0) for k = 1, . . . , n − 1, we will call S the Mann iteration

scheme for T associated to (α
(n)
i ) = (αi), that is

fi = (1− αi)I + αiT,

the Mann iteration scheme associated to a constant sequence is usually called
the Krasnoselskij iteration scheme , that is

fi = (1− λ)I + λT,
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• when (α
(k)
i ) = (0) for k = 1, . . . , n−2, we will call S the Ishikawa iteration

scheme for T associated to (α
(n)
i ) = (αi) and (α

(n−1)
i ) = (βi), that is

fi = (1− αi)I + αiT ((1− βi)I + βiT ),

• when (α
(k)
i ) = (0) for k = 1, . . . , n − 2, we will call S the Noor iteration

scheme for T associated to (α
(n)
i ) = (αi), (α(n−1)

i ) = (βi) and (α
(n−2)
i ) = (γi),

that is

fi = (1− αi)I + αiT ((1− βi)I + βiT ((1− γi)I + γiT )).

Remark 2.56. We always have F (T ) ⊆ F (S). If S is Mann iteration scheme for
T with (αn) where α1 ̸= 0, 1, then F (S) = F (T ). But the above definition does
not ensure the existence of an n-step iteration scheme unless it is a scheme at the
first place, or in a suitable situation (see more details in [2], [5] and [11]).

Definition 2.57. [9] If X is a closed convex subset of a Banach space E and
T : X → X is a selfmap. Let k be a fixed positive integer, if S is a Picard iteration
scheme for

f = α0I + α1T + · · ·+ αkT
k

where αj ≥ 0, for j = 0, 1, 2, . . . , k, α1 > 0 and

α0 + α1 + · · ·+ αk = 1,

we will call S the Kirk’s iteration scheme for T .

Theorem 2.58. [9] Let S be a Kirk’s scheme for a nonexpansive map T . Then
f(x) = x if and only if T (x) = x.

Corollary 2.59. If S be a Kirk’s scheme for a nonexpansive map T , then F (S) =
F (T ).

Proof. We can consider the Kirk’s iteration scheme for T as the Picard iteration
scheme for f . Then F (S) = F (f) = F (T ), by the previous theorem.

The n-step itertion scheme and Kirk’s iteration scheme are generalization of
the Picard iteration scheme. The next theorem show that the Ishikawa iteration
schemes for a suitable map are virtually stable.

Theorem 2.60. [5] If T is quasi-nonexpansive and S is the Ishikawa iteration
scheme for T associated to sequences (αn) and (βn), then S is virtually stable with
respect to the sequence of all natural numbers.
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In the next chapter, we define the notion of strict stability of fixed points
which generally captures the fixed points of quasi-nonexpansive maps. Moreover,
in Chapter 4, the above theorem is true for an n-step iteration scheme associates
to the map whose every of fixed point is co-strictly stable.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III
STRICT STABILITY

In this chapter, we define the notion of strict stability to obtain a retraction
of the convergence set onto the fixed point set and explore the relationship among
various fixed point stability discussed in Chapter 2.

Let X be a (nonempty) Hausdorff space and f : X → X a continuous selfmap
with F (f) ̸= ∅.

Definition 3.1. A fixed point p of f is said to be strictly stable if for each
neighborhood U of p, there exists a neighborhood V of p such that

f(V ) ⊆ V ⊆ U.

Next, we explore the relationship among strict stablility, stablility, strong sta-
blility, c-stablility, strong c-stablility, virtual stablility, uniform virtual stablility.

Theorem 3.2. A strictly stable fixed point is stable.

Proof. Let p ∈ F (f) be a strictly stable fixed point and U a neighborhood of p.
There exists a neighborhood V of p such that

f(V ) ⊆ V ⊆ U.

Then, for each n ∈ N, we have

fn(V ) ⊆ fn−1(f(V )) ⊆ fn−1(V ) ⊆ · · · ⊆ f(V ) ⊆ V ⊆ U.

Hence, p is stable.

The next example show that strict stability does not imply strong stability.

Example 3.3. Let f : R2 → R2 defined by f(x, y) = (−x, y). Note that f is the
reflection over the y-axis. Then F (f) = {(0, p)| p ∈ R}. Consider (0, p) ∈ F (f)

and let ε > 0. For each (x, y) ∈ B((0, p), ε), we have

||(0, p)− f(x, y)|| = ||(0, p)− (−x, y)|| = ||(0, p)− (x, y)|| < ε.

That is f(B((0, p), ε)) ⊆ B((0, p), ε). Then (0, p) is strictly stable and hence stable.
However, (0, p) is not strongly stable because (fn(0, p+ ε/2)) = ((0, p+ ε/2)) does
not converge to (0, p).
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From the diagram in Chapter 2 and Theorem 3.2, we obtain the following
implications:

strictly stable
⇓

strongly stable ⇒ stable ⇒ uniformly virtually f -stable
⇓ ⇓ ⇓

strongly c-stable ⇒ c-stable virtually f -stable

Notice that if every fixed point of f is strictly stable, then f is a virtually stable
map.

Corollary 3.4. Let f be an open map and p ∈ F (f). Then p is strictly stable if
and only if p is stable.

Proof. (⇒) Theorem 3.2.
(⇐) Let U be a neighborhood of p. Since p is stable, there exists a neighborhood
V0 ⊆ U of p such that

fn(V0) ⊆ U,

for each n ∈ N. Set

V =
∞∪
n=0

fn(V0).

If f is open, f(V0) is an open set in X. Moreover, fn(V0) is open in X for each
n ∈ N.
Thus V is also open in X. Note that p ∈ V ⊆ U and

f(V ) = f

(
∞∪
n=0

fn(V0)

)
=

∞∪
n=1

fn(V0) ⊆ V ⊆ U.

Hence, p is strictly stable.

In a regular space, the next corollary show that f∞ is always a retraction from
C(f) onto F (f) when every of its fixed point is strictly stable.

Corollary 3.5. Suppose that X is a regular space. If every fixed point of f is
strictly stable. Then f∞ : C(f) → F (f) is continuous and hence F (f) is a retract
of C(f).

Proof. Let p ∈ F (f). Since p is strictly stable, p is virtually stable. Then f is a
virtually stable map. By Theorem 2.48, f∞ is continuous and F (f) is a retract of
C(f).
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The next theorem shows that every fixed point of a quasi-nonexpansive map is
always strictly stable.

Theorem 3.6. Let (X, d) be a metric space. If f is quasi-nonexpansive, then every
fixed point of f is strictly stable.

Proof. Let p ∈ F (f) and U be a neighborhood of p.
There exists an open ball B(p, ε) ⊆ U . Since f is quasi-nonexpansive, we have

d(f(x), p) ≤ d(x, p) < ε

for each x ∈ B(p, ε). Therefore, f(B(p, ε)) ⊆ B(p, ε).

The next example shows that the converse of the above theorem is not true.

Example 3.7. The map f : R2 → R2 defined by

f(x, y) =

(
x,

|x|+ y

2

)
.

We have F (f) = {(x, |x|)| x ∈ R}. Consider (0, 0) ∈ F (f), we obtain

1 = ||(0, 0)− (1, 0)|| < ||(0, 0)− f(1, 0)|| = ||(0, 0)− (1, 1/2)|| =
√
5/2.

Then f is not quasi-nonexpansive.
For each (p, |p|) ∈ F (f) and ε > 0, choose

V = B((p, |p|), ε) ∩ {(x, y) | ||(p, |p|)− (x, |x|)|| < ε}.

Let (x, y) ∈ V . Clearly, f(x, y) ∈ {(x, y) | ||(p, |p|)− (x, |x|)|| < ε}. Next, consider

||(p, |p|)− f(x, y)||2 =
∥∥∥∥(p, |p|)− (x, |x|+ y

2

)∥∥∥∥2
= (x− p)2 +

(
|p| − |x|+ y

2

)2

= (x− p)2 +

(
(|p| − |x|) + (|p| − y)

2

)2

≤ (x− p)2 +
(|p| − |x|)

2

2

+
(|p| − y)

2

2

=
(x− p)2 + (|p| − |x|)2

2
+

(x− p)2 + (|p| − y)2

2

=
||(p, |p|)− (x, |x|)||2

2
+

||(p, |p|)− (x, y)||2

2
< ε2
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Then f(x, y) ∈ B((p, |p|), ε) and hence, f(x, y) ∈ V .
Thus (p, |p|) is strictly stable for any (p, |p|) ∈ F (f).

Figure 3.1: The point f(0, 1) and mapping in the neighborhood V .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV
APPLICATION TO ITERATION SCHEMES

We start this chapter by extending the notion of strictly stable fixed points
of selfmaps to fixed points of iteration schemes. We introduce the definition of
co-strictly stable fixed points of selfmaps to obtain virtual stability of some well-
known iteration schemes in a closed convex subset of a Banach space.

Definition 4.1. A fixed point p of a scheme S =

(
n∏

i=1

fi

)
is said to be strictly

stable if for each neighborhood U of p, there exists a neighborhood V of p such
that

fi(V ) ⊆ V ⊆ U

for each i ∈ N.

Remark 4.2. The strict stability of a fixed point p of each map in a scheme
does not ensure the strict stability of p of this scheme. In Definition 3.1, the
neighborhood V depends on U and f , that is V = V (U, f), while the neighborhood
V in the Definition 4.1 depends on U and all of fi, that is V = V (U, f1, f2, . . . ).
Then each neighborhood V for each map in scheme may not be the same.

Next, we show the connection between strict stability and virtual stability.

Theorem 4.3. Let S =

(
n∏

i=1

fi

)
be an iteration scheme. If p ∈ F (S) is strictly

stable, then it is uniformly virtually stable with respect to (n).

Proof. Let p ∈ F (S) and U a neighborhood of p.
For each i ∈ N, there exists a neighborhood V of p such that

fi(V ) ⊆ V ⊆ U.

For each n ∈ N and j ≤ n,
n∏

i=j

fi(V ) ⊆
n∏

i=j+1

fi(fj(V )) ⊆
n∏

i=j+1

fi(V ) ⊆
n∏

i=j+2

fi(V ) ⊆ · · · ⊆ fn(V ) ⊆ V ⊆ U.

Then p is uniformly virtually stable with repect to (n).
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Corollary 4.4. Let S be an iteration scheme such that every of its fixed point is
strictly stable. Then S is uniformly virtually stable with respect to (n).

Next, we apply our results to obtain virtual stability of some well-known
schemes in a convex subset of a Banach space. However, we require a special
version of strict stability to prove it.

Let X be a convex subset of a Banach space E, T : X → X a continuous
selfmap with F (T ) ̸= ∅.

Definition 4.5. A fixed point p of T is said to be convexly strictly stable or
simply co-strictly stable if for each neighborhood U of p, there exists a convex
neighborhood V of p such that

T (V ) ⊆ V ⊆ U.

Example 4.6. Let (X, d) be a metric space. If T is quasi-nonexpansive, then
every fixed point of T is co-strictly stable because any ball is convex.

Theorem 4.7. Let S be the n-step iteration scheme for T associated to sequences
(α

(k)
i ) where k = 1, . . . , n such that F (S) ⊆ F (T ). If every fixed point of T is

co-strictly stable then every fixed point of S is strictly stable.

Proof. Let p ∈ F (S) ⊆ F (T ) and U a neighborhood of p.
Since p ∈ F (T ) is co-strictly stable, there exists a convex neighborhood V of p

such that
T (V ) ⊆ V ⊆ U.

Let x ∈ V and i ∈ N. Since V is convex and T (V ) ⊆ V ,

g
(1)
i (x) = (1− α

(1)
i )x+ α

(1)
i T (x) ∈ V

g
(2)
i (x) = (1− α

(2)
i )x+ α

(2)
i T (g

(1)
i (x)) ∈ V

...

fi(x) = g
(n)
i (x)

= (1− α
(n)
i )x+ α

(n)
i T (g

(n−1)
i (x)) ∈ V

We have fi(V ) ⊆ V for each i ∈ N. Therefore, p is strictly stable.

Corollary 4.8. Let S be the Kirk’s iteration scheme for T such that F (S) ⊆ F (T ).
If every fixed point of T is co-strictly stable then every fixed point of S is strictly
stable.
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Proof. Since S is the Kirk’s iteration scheme for T , it is the Picard iteration scheme
for

f = α0I + α1T + · · ·+ αkT
k

where k is a fixed integer and αj ≥ 0, for j = 0, 1, 2, . . . , k, α1 > 0 and

α0 + α1 + · · ·+ αk = 1.

Since S is the Picard scheme for f , F (f) = F (S) ⊆ F (T ). If every fixed point
of f is co-strictly stable, then we complete the proof by Theorem 4.7.
Let p ∈ F (f) and U a neighborhood of p. Then p ∈ F (S) ⊆ F (T ).
Since p ∈ F (T ) is co-strictly stable, there exists a convex neighborhood V of p

such that
T (V ) ⊆ V ⊆ U.

Let x ∈ V . Then T j(x) ∈ V for j = 1, 2, . . . , k. Since V is convex,

f(x) =
k∑

j=0

αjT
j(x) ∈ V.

Then f(V ) ⊆ V . Thus, p ∈ F (f) is strictly stable.

Corollary 4.9. If every fixed point of T is co-strictly stable, then the n-step
iteration scheme for T and the Kirk’s iteration scheme for T with F (S) ⊆ F (T )

are uniformly virtually stable with respect to (n) and hence F (S) is a retract of
C(S).

Proof. Since T is continuous, both fi defined in Definition 2.55 and f defined in
Definition 2.57 are continuous. This implies that the n-step iteration scheme for
T and the Kirk’s iteration scheme for T have continuous subsequences. The result
follows directly from Theorem 2.54, Theorem 4.7, Corollary 4.4 and Corollary
4.8.

The next example extends Lemma 3.4 in [5].

Example 4.10. The n-step iteration scheme and the Kirk’s iteration scheme for
a quasi-nonexpansive map T with F (S) ⊆ F (T ) are uniformly virtually stable.

Theorem 4.11. Let T : X → X be a continuous selfmap with F (T ) ̸= ∅. Suppose
that T satisfies the following condition:

For any A ⊆ X, if T (A) ⊆ A then T (co{A}) ⊆ co{A}. (∗)

Then p ∈ F (T ) is co-strictly stable if and only if p is strictly stable.
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Proof. (⇒) It follows directly from the definitions.
(⇐) Let p ∈ F (T ) be strictly stable and U a neighborhood of p.
There always exists an open ball B(p, ε) ⊆ U .
Since p is strictly stable, there exists a neighborhood V0 of p such that

T (V0) ⊆ V0 ⊆ B(p, ε).

Set V := co{V0}. Since B(p, ε) is a convex set containing V0, V ⊆ B(p, ε).
Since V0 is open, V is open by Theorem 2.35, and we have

T (V ) = T (co{V0}) ⊆ co{V0} = V ⊆ B(p, ε) ⊆ U.

Therefore, p is co-strictly stable.

Finally, we illustrate an example of a map which is not quasi-nonexpansive but
all of its fixed points are co-strictly stable.

Example 4.12. The map T : R2 → R2 defined by

T (x, y) =

(
x,

|x|+ y

2

)
.

Notice that T is not quasi-nonexpansive but all of its fixed points are strictly
stable and

F (T ) = {(x, |x|) | x ∈ R},

by Example 3.7. Observe that for any (p, |p|) ∈ F (T ),

T (V ) ⊆ V

where
V = B((p, |p|), ε) ∩ {(x, y) | ||(p, |p|)− (x, |x|)|| < ε}.

Next, consider the convexity of V . From Example 2.36, B((p, |p|) is convex.
If C := {(x, y)| ||(p, |p|)− (x, |x|)|| < ε} is convex, by Proposition 2.33, V is the
desired open neighborhood of p.
Claim that C can be written as {(x, y)| a < x < b} for some a < b ∈ R.
Without loss of generality, suppose that p ≥ 0.
If p = 0, then ||(x, |x|)|| < ε that is

− ε√
2
< x <

ε√
2
.

If p ≥ ε√
2
> 0, then x ≥ 0. Otherwise,

||(p, |p|)− (x, |x|)|| = ||(p, p)− (x,−x)|| =
√

2p2 + 2x2 >
√
2p ≥ ε.
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We have
||(p, |p|)− (x, |x|)||2 = 2(p− x)2 < ε2

that is
p− ε√

2
< x < p+

ε√
2
.

If 0 < p <
ε√
2

.
When x ≥ 0, it is similar to the previous case, we have

p− ε√
2
< x < p+

ε√
2
.

Thus 0 ≤ x < p+
ε√
2

, since p <
ε√
2

.
When x < 0,

||(p, |p|)− (x, |x|)||2 = ||(p, p)− (x,−x)||2 = 2p2 + 2x2 < ε2.

Then
x2 <

ε2 − 2p2

2

that is −
√

ε2 − 2p2

2
< x <

√
ε2 − 2p2

2
.

Since p <
ε√
2

and x < 0, −
√

ε2 − 2p2

2
< x < 0.

Therefore,

−
√

ε2 − 2p2

2
< x < p+

ε√
2
.

Figure 4.1: The set V when p = 0, p ≥ ε√
2
> 0 and 0 < p <

ε√
2

, respectively.

Thus we obtain the claim, and hence V is convex.
Therefore, all of fixed points of T are not only strictly stable but also co-strictly
stable.
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However, we have to verify that S =

(
m∏
i=1

fi

)
where

fi = g
(n)
i = (1− α

(n)
i )I + α

(n)
i Tg

(n−1)
i

as defined in Definition 2.55 is an iteration scheme.
Note that F (T ) = {(x, y) ∈ R2 : y = |x|} and

fi(x, y) = (x, (1− λi) y + λi|x|)

where

λi =
α
(n)
i

2
+

α
(n)
i α

(n−1)
i

22
+ · · ·+ α

(n)
i α

(n−1)
i . . . α

(1)
i

2n
.

Then fi(x, y) = (x, y) if and only if

y = (1− λi)y + λi|x|
λiy = λi|x|
y = |x|.

Hence, F (fi) = F (T ) for each i; that is F (S) = F (T ).
If α(n)

i = 0, then fi = I. This is not interesting, so we assume that α
(n)
i > 0

for each i ∈ N. Since 0 ≤ α
(k)
i ≤ 1 for k ∈ {1, 2, ..., n}, 0 < λi ≤ 1; that is

0 ≤ 1− λi < 1 and we have

lim
m→∞

(1− λ1)(1− λ2) . . . (1− λm) = 0.

Next, we will show that S =

(
m∏
i=1

fi

)
is an iteration scheme.

Notice that for any (x, y) ∈ R2,

r(x, y) = lim
m→∞

sm(x)

= lim
m→∞

m∏
i=1

fi(x, y)

= lim
m→∞

m∏
i=2

fi(f1(x, y))

= lim
m→∞

m∏
i=2

fi (x, (1− λ1)y + λ1|x|)

= lim
m→∞

m∏
i=3

fi(f2 (x, (1− λ1)y + λ1|x|))

= lim
m→∞

m∏
i=3

fi (x, (1− λ1)(1− λ2)y + (1− (1− λ1)(1− λ2))|x|)
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= lim
m→∞

m∏
i=4

fi (x, (1− λ1)(1− λ2)(1− λ3)y + (1− (1− λ1)(1− λ2)(1− λ3))|x|)

...

= lim
m→∞

(x, (1− λ1) . . . (1− λm)y + (1− (1− λ1) . . . (1− λm))|x|)

= (x, |x|) ∈ F (S)

Thus C(S) = R2 and S is the n-step iteration scheme for T .
Since every fixed point of T is co-strictly stable and F (S) = F (T ), S is uniformly
virtually stable with respect to (n), by Corollary 4.9.
Hence, the map r : C(S) → F (S) is a retraction, by Theorem 2.54.

To use the above theorem, we have to show that T satisfies the condition (∗).
Let A ⊆ R2 such that T (A) ⊆ A and (x, y) ∈ T (co{A}). We want to prove that
T (co{A}) ⊆ co{A}. First, we will show that T is injective.
Let (x1, y1), (x2, y2) ∈ R2 such that

T (x1, y1) = T (x2, y2).

Then (
x1,

|x1|+ y1
2

)
=

(
x2,

|x2|+ y2
2

)
that implies (x1, y1) = (x2, y2). Hence, T is injective.
Since (x, y) ∈ T (co{A}), there exists (x′, y′) ∈ (co{A}) such that (x, y) = T (x′, y′).
Since T (x, 2y − |x|) = (x, y) and T is injective, we have

(x′, y′) = (x, 2y − |x|) ∈ co{A}.

Suppose that (x, y) ̸∈ co{A}. Then (x, |x|) ̸∈ co{A}, otherwise,

1

2
(x, |x|) + 1

2
(x, 2y − |x|) = (x, y) ∈ co{A}.

Consider the projection onto 2nd-coordinate π : R2 → R defined by

π(x, y) = y.

Note π is continuous. Since co{A} is convex, by Theorem 2.38, it is connected and
π(co{A}) is connected. Since (x, y) ̸∈ co{A}, y ̸∈ π(co{A}). By connectedness of
π(co{A}), either π(co{A}) ⊆ (y,∞) or π(co{A}) ⊆ (−∞, y).

Without loss of generality, suppose that x ≥ 0 and y ≤ |x|.
Since 2y − |x| ∈ π(co{A}) and 2y − |x| < y, π(co{A}) ⊆ (−∞, y), see Figure 4.2.
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Since (x, 2y − |x|) ∈ co{A}, by Theorem 2.34, there exist n ∈ N and (xi, y
′
i) ∈ A

for each i = 1, . . . , n such that

(x, 2y − |x|) =
n∑

i=1

λi(xi, yi)

where λ1, λ2, . . . , λn ≥ 0 and λ1 + λ2 + · · ·+ λn = 1.
We can assume that x1 = max{x1, x2, . . . , xn}, then

x =
n∑

i=1

λixi ≤
n∑

i=1

λix1 = x1.

Since (x1, y1) ∈ A, T k(x1, y1) ∈ A for all k ∈ N.
Observe that T k(x1, y1) = (x1, (1− 2−k)|x1|+ 2−ky1) and T∞(x1, y1) = (x1, |x1|).
We have

(1− t)(x1, y1) + t(x1, |x1|) = (x1, (1− t)y1 + t|x1|) ∈ co{A} for each t ∈ [0, 1).

Since y1 ∈ π(A) ⊆∈ π(co{A}) ⊆ (−∞, y) and y ≤ |x| ≤ |x1|,

y1 < y ≤ |x1|.

There exists t ∈ [0, 1] such that y = (1− t)y1 + t|x1|.
If t ∈ [0, 1), (x1, y) ∈ co{A}, i.e. y ∈ π(co{A}), this contradicts to (x, y) ̸∈ co{A}.
If t = 1, then |x| ≥ y = |x1| ≥ |x|, i.e., y = |x|, and (x, y) = (x, 2y − |x|) ∈ co{A}.
This is a contradiction.
Therefore, (x, y) ∈ co{A} and hence T (co{A}) ⊆ co{A}.

Figure 4.2: π(co{A}) ⊆ (−∞, y) and y1 < y.
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