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CHAPTER | INTRODUCTION

1. Background and significance of research

Malaria continues to be one of the world’s health challenges caused by parasitic protozoan
in the genus Plasmodium. Infection is typically transferred by female Anopheles mosquitoes,
causing 409,000 deaths in 2019 especially children under five years of age.[1] According to the
WHO, there are five different types of Plasmodium that can affect human, but P. falciparum and
P. vivax are the two major infected pathogens. The most dangerous species is P. falciparum,
which has developed resistance against almost all anti-malarial drugs in current use.[2] On the

other hand, P. vivax commonly infect human and it is a cause of persistent infection.

Drug resistance and side effect are a major problem to eliminate malaria. Nowadays, the
artemisinin-based combination therapies (ACTs); combinations between an artemisinin
derivative and another partner drug are currently the strategy to delay malaria resistance.[3]
Unfortunately, in 2007 artemisinin showed a sign of resistance in several countries, especially
in Southeast Asia.[4] Because of this, new endoperoxide-based compounds with the superior
on the longer haft-life are an interesting alternative to standard ACTs.[5] Recently, it was found
that the clinical candidate E209 and 0Z439 (Figure 1a and 1b), an analogue of tetraoxane and
trioxolane, respectively, exhibited nanomolar efficacy against multiple strains of P. falciparum

and P. vivax including the artemisinin-resistant strain.[6]

Primaquine, one of the 8-aminoquinoline a class of anti-malarial drug (PQ; Figure 1c), is
the only drug with the radical cure ability of P. vivax and P. ovale for relapsing malaria. It is
active against the temporary liver forms of all Plasmodium species. [7] However PQ has short
half-life because of rapid metabolism especially at position 5.[8] Importantly, bulletin of the world
health organization in 1981 reported that most of 5-phenoxy analogues without methyl group on
the quinoline ring were substantially less toxic than primaquine.[9] The highest therapeutic index
among the 8-aminoquinolines class belonged to a 5-phenoxy derivative.[10] Until 1982, Nodiff
et al. have synthesized various 5-phenoxy derivative of primaquine and screened the anti-
malarial activity in murine and monkey, the results confirmed that 5-phenoxy analogues are less
toxic than PQ, for example compounds A, B, and C (Figure 1d) have no toxic lethality at the
highest dose tested (640 mg/kg). The most active compounds against blood-stage parasite

were the ones that have substituents R, = 4-F and 3-CF,; however, the compound containing



both 4-F and 3-CF, substituents was found to be less active.[11] Moreover, the first successful
5-phenoxy derivative developed by the US Army programme name WR 238605 (Figure 1e),
well-known as tafenoquine, has a longer half-life than primaquine.[12] Up to date, there is no
report on the structure-activity relationship related to 5-phenoxy analogues of primaquine

despite a great opportunity to enhance bioactivity and half-life further.

To combat drug resistance problems instead of using multicomponent or cocktail
therapy, drugs conjugate designed for the incorporation of two biological molecules with
different mode of action into a single molecule leading to several advantages was introduced.
Drug conjugates can act by two different mechanisms or unique one by this PQ targeting of the
liver-stage parasite while endoperoxide is fast-acting against intra-erythrocytic asexual blood-
stage parasites.[13] In 2014, Miranda et al. synthesized drug conjugates between tetraoxane
and primaquine (Figure 1f) and showed that these conjugates could inhibit both blood and liver
stages of parasites.[14] Moreover, In 2018, Capela et al. reported that aryl or heteroaryl group
substituted at the metabolically labile C-5 position of the primaquine after hybridization with
endoperoxide moiety does not result in loss of both blood and liver stages anti-plasmodial
activity together with good metabolic stability.[15] Inspired by these works, we opted to study a
novel 5-phenoxy analogues of primaquine with various R groups on the phenoxy ring for anti-
malarial activities against P. falciparum in the blood stage parasite in order to gain the structure-
activity relationship (SAR). In this process, we will select the best analogue to conjugate with
the tetraoxane molecule to gain more insight into the mechanism of action of primaquine and
tetraoxane-based drugs. We surmise that these drug conjugates may exhibit a synergistic or
additional effect, leading to increased inhibitory activity against P. falciparum in an asexual
stage. In addition, they could be used as board activities against P. falciparum and P. vivax in

the future.
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Figure 1 (a) E209 analogue of tetraoxane; (b) Artefenomel (0Z349); (c) primaquine; (d) 5-

phenoxyprimaquine; (e) tafenoquine; (f) tetraoxane-primaquine conjugate.

2. Literature reviews
2.1 Malaria

Malaria is caused by the parasite Plasmodium which spread to people in 91 countries
worldwide including other vertebrates. There are more than 120 species of Plasmodium, but
human malaria is caused by only 5 species of parasite including P. falciparum, P. malariae, P.
ovale, P. vivax, and P. knowlesi. [16] The life cycle of malaria parasite involves two hosts (Figure
2). The transmission of this disease is started by the infectious sporozoites from the bite of
infected female Anopheles mosquitoes. These sporozoites travel into the human liver and
mature into schizonts which are ruptured to release merozoites. In this stage, some untreated
P. vivax and P. ovale persist in the liver for a long time without symptoms because asexual
replication does not immediately occur, but they can be reactivated resulting in relapsed
malaria. These merozoites further spread into blood circulation system for replication, and the
red blood cells (erythrocytes) developed to form ring stage, trophozoites as DNA synthesis.
These trophozoites further evolved into schizonts which divided into approximately 32
merozoites, [17] and it is released from the RBCs to enter the new replication cycle. In addition,
hemoglobin of the host cell is ingested by the parasite, amino acids and hemozoin toxin are
released, therefore, the human red blood cells broke, and as a result, the clinical symptoms are
observed. [18] Not only, asexual replication but also sexual replication occurs in the human

blood led to malaria transmission. Some of those trophozoites developed into female and male



gametocytes, which was the infective stage for mosquitoes, will evolve into mature gametocytes.
After mosquitoes fed human blood, those mature gametocytes developed into ookinetes,
oocysts, and sporozoites within the mosquito’s midgut. These sporozoites were released to
move into the mosquito’s salivary gland, and it readily started the new cycle led to the

transmission of malaria. [19]
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Figure 2 Life cycle of malaria parasites [16]

2.2 Anti-malarial drugs.

Currently, the WHO recommends artemisinin-based combination therapy (ACT) for the
treatment of uncomplicated P. falciparum malaria. The combination is between a potent
artemisinin derivative, which rapidly clears most parasites, and a drug from a different class,
which slowly eliminates remaining parasites.[20] For the first-line treatment, chloroquine plus
primaquine is generally used to cure P. vivax malaria in most regions. Moreover, the current

drugs from the other derivatives are classified into many classes (Figure 3).
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Figure 3 Chemical structure and classification of antimalarial drugs.[21]

Not only drug resistance but also the adverse effect of anti-malarial drugs is the problem

to eliminate malaria. The target/mode of action, indications, and adverse effects of the drugs

are clarified in Table 1.



Table 1 Target/mode of action, indications, and adverse effects of antimalarial drugs. [22]

Drug Target/Mode of Indications Adverse effects
Action
Quinine Fast-acting IV for cerebral malaria (or Cinchonism,
erythrocytic quinidine); childhood or tachycardia, sinus

schizonticide

pregnancy malaria
unresponsive to other agents

arrhythmias,
hypoglycemia

Chloroquine*

Fast-acting
erythrocytic
schizontocide (mild
gametocide)

Acute uncomplicated malaria;
pregnancy and childhood
malaria (note high resistance
rates)

Pruritis, nausea,
agitation (all
uncommon)

*

Amodiaquine

Fast-acting
erythrocytic
schizontocide (mild
gametocide)

Acute uncomplicated malaria;
prevention in travelers

Nausea, pruritus,
agranulocytosis, and
hepatotoxicity (long-

term use)

Mefloquine

Fast-acting
erythrocytic
schizontocide

Acute malaria; prevention in
travelers

Sleep disturbance,
nightmares, nausea,
rash, myalgias,
psychosis,
arrhythmias,
pneumonitis (rare)

Halofantrine

Fast-acting
erythrocytic
schizontocide

Acute malaria not responding
to other agents

Nausea, arrhythmias,
elevated
transaminases

Pyrimethamine

Fast-acting
erythrocytic
schizonticide (mild
tissue
schizontocide)

Acute malaria; pregnancy
malaria (usually with
sulfadoxine)

Nausea, headache,
mild anemia

Sulfadoxine Fast-acting Acute malaria; pregnancy Nausea, headache,
erythrocytic malaria (usually with mild anemia,
schizontocide pyrimethamine) hemolysis in G6PD
deficiency, severe
skin rashes (rare) —
sulfa drug
Doxycycline Slow-acting Acute malaria (with fast- Nausea,
erythrocytic acting agents); prevention in photosensitivity,

schizontocide

travelers

Esophagitis




Primaquine Tissue Infection with P. vivax or P. Nausea,
schizontocide; ovale; relapsing infection; low  methemoglobinemia
gametocidal risk of reinfection; prevention (self-limiting),
in travelers to high P. vivax hemolysis in G6PD
areas deficiency
Artemisinins Fast-acting General acute treatment; IV or Minimal; transient
erythrocytic rectal suppository for cerebral mild nystagmus or
schizontocide; malaria ataxia (self-limiting)
gametocidal
Lumefantrine Long-acting Acute treatment (only Headache, dizziness,
erythrocytic combined with artemether) in nausea

schizontocide

Africa

Dapsone

Fast-acting
erythrocytic
schizontocide

Acute treatment not
responding to other agents

Hemolytic anemia
(especially in GBPD
deficiency),
methemoglobinemia,
jaundice, nausea,
headache, insomnia,
psychosis,
neuropathy (rare)

Atovaquone

Fast-acting
erythrocytic
schizontocide

Acute uncomplicated malaria,
always given in combination
with proguanil

Nausea, mild
elevated
transaminases

Proguanil

Fast-acting
erythrocytic
schizonticide (mild
tissue
schizontocide)

Acute uncomplicated malaria,
always given in combination
with proguanil

Nausea, mild
elevated
transaminases

*Also anti-inflammatory and antipyretic. Note: use of single agents to treat acute malaria is

almost never a good idea. G6PD, glucose-6-phosphate dehydrogenase; IV, intravenously



2.3 Primaquine (PQ)

Primaquine has been used for more than 60 years for radical treatment of P. vivax and P.
ovale malaria. However, several cases involving severe haemolysis in malaria patients who are
deficient glucose-6-phosphate dehydrogenase (G6PD) has been reported, so the use of
primaquine are mainly limited, especially in South East Asia.[23] This problem affects over 350
million people globally.[24] Up to date, the mechanism of action of PQ has remained unclear.
In 2016, Marcsisin et al. proposed that PQ is activated by CYP 2D6, a hepatic cytochrome P450
enzyme in humans, to produce 5-hydroxyprimaquine as the active species (Figure 4). The by-
products such as H,0, and some reactive oxygen species (ROS) are produced by the redox

oxidation of the unstable 5-hydroxy primaquine to kill malaria parasites. [25]

NH2 J\/\/ J\/\/ J\/\/NHz

[O]
N CYP 2D6 Ny
metabolism
— Redox cyclmg — | NS
MeO MeO =
[H]

H,0, Production, Oxidation stress
Possible protien adduction
Parasite destruction

Figure 4 Proposed mechanism of primaquine CYP 2D6 metabolic activation and liver stage

antimalarial activity.[25]

2.4 5-Phenoxy derivatives of primaquine

The toxicity of primaquine was decreased by the 5-phenoxy groups (Table 2). The result
in P. berghei infected mice indicates that the toxic lethality was not produced at the highest
dose tested (640 mg/kg) except for compounds 1a, 1c, and 1j. For the demethylated derivatives
on quinoline ring, the structure contains only one substituent group at R, position on phenoxy
ring that either 3-CF, (1b) or 4-F (1n) exhibited the most active blood schizonticides. On the
other hand, the structure contains both of those groups (1i) was less active than single
substitution. However, the range of activity of the demethylated derivatives is not significantly
different. Moreover, blood schizonticidal activity of various 5-phenoxy primaquines was
dramatically increased by introduction of a methyl group on the pyridine ring especially in

position 4. [11]


https://www.sciencedirect.com/science/article/pii/S0163725816300195#!

Table 2 Blood schizonticidal anti-malarial activity (P. berghei, Mouse)[11]

cures (C), ° toxic deaths (T), ° or MST °

Comp R, R, dose 10 20 40 80 160 320 640

mg/kg mg/kg mg/kg mgkg mg/kg mg/kg mg/kg

PQ 4.0 5.0 9.4 2T 5T 5T
4-methylprimaquine 9.0 10.0 1T
1a 4-CH, H 8.7 4C 3C 4C 4C 3T 2T
1b H 3-CF, 0.5 1.3 4.1 7.1 13.5 5C
1c H 4-CF,0 -0.3 -0.3 -0.3 0.5 0.7 1T
1d H 4-CH,0 04 0.4 1.6 6.0 8.6 4C
1e H 2,4-Cl, 0.4 0.4 0.8 2.2 4.4 10.4
1f H 3,4-Cl, 1.2 0.8 0.4 6.0 1C 1C
19 H 3,5-(CF,), 0.7 0.3 0.3 1.5 6.3 7.9
1h 4-CH, 3,5-(CF,), = 4.3 3C 5C 4.6 5C 5C
1] H 4-F, 3-CF, -0.2 0.8 3.4 5C 12.2 2C
1] 3-CH, 4-F, 3-CF, 5.9 9.9 4C 4.6 4C 1T
1k 4-CH, 4-F, 3-CF, 1C 1C 5C 5C 5C 5C 5C
10° H H 0.3 1.5 1.7 5.1 7.5 2C
1m° H 4-Cl 0.7 4.7 5.5 7.1 8.1 2C
1n° H 4-F 2.1 5.7 7.5 8.9 5C 5C

Tests were carried out by the Rane Laboratory, University of Miami, FL, using blood-
induced, P. berghei infected mice (five animals per group) °the number of mice surviving at 60
days postinfection. “Deaths prior to the 6" day. “Increase in mean survival time over controls; a
compound is considered active if MST of the treated group is more than twice that of the control

group (MST of control group, 6.1 days). “These data, reported earlier.[10]
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2.5 Tafenoquine (TQ)

Recently, tafenoquine (Figure 1 e), a phenoxy analogue of primaquine, is now approved
by the US FDA and Australian TGA in 2018. According to the report of medicines for malaria
venture (MMV), the half-life of tafenoquine is 14-28 days which are longer than that of
primaquine (4-6 hours),[26] thus allowing single-dose treatment and providing radical cure
ability to prevent relapsing malaria in liver-stage malaria occurring from P. vivax and P.
ovale.[27]In addition, Brueckner et al concluded that tafenoquine is more potent and less toxic
than primaquine by the study both in vitro and in vivo using animal models. Moreover, a safe,
well-tolerated, and highly effective oral chemoprophylactic agent of tafenoquine were confirmed
by phase |, I, and lll clinical trials studies.[28] Therefore, the presence of 5-phenoxy group may

have some effect on anti-malarial activity.

2.6 Artemisinin-based antimalarial drug

Artemisinin (ART), a sesquiterpene lactone from the natural product, was isolated from
Artemisia annua which is a traditional Chinese herbal plant for malarial therapy. The very high
potency of them to inhibit the parasite growth especially the chloroquine-resistant P. falciparum
strain was reported. The endoperoxide bridge has been reported to be an important part of the
antimalarial activity. Their bond was reduced by the ferrous iron resulted in cytotoxic carbon-
centered radicals. The essential macromolecules of malarial parasite was alkylated by these
radicals, leading to parasite’s death. However, the low solubility in water or oil, poor
bioavailability, and a short half-life in vivo (~2.5 h) are pharmacokinetically limited of the natural
ART. Therefore, the semi-synthetic derivatives were synthesized to maintain the antimalarial
property to overcome those problems by modifications at position C10 on their structure to
improve the drug solubility (Figure 5) lead to the dihydroartemisinin (DHA), artemether (ATM),
arteether (AE), and artesunate (ATS). Although the series of the semi-synthetic derivatives were
used for the treatment of asexual blood stages of falciparum malaria, but the elimination half-

life in vivo has been concerned. [29]
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Artemisinin Dihydroartemisinin Artemether Arteether Artesunate
(ART) (DHA) (ATM) (AE) (ATS)
Figure 5 Chemical structure of artemisinin (ART), dihydroartemisinin (DHA), artemether (ATM),

artesunate (ATS)

The 1,2,4-trioxolane derivative named arterolane (0Z277) was firstly synthesized and
designed to overcome limitations associated with the artemisinin. The fast acting and
comparable activity to the artemisinin were found. In addition, it was found that oral dosing was
highly effective against various P. falciparum strains and it was then approved for combination
with piperaquine in India.[30] However, the clinical study revealed that the elimination half-life
was increased only threefold compare to DHA. Later, artefenomel (0Z439) was discovered
(Figure 6). The elimination half-life in a human was increased according to the result of phase |
and |l clinical studies. As a result, it was used for the oral single dose to cure uncomplicated
malaria by combination with another effective partner drug including piperaquine and
ferroquine. These combinations are known as ART-based combination therapies (ACTs) which
is currently recommended treatment for multidrug-resistant P. falciparum malaria by WHO.
Unfortunately, the resistance to ACTs of P. falciparum has been reported especially in Southeast

Asia and many parts of the world. [31]

o H ¥, S

0z439
Artefenomel

02277
Arterolane

Figure 6 Chemical structure of arterolane (0Z277) and artefenomel (0Z439)
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2.7 The development of E209, an analog of tetraoxane

E209, a second-generation of peroxide based drug, is fully synthetic drug containing
1,2,4,5-tetraoxacyclohexane. Achiral and the endoperoxide bond of the tetraoxane were more
stable and longer in vivo half-lives than analog of 1,2,4-trioxolane. Symmetrical dispiro-1,2,4,5-
tetroxane (Figure 7i-7iii) was synthesized, and their curative activities against P. berghei in vivo
were evaluated. Especially, 7iii had IC,, against P. falciparum comparable to artemisinin.

Therefore, the potential of dispiro-1,2,4,5-tetraoxanes were confirmed by these results.[32]

750 OO OO

Figure 7 Dispiro-1,2,4,5-tetraoxanes

Importantly, it was found that the rapid degradation /in vivo was prevented by the a-methyl
substituents of this active compound. As a result, the high concentration of the drug reached to
its site of action. Previously, the development of 1,2,4,5-tetraoxanes as drug candidates was
studied by the O’Neill group [33]. A cyclohexyl group was replaced by a spiro adamantyl group,
therefore the activity improved. Then, the RKA182 was successfully designed and synthesized
as a good candidate for drug development. It was reached to the pre-clinical development. The
presence of amide linkage in RKA182 caused a problem during metabolism due to its reactivity.
Therefore, a series of the second-generation derivatives of RKA182 was designed to eliminate

the amide linkage and enhance metabolic stability.[34, 35] (Figure 8)

0-0 0-0
/N Y
0-0 N N N-CH,
\_/ 0-0 -

RKA 182 £209

Figure 8 Structure of RKA 182 and E209
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Recently, the anti-malarial property of E209, a new tetraoxane antimalarial drug candidate,
was studied. The optimization of aryl-substituted side chains has been studied. An estimated
half-life of E209 was 24-30 hours which higher than the artemisinin that have half-lives of 1-2
hours. Interestingly, the efficacy in vitro (mean IC range 2.9-14.0 nM) against a panel of 10

sensitive and multidrug-resistant P. falciparum parasite of E209 has been reported.[6]

2.8 Drug hybrid

The hybrid molecule contains the pharmacophores for each target that are separated by
the metabolically stable linker, whereas the cleavage hybrid is designed to release the two
drugs for interaction independently with each target. These strategies are developed for solving
the limitations of drug resistance, pharmacokinetics, and pharmacokinetics that occurred from

the individual components.[36]

2.8.1 artemisinin-quinine hybrid

The artemisinin-quinine was hybridized by the ester-linker (Figure 9i). Artemisinin, lipophilic
and fast-acting but quickly eliminated drugs that are associated with high rates of
recrudescence when used in monotherapy, was coupled by quinine; slow-acting and polar
compound. It was found that the activity of this hybrid was superior to quinine alone, artemisinin
alone, and about 3-fold to a 1:1 mixture of the two. This hybrid may be cleavage at the metabolic
lability of the ester linkage to form dihydroartemisinin which was more active than artemisinin
itself. Since each component has independent mechanisms of action, so the resistance of these

hybrid should not occur. [37]

MeO

Figure 9 Artemisinin-quinine hybrid
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2.8.2 cleavable and non-cleavable hybrids based on artemisinin and mefloquine.

The cleavable of diester (Figure 10i) and non-cleavable of C-N linkages (Figure 10ii) were
studied. The activity of the cleavable hybrid was comparable to that of artemether and of the
trifluoromethyl artemisinin derivative used in the synthesis and superior to that of mefloquine

whereas the non-cleavable hybrid was ~2-4-fold less active than the cleavable one.[38]

CF3

Figure 10 Cleavable and non-cleavable hybrids based on artemisinin and mefloquine i and ii.

2.8.3 Artemisinin-primaquine hybrid and tetraoxane-primaquine hybrids
All synthesized hybrids had activity against both blood and liver forms of malaria parasites.
Interestingly, all hybrids had activity against the chloroquine-resistant P. falciparum W2 strain

that was superior to primaquine alone about 100-fold. (Figure 11i-11iv)[14]

Blood-stage

N\ 7 HM
1] N NH
MeO 0-0 0 Ng
i =
MeO
IC50(blood-stage) = 8.2 nM IC50(blood-stage) = 3300 nM ICso(blood-stage) = 21.1 nM
ICsq(liver-stage) = NA ICsq(liver-stage) = 7500 nM Iéoso(liver-stage) - 53;3 M
PQ + ART (1:1) ' MeO Z
ICso(blood-stage) = NA ORISR SRR !

ICs0(blood-stage) = 12.5 nM
ICsq(liver-stage) = 155 nM

QO OUON 3, DO 1

ICs(liver-stage) = 9714 nM

i MeO iv
IC50(blood-stage) = 45.2 nM IC50(blood-stage) = 36.5 nM IC5o(blood-stage) = 21.6 nM
ICsq(liver-stage) = >1000 nM ICsp(liver-stage) = 604 nM IC5p(liver-stage) = 330 nM

*Blood stage was determined against the chloroquine-resistant P. falciparum W2 strain

whereas liver stage was determined against P. berghei; NA, not active (>10 LM).
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Figure 11 Artemisinin-primaquine hybrid and tetraoxane-primaquine hybrids
3. Objectives
3.1 To synthesize and characterize novel 5-phenoxy analogues of primaquine by varying
R group on the phenoxy ring.
3.2 To investigate the anti-malarial activities of the synthesized analogue against P.
falciparum in order to gain the knowledge of the structure-activity relationship (SAR)
3.3 To develop the hybrid molecule based on the best 5-phenoxy analogue with a partner

drug tetraoxane and investigate its anti-malarial activity.

4. Scope of research

4.1 Synthesize and characterize 5-phenoxy analogues of primaquine with various R group
at para- position on phenoxy ring.

4.2 Investigate the bioactivity and cytotoxicity of the synthesized compound against P.
falciparum.

4.3 Synthesize 5-phenoxyprimaquine-tetraoxane conjugates and investigate the anti-

malarial activity of the conjugated drug.

5. Beneficial outcome
Three new (R = CN, CONH,, CF,) and five known (R = H, OMe, ClI, Br, F) analogs of
primaquine, along with one new 5-phenoxy primaquine-tetraoxane conjugated with improved

blood-stage malarial activities.
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CHAPTER Il EXPERIMENTS

The methodology of this project is divided into four major steps; as shown in Figure 12, the
first, 5-phenoxy analogues with various R group on the phenoxy ring were synthesized. Second,
the biological activity of the synthesized analogues against P. falciparum in an asexual stage
was evaluated and the cytotoxicity of these analogues was also determined, then the most
potent compound was further developed for conjugation with tetraoxane molecule, following by

studying the anti-malarial activity of the conjugated molecule.

Step 1
J\/\/ Step 2
HN NH,
AN N1\ ) Biological evaluation
against P. falciparum The mi
5 » { s > ie most
MeO~ 37 4a A3 and their cytotoxicity e
o potent-analog
1
3R1 SAR study
6 4
5
R4= 4-H, 4-OMe, 4-Br, 4-Cl,
4-F, 4-CF3, 4-CN, 4-CONH, l
Step 3

5-Phenoxyprimaquine molecule
Step 4 /—}%
J\/\/NH 0-0

Biological evaluation HN \/\/\O_<;>_<:>< >®>
against P. falciparum .4 Ny N 0-0 Y
and their cytotoxicity _ '

MeO
o tetraoxane molucule
O

5-Phenoxyprimaquine-
tatraoxane conjugated

Figure 12 An overview of the research methodology.

1. Chemistry
1.1 Experimental procedure for the synthesis

All reagents and solvents were obtained from Sigma-Aldrich (St. Louis, MO, USA), TCI
chemicals (Tokyo, Japan), Fluorochem (Hadfield, Derbyshire, UK) and Merck (Darmstadt,
Germany). All solvents for column chromatography from RCI Labscan (Samutsakorn, Thailand)
were distilled before use. Reactions were monitored by thin-layer chromatography (TLC) using

aluminium Merck TLC plates coated with silica gel 60 F,,. Normal phase column
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chromatography was performed using silica gel 60 (0.063-0.200 mm, 70-230 mesh ASTM,
Merck, Darmstadt, Germany). Proton, carbon, and proton decoupled fluorine nuclear magnetic
resonance ('H, °C, and "F{'"H} NMR) spectra were recorded on a Bruker Advance (l11) 400WB
spectrometer and JEOL JNM-ECZ500/S1 (500 MHz). Chemical shifts were expressed in parts
per million (ppm), J values were in Hertz (Hz). High-resolution mass spectra (HRMS) were
obtained with a micrOTOF-Q Il mass spectrometer (Bruker Daltonics) with electrospray

jonization.

1.2 Synthesis and characterization analogues of primaquine in position 5

Seven derivatives of 5-phenoxy primaquine (7a-7g) were synthesized over 6 steps,
including oxidation, nucleophilic aromatic substitution, reduction, N-alkylation, reductive
amination, and deprotection, along with one amide derivative (7h) which hydrolyzed from the

cyanine derivative.

1.2.1 General procedures

1.2.1.1 General procedure A

NO, HO
Ny N\
=
MeO Z L|OH H,O
Cl DMSO, 100 °C
4 hr
2 3a-3g

Compounds 3a-3g were synthesized using a modified procedure.[39] A solution of 2 in
DMSO in a round bottom flask was stirred at room temperature for 15 minutes. Then a solution
of phenol (1.0 equiv.) and LiOH-H,O (1.0 equiv.) in DMSO was added dropwise into a solution
of starting material. After complete addition, the reaction mixture was stirred at 100 °C for 4
hours and monitored by TLC. The reaction was quenched with water, extracted with DCM 3
times and 10% NaOH 3 times. The combined organic layers were washed with brine, dried over
anhydrous MgSQ,, filtered, and concentrated to give the crude product. The crude product was
further purified by column chromatography (eluent: EtOAc:hexanes = 1:9 to 1:4) on silica gel

to afford the product.
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1.2.1.2 General procedure B
NO, N

Hz

N N
= Sn powder =
= > =

MeO HCl, EtoH  MeO
(0] Cooled-->rt O
\©\ 30 min \©\
R R

3a-3g 4a-4g

Compounds 4a-4g were synthesized using a modified procedure.[40] A solution of the
appropriate 5-hydroxy-8-nitroquinoline analogue 3a-3g (1.0 equiv.) and absolute ethanol in a
round bottom flask was slowly added 12M HCI at 0 °C to prevent an exothermic reaction. Then
Sn powder (10.0 equiv.) was added into the reaction. The reaction mixture was then allowed to
stir at room temperature for 30 minutes and monitored by TLC. After the reaction was complete,
the reaction mixture was quenched with 12M NaOH until the solution becomes neutral (pH = 7).
The resulting mixture was filtered through glass Buchner filter funnel, the filtrate was then
extracted with EtOAc. The combined organic layers were washed with water, dried over
anhydrous MgSQ,, filtered, and concentrated to give the crude product. The crude product was

used without further purification.

1.2.1.3 General procedure C

5 o

MeO NaBH3CN, AcOH MeO

dry. MeOH, O/N, rt 0

o
gi}\/Z
P
Q\/

4a-4g 6a-6g

Compounds 6a-6g were synthesized using a modified procedure.[41] A solution of the
appropriate 5-hydroxy-8-aminoquinoline analogue 4a-4g (1.0 equiv.) and 5 (5.0 equiv.) were
dissolved in anhydrous MeOH in a dry round bottom flask. Then, acetic acid was added into
the reaction mixture. After stirring for 2 hours, the mixture was added NaBH,CN (2.0 equiv.). The
solution was then allowed to stir at room temperature overnight and monitored by TLC. The
mixture was diluted with EtOAc, washed with water and brine. The combined organic layers

were dried over MgSO,, filtered, and concentrated under reduced pressure. The crude product
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was further purified by column chromatography (eluent: EtOAc:hexanes = 1:9 to 1:4) on silica

gel to afford the product.

1.2.1.4 General procedure D

(0]
J\/\/N
HN HN

NH,

1

AN O NH,NHyH,0 N
MeO F EtOH, reflux MeO Z
1 hr
L RSN
R R
6a-6h 7a-7h

Compounds 7a-7h were synthesized using a modified procedure.[42] Compound 6a-6h
(1.0 equiv.) was dissolved EtOH in a round bottom flask. Hydrazine monohydrate (5.0 equiv.)
was added into a solution and the mixture was heated at refluxed for 1 hour. A solid precipitate
was observed. Then, the solution was cooled to room temperature and filtered by cotton. The
filtrate was concentrated to give the crude product as a viscous oil. The crude product was

purified by column chromatography (eluent: 5% to 50% MeOH:CH,CI,) on silica gel.

1.2.2 Synthesis of 5-chloro-6-methoxy-8-nitroquinoline (2)

Cl
T
NO, o=A<=0 NO,
N <7 N
N A
= =
MeO anhydrous DMF MeO
Cl
2

The title compound was synthesized using a modified procedure.[43] A solution of 6-
methoxy-8-nitroquinoline (8.1 g, 40 mmol, 1.0 equiv.) in anhydrous DMF (10 mL) in a dry round
bottom flask was purged with nitrogen gas, then the solution was heated at 60 °C. N-
chlorosuccinimide (8.0 g, 60 mmol, 1.5 equiv.) was added in portionwise (3 times) into the
solution. Next, the reaction mixture was stirred at 60 °C for 3 hours and monitored by TLC. After
the reaction was complete, the reaction mixture was allowed cooling to room temperature,
extracted with DCM, and washed with water. The combined organic layers were dried over
anhydrous MgSO,, concentrated to give the crude product which was used without further

purification.
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"H NMR (500 MHz, CDCl,) 6 8.99 (dd, J = 4.1, 1.4 Hz, 1H, ArH), 8.62 (dd, J = 8.7, 1.6 Hz, 1H,
ArH), 7.90 (s, 1H, ArH), 7.61 (dd, J = 8.7, 4.1 Hz, 1H, ArH), 4.11 (s, 3H, OMe); °C NMR (101
MHz, CDCl,) & 151.7, 151.0, 147.1, 135.2, 132.2, 127.9, 123.6, 120.6, 111.4, 57 4. 'H data is

consistent with the literature values.[44]

1.2.3 Synthesis of 2-(4-oxopentyl)isoindoline-1,3-dione (5)

(@] 0 o
)J\/\/Cl Q
NK )J\/\/N
S K,CO3, DMF 5
5

The title compound was synthesized using a modified procedure.[45] A solution of
potassium phthalimide (4.6 g, 25 mmol, 1.0 equiv.) in anhydrous DMF (25 ml) in a dried round
bottom flask was added potassium carbonate (6.9 g, 50 mmol, 2.0 equiv.). The reaction mixture
was allowed to stir at room temperature for 30 minutes. Then, 5-chloro-2-pentanone (7.2 (L,
62.5 mmol, 2.5 equiv.) was added and stirring at 100 °C. After the reaction is complete, the

reaction mixture was quenched with ice water. The title compound was collected by filtration.

"H NMR (400 MHz, DMSO-d6) 6 6.97 (dq, J = 6.2, 4.8 Hz, 4H, ArH), 2.67 (t, J = 6.8 Hz, 2H,
CH,N), 1.61 (t, J= 7.1 Hz, 2H, CH,CO), 1.17 (s, 3H, CH,CO), 0.89 (q, J = 6.9 Hz, 2H, CH,CH,);
®C NMR (126 MHz, DMSO-d6) 6 208.2, 168.6 (2C), 134.8 (2C), 132.2 (2C), 123.5 (2C), 40.3,

37.3,30.2, 22.6. 'H and "°C data are consistent with the literature values.[46]
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1.2.4 Synthesis and characterization of 5-phenoxy primaquine derivatives

1.2.4.1 Synthesis of N'-(6-methoxy-5-phenoxyquinolin-8-yl)pentane-1,4-diamine (7a)

NH
HN 2

MeO

OGe

The title compound was synthesized following General procedure A using 2 (715.9 mg, 3
mmol), phenol (282.3 mg, 3 mmol) and LiOH-H,O (126 mg, 3 mmol) in DMSO (5 ml) to give 6-
methoxy-8-nitro-5-phenoxyquinoline (3a) as a yellow solid (661 mg, 2.23 mmol, 74% vyield).
Next, 3a (450.0 mg, 1.52 mmol) was subjected to General procedure B using Sn powder (1.8
g, 15.2 mmol), and 12M HCI (10 ml) in EtOH (10 ml) to give 6-methoxy-5-phenoxyquinolin-8-
amine (4a) as a brown viscous oil (379 mg, 1.423 mmol, 94% vyield). A mixture of 4a (74 mg,
0.28 mmol) and 5 (323 mg, 1.12 mmol) were subjected to General procedure C using CH,COOH
(8 pL, 0.14 mmol), NaBH,CN (13.0 mg, 0.2 mmol), and anhydrous MeOH (2.5 ml) to give 2-(4-
((6-methoxy-5-phenoxyquinolin-8-yl)amino)pentyl)isoindoline-1,3-dione (6a) as a yellow oil (75
mg, 0.16 mmol, 57% yield). Finally, 6a (51 mg, 0.1 mmol) was subjected to General procedure
D using hydrazine monohydrate (28 uL, 0.57 mmol), and EtOH (500 uL) to give the title product
7a as yellow oil (33 mg, 0.09 mmol, 94% yield).

"H NMR (500 MHz, CDCl,) 6 8.56 (dd, J = 4.1, 1.0 Hz, 1H, ArH), 8.07 (dd, J = 8.4, 1.2 Hz, 1H,
ArH), 7.31=7.24 (m, 3H, ArH), 6.99 (td, J = 7.4, 0.7 Hz, 1H, ArH), 6.90 (d, J = 8.6 Hz, 2H, ArH),
6.49 (s, TH, ArH), 6.10 (s, 1H, NH), 3.93 (s, 3H, OCH,), 3.72 (s, 1H, CH), 2.85 (t, J = 6.7 Hz, 2H,
CH,), 1.84—1.65 (m, 4H, CH,), 1.37 (d, J = 6.3 Hz, 3H, CH,); °C NMR (126 MHz, CDCl,) §159.5,
150.5, 144.9, 143.1, 133.8, 129.9, 129.6, 124.7, 124.5, 122.1, 1215, 115.0, 93.7, 57.1, 48.2,
41.6, 34.2, 28.9, 20.7; HRMS (ESI"): m/z calcd for C,H,N,0," [M+H]" 352.2020, found

352.2052.
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1.2.4.2 Synthesis of N*-(6-methoxy-5-(4-methoxyphenoxy)quinolin-8-yl)pentane-1,4-diamine
(7b)

NH
HN 2

\/Z§7

MeO

L
OMe

The title compound was synthesized following General procedure A using 2 (715.9 mg, 3
mmol), 4-methoxyphenol (372.4 mg, 3 mmol) and LiOH-H,0 (125.8 mg, 3 mmol) in DMSO (5
ml) to give 6-methoxy-5-(4-methoxyphenoxy)-8-nitroquinoline (3b) as a brown solid (809 mg,
2.48 mmol, 83% vyield). Next, 3b (620.0 mg, 1.90 mmol) was subjected to General procedure B
using Sn powder (2.2 g, 19.0 mmol), and 12M HCI (15 ml) in EtOH (15 ml) to give 6-methoxy-5-
(4 methoxyphenoxy)-8-aminoquinoline (4b) as a green solid (248 mg, 0.84 mmol, 44% vyield). A
mixture of 4b (88 mg, 0.30 mmol) and 5 (346.8 mg, 1.50 mmol) were subjected to General
procedure C using CH,COOH (8 pL, 0.15 mmol), NaBH,CN (16.0 mg, 0.3 mmol), and anhydrous
MeOH (2.5 ml) to give 2-(4-((6-methoxy-5-(4-methoxyphenoxy)quinolin-8yl)amino) pentyl)
isoindoline-1,3-dione (6b) as a yellow oil (563 mg, 0.10 mmol, 35% yield). Finally, 6b (53 mg, 0.1
mmol) was subjected to General procedure D using hydrazine monohydrate (26 pL, 0.52 mmol),

and EtOH (500 L) to give the title product 7b as yellow oil (41 mg, 0.10 mmol, 100% yield).

"H NMR (500 MHz, CDCl,) 6 8.53 (dd, J = 4.1, 1.6 Hz, 1H, ArH), 8.05 (dd, J = 8.4, 1.5 Hz, 1H,
ArH), 7.25 (dd, J = 8.5, 4.1 Hz, 1H, ArH), 6.78 (g, J = 9.3 Hz, 4H, ArH), 6.44 (s, 1H, ArH), 6.05
(s, TH, NH), 3.90 (s, 3H, OCH,), 3.73 (s, 3H, OCH,), 3.68 (dd, J = 11.9, 5.9 Hz, 1H, CH), 2.79 (t,
J=6.8Hz, 2H, NH,), 1.82 — 1.61 (m, 4H, NH,), 1.34 (d, J = 6.3 Hz, 3H, CH,); *C NMR (126
MHz, CDCl,) §154.3, 1563.6, 150.6, 144.9, 143.0, 133.9, 129.9, 125.1, 124.8, 122.0, 115.6 (2C),
114.7 (2C), 93.8,57.2,55.8,48.2,41.7,34.2,29.1,20.7; HRMS (ESI"): m/z calcd for CH,,N.,O."

220728 "33

[M+H]" 382.2125, found 382.2161.
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1.2.4.3 Synthesis of N*-(5-(4-bromophenoxy)-6-methoxyquinolin-8-yl) pentane-1,4-diamine(7c)

NH
HNJ\/\/ 2

MeO

S8

Br
The title compound was synthesized following General procedure A using 2 (715.9 mg, 3

mmol), 4-bromophenol (519.0 mg, 3 mmol) and LiOH-H,O (126.0 mg, 3 mmol) in DMSO (5 ml)
to give 6-methoxy-5-(4-bromophenoxy)-8-nitroquinoline (3c) as a brown solid (1.1 g, 2.93 mmol,
98% yield). Subsequently, NO, group was reduced to NH, using a modified procedure from
Bioorg. Med. Chem. 2016, 24, 1790. [47] A solution of 3¢ (638.0 mg, 1.7 mmol, 1.0 equiv.) was
dissolved EtOH (20 mL) in a round bottom flask. Next, 10% Pd on carbon (63 mg, 0.6 mmol, 1.0
equiv.) was added into the solution. The reaction mixture was then allowed to stir at room
temperature under H, and monitored by TLC. After the reaction is complete, The Pd was filtered
out through glass Buchner filter funnel, the filtrate was then extracted with EtOAc. The combined
organic layers were washed with water, dried over anhydrous MgSQO,, filtered, and concentrated
to give the crude product. The crude product was used without further purification to give 5-(4-
bromophenoxy)-6-methoxyquinolin-8-amine (4c) as a yellow soild (117 mg, 0.34 mmol, 20%
yield). A mixture of 4c (69 mg, 0.20 mmol) and 5 (231 mg, 1.00 mmol) were subjected to General
procedure C using CH,COOH (5 pL, 0.10 mmol), NaBH,CN (10.0 mg, 0.2 mmol), and anhydrous
MeOH (1.5 ml) to give 2-(4-((5-(4-bromophenoxy)-6-methoxyquinolin-8yl)amino)pentyl)
hexahydro-1H-isoindole-1,3(2H)-dione (6¢c) as a yellow oil (88 mg, 0.16 mmol, 80% vyield).
Finally, 6¢c (67 mg, 0.12 mmol) was subjected to General procedure D using hydrazine
monohydrate (30 uL, 0.62 mmol), and EtOH (600 uL) to give the title product 7¢ as yellow oil
(28 mg, 0.07 mmol, 54% yield).

"H NMR (500 MHz, CDCl,) § 8.54 (s, 1H, ArH), 7.98 (d, J = 8.0 Hz, 1H, ArH), 7.37 — 7.22 (m, 3H,
ArH), 6.75 (d, J = 8.7 Hz, 2H, ArH), 6.43 (s, 1H, ArH), 6.11 (s, 1H, ArH), 3.89 (s, 3H, OCH.,), 3.68
(s, 1H, CH), 2.78 (s, 2H, CH,), 1.86 — 1.52 (m, 4H, CH), 1.35 (d, J = 5.9 Hz, 3H, CH,); °C NMR
(126 MHz, CDCl,) § 158.7, 150.4, 144.9, 143.4, 133.7, 132.4 (2C), 129.5, 124.4, 124.0, 122.2,
116.8 (2C), 113.7, 93.2, 56.9, 48.2, 42.1, 34.2, 30.0, 20.7; HRMS (ESI): m/z calcd for
C,,H,.BrN,O," [M+H]" 430.1125, found 430.1148.

217 26
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1.2.4.4 Synthesis of N*-(6-methoxy-5-(4-chlorophenoxy)quinolin-8-yl)pentane-1,4-diamine (7d)

J\/\/NH
HN 2
N
AN
=

MeO

Q.

The title compound was synthesized following General procedure A using 2 (715.9 mg, 3
mmol), 4-chlorophenol (386.0 mg, 3 mmol) and LiOH-H,O (125.8 mg, 3 mmol) in DMSO (5 ml)
to give 6-methoxy-5-(4-chlorophenoxy)-8-nitroquinoline (3d) as a yellow solid (509 mg, 1.54
mmol, 51% yield). Next, 3d (463.0 mg, 1.40 mmol) was subjected to General procedure B using
Sn powder (1.6 g, 14.0 mmol), and 12M HCI (11 ml) in EtOH (11 ml) to give 6-methoxy-5-(4-
chlorophenoxy)-8-aminoquinoline (4d) as a green viscous oil (420 mg, 1.40 mmol, 100% yield).
A mixture of 4d (75 mg, 0.25 mmol) and 5 (289.0 mg, 1.25 mmol) were subjected to General
procedure C using CH,COOH (7 pL, 0.125 mmol), NaBH,CN (16.0 mg, 0.25 mmol), and
anhydrous MeOH (1.5 ml) to give 2-(4-((6-methoxy-5-(4-chlorophenoxy)quinolin-8yl)amino)
pentyl)isoindoline-1,3-dione (6d) as a yellow viscous oil (57 mg, 0.11 mmol, 44% yield). Finally,
6d (56 mg, 0.11 mmol) was subjected to General procedure D using hydrazine monohydrate
(29 L, 0.57 mmol), and EtOH (700 uL) to give the title product 7d as yellow oil (29 mg, 0.075
mmol, 68% vyield).

"H NMR (500 MHz, CDCl,) & 8.54 (dd, J = 4.2, 1.6 Hz, 1H, ArH), 7.99 (dd, J = 8.5, 1.6 Hz, 1H,
ArH), 7.30 - 7.25 (m, 1H, ArH), 7.17 (d, J = 9.0 Hz, 2H, ArH), 6.80 (d, J = 9.0 Hz, 2H, ArH), 6.43
(s, TH, ArH), 3.89 (s, 3H, OCH,), 3.69 (dd, J = 11.8, 5.8 Hz, 1H, CH), 2.79 (t, J = 6.1 Hz, 2H,
CH,), 1.80 — 1.56 (m, 4H, CH,), 1.35 (d, J = 6.3 Hz, 3H, CH,); °C NMR (126 MHz, CDCl,) &
158.1, 150.4, 144.9, 143.3, 133.7, 129.6, 129.4 (2C), 126.4, 124.5, 124.2, 122.2, 116.3 (2C),
93.3,57.0, 48.1, 41.4, 34.1, 20.7; HRMS (ESI"): m/z calcd for C,,H,.CIN,O," [M+H]" 386.1630,
found 386.1666.
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1.2.4.5 Synthesis of 4-((8-((5-aminopentan-2-yl)amino)-6-methoxyquinolin-5-yl)oxy)benzonitrile
(7e)

MeO

58

CN

The title compound was synthesized following General procedure A using 2 (1.4 g, 6
mmol), 4-hydroxybenzonitrile (714.0 mg, 6 mmol) and LiOH-H,O (252.0 mg, 6 mmol) in DMSO
(10 ml) to give 4-((6-methoxy-8-nitroquinolin-5-yl)oxy)benzonitrile (3e) as a yellow solid (1.9 g,
5.91 mmol, 98% vyield). Next, 3e (358.0 mg, 1.1 mmol) was subjected to General procedure B
using Sn powder (1.3 g, 11.0 mmol), and 12M HCI (8 ml) in EtOH (8 ml) to give 4-((8-amino-6-
methoxyquinolin-5-yl)oxy)benzonitrile (4e) as a black viscous oil (367 mg, 1.26 mmol, 100%
yield). A mixture of 4e (70 mg, 0.24 mmol) and 5 (56.0 mg, 0.24 mmol) were subjected to
General procedure C using CH,COOH (40 pL, 0.72 mmol), NaBH,CN (15.0 mg, 0.24 mmol),
and anhydrous MeOH (2.0 ml) to give 4-((8-((5-(1,3-dioxoisoindolin-2-yl)pentan-2-yl)Jamino)-6-
methoxyquinolin-5-yl)oxy)benzonitrile (6e) as a yellow viscous oil (54 mg, 0.10 mmol, 44% yield).
Finally, 6e (30 mg, 0.06 mmol) was subjected to General procedure D using hydrazine
monohydrate (30 uL, 0.6 mmol), and EtOH (500 uL) to give the title product 7e as yellow oil (26
mg, 0.06 mmol, 100% vyield).

'H NMR (500 MHz, CDCL,) § 8.56 (dd, J = 4.2, 1.4 Hz, 1H, ArH), 7.93 (dd, J = 8.5, 1.5 Hz, 1H,
ArH), 7.53 (d, J = 8.7 Hz, 2H, ArH), 7.30 (dd, J = 8.5, 4.1 Hz, 1H, ArH), 6.93 (d, J = 8.7 Hz, 2H,
ArH), 6.42 (s, 1H, ArH), 6.17 (brs, 1H, NH), 3.88 (s, 3H, OCH,), 3.69 (s, 1H, CH), 2.79 (t, J = 6.8
Hz, 2H, CH,NH ), 1.82 — 1.57 (m, 4H, CH,CH,), 1.35 (d, J = 6.3 Hz, 3H, CH,); °C NMR (126
MHz, CDCl,) § 162.9, 150.3, 145.0, 143.8, 134.2 (2C), 133.5, 129.1, 124.1, 123.0, 122.5, 119.2,
115.9 (2C), 105.0, 92.5, 56.8, 48.2, 42.1, 34.2, 29.9, 20.7; HRMS (ESI'): m/z calcd for
C,,H,.N,0," [M+H]" 377.1972, found 377.1978.
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1.2.4.6 Synthesis of N*-(5-(4-fluorophenoxy)-6-methoxyquinolin-8-yl) pentane-1,4-diamine (7f)

NH
HN 2

MeO

8%

The title compound was synthesized following General procedure A using 2 (716.0 mg, 3
mmol), 4-fluorophenol (336.0 mg, 3 mmol) and LiOH-H,O (126.0 mg, 3 mmol) in DMSO (5 ml)
to give 5-(4-fluorophenoxy)-6-methoxy-8-nitroquinoline (3f) as a yellow solid (1.0 g, 3.18 mmol,
100% vyield). Next, 3f (628.5 mg, 2.0 mmol) was subjected to General procedure B using Sn
powder (2.4 g, 20.0 mmol), and 12M HCI (14 ml) in EtOH (14 ml) to give 5-(4-fluorophenoxy)-6-
methoxyquinolin-8-amine (4f) as a black viscous oil (400 mg, 1.41 mmol, 70% yield). A mixture
of 4f (79.5 mg, 0.28 mmol) and 5 (64.7 mg, 0.28 mmol) were subjected to General procedure C
using CH,COOH (32 pL, 0.56 mmol), NaBH,CN (52.5 mg, 0.84 mmol), and anhydrous MeOH
(2.0 ml) to give 2-(4-((5-(4-fluorophenoxy)-6-methoxyquinolin-8-yl)amino) pentyl)isoindoline-1,3-
dione (6f) as a yellow viscous oil (47 mg, 0.094 mmol, 34% yield). Finally, 6f (35 mg, 0.07 mmol)
was subjected to General procedure D using hydrazine monohydrate (20 pL, 0.42 mmol), and

EtOH (1ml) to give the title product 7f as yellow oil (27 mg, 0.07 mmol, 100% vyield).

"H NMR (500 MHz, CDCL,) & 8.51 (d, J = 4.0 Hz, 1H, ArH), 8.01 (d, J = 8.4 Hz, 1H, ArH), 7.25
(dd, J = 7.7, 3.2 Hz, 1H, ArH), 6.90 (t, J = 8.6 Hz, 2H, ArH), 6.79 (dd, J = 9.0, 4.2 Hz, 2H, ArH),
6.43 (s, TH, ArH), 6.03 (brs, 1H, NH), 3.88 (s, 3H, OCH.,), 3.67 (s, TH, CH), 2.89 (s, 2H, CH,NH),
1.89 - 1.62 (m, 4H, CH,CH,), 1.30 (d, J = 6.0 Hz, 3H, CH.); ®C NMR (126 MHz, CDCl,) 6 158.7,
156.1 (d, 'Jg, = 177.0 Hz), 150.6, 144.7, 142.7, 125.0, 124.7, 122.2, 116.3 (d, *J.. = 7.9 Hz),
115.9 (d, *Js, = 15.8 Hz) (4C), 115.8, 94.3, 57.1, 48.1, 40.0, 33.8, 24.6, 20.5; *F{"H} NMR (471
MHz, CDCI,) & -123.31; HRMS (ESI"): m/z calcd for C,,H,.FN,O,"” [M+H]" 370.1925, found
370.1925.
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1.2.4.7 Synthesis of N*-(5-(4-fluorophenoxy)-6-methoxyquinolin-8-yl) pentane-1,4-diamine (7g)

NH
HN 2

\/Z§7

MeO

L
CF3

The title compound was synthesized following General procedure A using 2 (716.0 mg, 3
mmol), 4-hydroxybenzotrifluoride (486.0 mg, 3 mmol) and LiOH-H,0 (126.0 mg, 3 mmol) in
DMSO (5 ml) to give 6-methoxy-8-nitro-5-(4-(trifluoromethyl)phenoxy)quinoline (3g) as a pale
yellow solid (149 mg, 0.41 mmol, 14% vyield). Next, 3g (149 mg, 0.41 mmol) was subjected to
General procedure B using Sn powder (485 mg, 4.09 mmol), and 12M HCI (3.5 ml) in EtOH (3.5
ml) to give 6-methoxy-5-(4-(trifluoromethyl)phenoxy)quinolin-8-amine (4g) as an orange viscous
oil (95 mg, 0.33 mmol, 82% vyield). A mixture of 4g (91 mg, 0.32 mmol) and 5 (148 mg, 0.64
mmol) were subjected to General procedure C using CH,COOH (38 pL, 0.64 mmol), NaBH,CN
(20 mg, 0.32 mmol), and anhydrous MeOH (3.0 ml) to give 2-(4-((6-methoxy-5-(4
(trifluoromethyl)phenoxy) quinoline-yl)amino)pentyl) isoindoline-1,3-dione (6g) as an orange
viscous oil (22 mg, 0.04 mmol, 13% yield). Finally, 6g (22 mg, 0.04 mmol) was subjected to
General procedure D using hydrazine monohydrate (20 pL, 0.40 mmol), and EtOH (1 ml) to give

the title product 7g as yellow viscous oil (20 mg, 0.04 mmol, 100% vyield).

'H NMR (500 MHz, acetone-d,) & 8.72 — 8.48 (m, 1H, ArH), 8.00 (ddd, J = 8.5, 3.5, 1.7 Hz, 1H,
ArH), 7.61 (d, J = 8.0 Hz, 2H, ArH), 7.41 (ddd, J = 8.3, 4.1, 1.5 Hz, 1H, ArH), 7.01 (d, J = 8.3
Hz, 2H, ArH), 6.71 (dd, J = 16.1, 14.9 Hz, 1H, ArH), 3.91 (dd, J = 4.4, 1.7 Hz, 3H, OCH,), 3.40
3.17 (m, 2H, CH,NH), 2.87 (t, J = 7.0 Hz, 2H, CH), 1.94 — 1.68 (m, 4H, CH,CH,), 1.35 (d, J = 6.3
Hz, 3H, CH.); °C NMR (126 MHz, acetone-d,) 6 150.7, 144.8, 144.6, 144.0, 133.4, 131.0, 128.7
(9, °Jgr = 4.1 Hz), 126.9 (q, °Jgp = 65.1 Hz), 124.0, 122.9, 122.7 (q, 'Jor = 265.0 Hz), 122.5, 115.3
(3C), 92.7, 56.1, 50.5, 47.9, 41.2, 34.6, 20.1; °F NMR (471 MHz, acetone-d,) & -61.81; HRMS
(ESI"): m/z caled for C,H,.F,N

220725 373

0," [M+H]" 420.1893, 420.1939.
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1.2.4.8 Synthesis of 4-((8-((5-aminopentan-2-yl)amino)-6-methoxyquinolin-5-yl)oxy)benzamide
(7h)

NH
HN 2

\/Z§7

MeO

L
CONH,

The title compound was synthesized following General procedure A using 2 (1.5 g, 6.29
mmol), 4-hydroxybenzonitrile (1.8 g, 15.7 mmol) and LiOH-H,O (660 mg, 15.7 mmol) in DMSO
(10 ml) to give 4-((6-methoxy-8-nitroquinolin-5-yl) oxy)benzonitrile (3e) as a yellow solid (801
mg, 2.50 mmol, 40% yield). Next, 3e (777 mg, 2.42 mmol) was subjected to General procedure
B using Sn powder (2.8 g, 24.2 mmol), and 12M HCI (15 ml) in EtOH (15 ml) to give 4-((8-amino-
6-methoxy quinolin-5-yl)oxy)benzonitrile (4e) as a black viscous oil (521 mg, 1.79 mmol, 74%
yield). A mixture of 4e (501 mg, 1.72 mmol) and 5 (1.1 g, 4.73 mmol) were subjected to General
procedure C using CH,COOH (100 pL, 1.72 mmol), NaBH.,CN (108 mg, 1.72 mmol), and
anhydrous MeOH (4.0 ml) to give 4-((8-((5-(1,3-dioxoisoindolin-2-yl)pentan-2-yl)Jamino)-6-
methoxyquinolin-5-yl)oxy)benzonitrile (6e) as a yellow viscous oil (890 mg, 1.75 mmol, 100%
yield). Subsequently, CN was hydrolysed to COOH using a procedure from J. Mater. Chem. C.
2016, 4, 5335. [48] A solution of 6e (890 mg, 1.75 mmol, 1.0 equiv.) was dissolved by 50%
H,SO, (6 mL) in a round bottom flask. The reaction mixture was heated at 80 °C for 6 hours. After
the reaction is complete, the mixture was neutralized with sat. NaHCO, and extracted with
EtOAc. The combined organic layers were washed with water, dried over anhydrous MgSO,,
filtered, and concentrated to give the crude product. The crude product was further purified by
column chromatography (eluent: 1%-2% MeOH in DCM) on silica gel to afford 4-((8-((5-(1,3-
dioxoisoindolin-2-yl)pentan-2-yl)amino)-6-methoxyquinolin-5-yl)oxy) benzamide (6h) as yellow
viscous oil (541 mg, 1.03 mmol, 58% yield). Finally, 6h (461 mg, 0.88 mmol) was subjected to
General procedure D using hydrazine monohydrate (435 L, 8.8 mmol), and EtOH (5 mL) to

give the title product 7h as yellow oil (204 mg, 0.52 mmol, 59% yield).

'H NMR (500 MHz, Methanol-d4) & 8.51 (dd, J = 4.1, 1.4 Hz, 1H, ArH), 8.16 (dd, J = 5.7, 3.4
Hz, 1H, ArH), 7.96 (dd, J = 11.1, 4.1 Hz, 1H, ArH), 7.77 (s, 1H, ArH), 7.76 (s, 2H, ArH), 7.32 (dd,
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J=8.4,4.1Hz, 1H, ArH), 6.81 (dd, J = 8.3, 1.4 Hz, 2H, ArH), 6.58 (d, J = 4.1 Hz, TH, ArH), 3.84
(s, 3H, OCH,), 3.82-3.77 (m, 1H, CH), 2.95 (t, J = 7.2 Hz, 2H, CH,NH), 1.76 (t, J = 10.6 Hz, 4H,
CH,CH,), 1.31 (t, J = 5.5 Hz, 3H, CH.); °C NMR (126 MHz, Methanol-d4) § 170.5, 162.5, 150.4,
144.8, 143.5, 133.4, 131.7 (2C), 129.3, 129.0, 126.7, 125.6, 124.2, 123.8, 122.1 (2C), 114.4,
93.3,55.8, 39.6, 33.3, 19.5; HRMS (ESI+): m/z calcd for C,,H,,N,0," [M+H] 395.2078, 395.2114

1.3 Synthesis and characterization of tetraoxane unit

The E209 analog of tetraoxane (11) was synthesized over 4 steps, including acetylation,
gem dihydroperoxide intermediate formation, cyclisation, and deprotection by using a reported
procedure from P. M. O'Neill et al. 2017. [6] Then, 11 was further synthesized to be aldehyde
13 by ozonolysis of alkene 12. The alkylated product 14, a precursor for conjugation with 5-

phenoxy primaquine, was synthesized using 1,4-dibromobutane. (Figure 13)

1. 30% HyOy,
HCO,H/MeOH,
:O—Q acetic anhydnde 0 °C to RT <©< @_@
NEts DCM Il. 2-adamantonone,
0°Ctort 5 mol% Bi(OTf),
DCM, rt, 1-2 hr.
LiOH H,0
THF, H,0
RT, 2 hr.
/
<€><o—o ><:>—®70/_< (o8 <©< ally bromide <€><o—o @_@
ally bromide
0-0 DCM/MeOH Kf:fﬁi ;;t(::e — 0-0
13 PPh; ' "

1,4-dibromobutane

K,COj3, MeCN,
60 °C, 6 hr

dry. DMF, rt
J\/\/H °70
OO0
N\ 0-0
MeO' Z
0.
\© 15

Figure 13 Synthesis of tetraoxane unit

7a\ K,CO3, KI,
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1.3.1 Synthesis of 4-(Dispiro[cyclohexane-1,3'-[1,2,4,5]tetroxane-6',2"-tricyclo [3.3.1.13,7]

decan]-4-yl)phenol (11)

<€><o—o
X~

0-0

The title compound was synthesized using a reported procedure.[6] A solution of 4-(4-
hydroxyphenyl)cyclohexanone (8) (9.0 g, 47.3 mmol, 1.0 equiv.) and NEt, (13 mL, 94.6 mmol,
2.0 equiv.) in DCM (90 mL) was added acetic anhydride (141 mL, 141.9 mmol, 3.0 equiv.)
dropwise at 0 °C via syringe. After complete addition, the solution was allowed to stir at room
temperature for 3 hours and monitored by TLC. The reaction mixture was extracted with water,
sat. NaHCO,, and brine, respectively. Then, the combined organic layers were dried over

anhydrous Na,SO,, concentrated to give the crude product of 4-(4-oxocyclohexyl)phenyl

acetate (9) as a white solid (13.6 g, 58.42 mmol, quantitative yield).

"H NMR (500 MHz, CDCl,) 6 7.24 (d, J = 8.3 Hz, 2H, ArH), 7.03 (d, J = 8.4 Hz, 2H, ArH), 3.02
(tt, J = 15.0, 5.0 Hz, 1H, CH), 2.50 (dd, J = 10.7, 5.0 Hz, 4H, CH,), 2.29 (s, 3H, COCH,), 2.21
(d, J=13.7 Hz, 2H, CH,), 1.91 (dd, J = 11.3, 7.5 Hz, 2H, CH,)).

Next, 9 (10.0 g, 43.0 mmol, 1.0 equiv.) was dissolved in 1:1 HCO,H/MeCN (50 mL: 50 mL) in a
tree-neck round bottom flask. Next, 30% H,0, (42 mL) was slowly added into a solution at 0 °C.
After complete addition, the reaction mixture was stirred at room temperature for 2 hours. Then,
the reaction mixture was extracted with DCM, water, sat. NaHCO,, and brine, respectively. The
combined organic layers were dried over anhydrous Na,SO, and filtered to give the filtrate as
an intermediate | (concentrated to 50 mL). The filtrate | was used for next step, a solution of |
and 2-adamantanone (6.5 g, 43.0 mmol, 1.0 equiv.) were added Bi(OTf), (1.4 g, 2.2 mmol, 5
mol%). The reaction mixture was allowed to stir at room temperature for 1 hour and monitored
by TLC. Then, the mixture was filtered through a plug of silica and concentrated to give the
crude product. The title compound was collected by flash column chromatography (eluent:
EtOAc:hexanes = 0.5:10 to 1:10) to give 4-(dispiro[cyclohexane-1,3'-[1,2,4,5]tetroxane-6',2"-

tricyclo [3.3.1 .13,7]decan]—4—yl)phenyl acetate (10) as a white solid (413 mg, 0.99 mmol, 22%).
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"H NMR (500 MHz, CDCl,) 6 7.22 (d, J = 8.5 Hz, 2H, ArH), 7.00 (d, J = 8.5 Hz, 2H, ArH), 3.24
(d, J =43.5 Hz, 2H, CH), 2.61 (tt, J = 15.0, 5.0 Hz, 1H, CH), 2.29 (s, 3H, COCH,), 2.13 — 1.58
(m, 20H, CH/CH,)

Finally, a solution of 10 (410 mg, 0.96 mmol, 1.0 equiv.) was dissolved in THF (6 mL) and water
(2 mL) in a round bottom flask. Next, LiOH-H,0 (120 mg, 2.87 mmol, 3.0 equiv.) was added into
the solution. The reaction mixture was then stirred at room temperature for 3 hours and
monitored by TLC. After the reaction is completed, the mixture was neutralized with dilute HCI.
Then, most of THF was evaporated out under reduced pressure. The residue was extracted 2
times with DCM. The combined organic layers were dried over anhydrous Na,SO,, filtered, and
concentrated to give the crude product which was used without further purification to give the

title product 11 as a white solid (326 mg, 0.875 mmol, 92% yield).

"H NMR (500 MHz, CDCl,) 6 7.05 (d, J = 8.5 Hz, 2H, ArH), 6.74 (d, J = 8.1 Hz, 2H, ArH), 3.21
(d, J =38.1 Hz, 1H, CH), 2.52 (it, J = 11.8, 3.6 Hz, 1H, CH), 2.11 - 1.56 (m, 21H, CH/CH,); *°C
NMR (126 MHz, CDCl,) 6 154.03, 138.20, 127.98, 115.31, 110.65, 107.73, 42.83, 37.04, 33.25,
27.15. "H NMR data and "°C NMR data are consistent with the literature values (Nat. Commun.

2017, 8, 15159)

1.3.2 2-(4-((1r,3r,5r,7r)-dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-4"-yl)

phenoxy)acetaldehyde (13)
H
e~ 4
X7
0-0
A solution of 11 (326 mg, 0.875 mmol, 1.0 equiv.) and K,CO, (484 mg, 3.50 mmol, 4.0
equiv.) in acetone 8 mL was added allyl bromide (302 pL, 3.50 mmol, 4.0 equiv.). After complete
addition, the solution was allowed to stir at reflux for 24 hours and monitored by TLC. The
reaction mixture was cooled down to room temperature. The solid of K,CO, was filtered out to
give the filtrate which was concentrated to give the crude product. The crude product was
further purified by flash column chromatography (eluent: EtOAc:hexanes = 0:100 to 1:9)
to give (1r,3r,5r,7r)-4"-(4-(allyloxy)phenyl)dispiro[adamantane-2,3'-[1,2,4,5]tetraoxane-6',1"

cyclohexane] (12) as a white solid (249 mg, 0.603 mmol, 70% yield). Next, 12 (517 mg, 1.253

mmol, 1.0 equiv.) in MeOH (1 mL) and CH,CI, (8 mL) at -78 °C was bubbled by ozone until the
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colorless solution is saturated and appeared blue solution. The solution was then bubbled by
nitrogen gas for 20 mins. After that, PPh, (1.6 g, 6.26 mmol, 5.0 equiv.) was added portion-wise
into the solution. The reaction mixture was stirred at -78 °C for 1 hour and then at room
temperature for 1 hour. The reaction mixture was concentrated to give crude product The crude
product was further purified by column chromatography (eluent: EtOAc:hexanes = 1:9 to 1:4)

on silica gel to afford the title product as pale brown oil (88 mg, 0.21 mmol, 17% vyield).

1.4 Synthesis of 5-phenoxy primaquine-tetraoxane conjugate
1.4.1 N'-(4-(4-((1r,3r,5r,7r)-dispiroladamantane-2,3'-[1,2,4,5]tetraoxane-6',1"-cyclohexan]-4"-yl)

phenoxy)butyl)-N*-(6-methoxy-5-phenoxyquinolin-8-yl)pentane-1,4-diamine (15)

The title compound was synthesized using a modified procedure [49] To a solution of 14
(15 mg, 0.03 mmol, 1 equiv.), K,CO, (4 mg, 0.08 mmol, 1 equiv.), and KI (1 mg, 0.006 mmol, 0.2
equiv.) in anhydrous DMF (500 uL). A solution of N'-(6-methoxy-5-phenoxyquinolin-8-
yl)pentane-1,4-diamine (7a) (10 mg, 0.03 mmol, 1.0 equiv.) in anhydrous DMF (500 ulL) was
added. After complete addition, the solution was allowed to stir at room temperature overnight
and monitored by TLC. The reaction mixture was quenched with water and extracted with DCM.
Then, the combined organic layers were dried over anhydrous Na,SO,, concentrated to give
the crude product. The crude product was further purified by column chromatography (eluent:
1%-3% MeOH:CH,CL,) on silica gel to afford the title product as yellow viscous oil (12 mg, 0.015

mmol, 51% vyield).

"H NMR (500 MHz, CDCI,) & 8.52 (ddd, J = 4.1, 1.6, 0.5 Hz, TH, ArH), 8.04 (ddd, J = 4.1, 1.6,
0.5 Hz, 1H, ArH), 7.24 — 7.19 (m, 3H, ArH), 7.06 (d, J = 8.7 Hz, 2H, ArH), 6.95 (td, J = 7.3, 0.5
Hz, 1H, ArH), 6.85 (d, J = 7.8 Hz, 2H, ArH), 6.72 (d, J = 8.4 Hz, 2H, ArH), 6.54 (s, TH, ArH), 3.90
(s, 3H, OCH,), 3.86 —3.77 (m, 2H, OCH,), 3.72 (dd, J = 12.5, 6.3 Hz, 1H, CH), 3.22 (d, J = 38.2
Hz, 1H, CH), 2.98 — 2.81 (m, 4H, NCH,), 2.51 (tt, J = 11.6, 3.5 Hz, TH, NH), 2.08 — 1.59 (m, 23H,
CH/CH,), 1.30 (d, J = 6.3 Hz, 3H, CH,); *C NMR (126 MHz, CDCl,) 6 159.4, 157.1, 150.5, 145.1,
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142.7,138.4,134.0, 130.0, 129.6, 127.8, 125.1, 124.7,122.1, 121.6, 114.9, 114.4, 110.6, 107.6,
94.8, 67.2, 57.2, 48.5, 48.3, 47.9, 42.8, 37.0, 34.4, 33.2, 29.8, 27.2, 26.7, 24.1, 20.7; HRMS
(ESI+): m/z caled for C,,H,,N,NaO, " [M+Na]" 800.4245, found 800.4242.

47" 59

2. Biology
2.1 Parasite culture and antimalarial testing in vitro.

P. falciparum strains, 3D7 (wild-type drug sensitive strain) was used in this study. This
parasite was maintained continuously in human erythrocytes at 37°C under 3% CO, in RPMI
1640 culture media (Gibco, USA) supplemented with 25 mM HEPES (Sigma), pH 7.4, 0.2%
NaHCO,, 40 mg/mL gentamicin, and 10% human serum. /n vitro antimalarial activity was
determined by using the malaria SYBR green |-based fluorescence (MSF) method. Briefly, 0.09
ml of cultured 1% ring-stage synchronized parasites were transferred to individual wells of a
standard 96-well microtiter plate and in vitro culture continued for 48 hours, with 0.01 ml of
compound at different concentration in each well. The compounds were already dissolved in
DMSO and the final concentration of DMSO in each well was 0.1% which causes no effect on
the parasite viability. Following 48 hr, SYBR Green | was then added to each well and
fluorescence signals were measured by spectrofluorometer at ex485/em535 nm. The results
were read as concentration of each compound that exhibit 50% growth inhibition (IC;) from the
dose-response curve established from the fluorescence signals at each concentration of

compounds. [50]

2.2 Cytotoxicity testing by sulfornodamine B (SRB) colorimetric assay.

Cytotoxicity test of selected analogues against African green monkey kidney fibroblast
(Vero cells) was obtained from Bioassay laboratory, BIOTEC, NSTDA, Thailand. They were
maintained continuously in MEM/EBSS medium (Hyclone Laboratories Inc., South Logan, Utah)
supplemented with 10% heated fetal bovine serum (GE Healthcare, PAA Laboratories GmbH,
Pasching, Aurstria), 2.2 g/l Sodium bicarbonate (Emsure, ACS, Reag. Ph Eur, Germany), and
1% sodium pyruvate (Sigma). Cytotoxicity was determined by using the sulforhodamine B (SRB)
assay. 1.9 x 10* Vero cells were incubated at 37 °C, 5% CO, for 72 hours. Then, the cells were

fixed with 10% trichloroacetic acid (Sigma) at 4 °C for 45 minutes, washed and dried at room
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temperature overnight. Then the plate was stained with 0.057% (W/V) sulforhodamine B (SRB)
(Sigma), washed with 1% (V/V) acetic acid, washed, and left to dry at room temperature
overnight. Finally, 10X Tris-base was added to each well to dissolve protein-bound dye. The OD
was determined at wavelength 510 nm. The IC,, value of each compound was determined from

the dose-response curve. [51, 52]
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CHAPTER Il RESULTS & DISCUSSIONS
1. Chemistry
1.1 Synthesis of 5-phenoxy primaquine derivatives

Seven derivatives of 5-phenoxy primaquine (7a-7g) were synthesized over 6 steps,
including oxidation, nucleophilic aromatic substitution, reduction, N-alkylation, reductive
amination, and deprotection, along with one amide derivative (7h) which was hydrolyzed from
the cyanine derivative.

In the first step, the commercially available 6-methoxy-8-nitroquinoline was first chlorinated
with N-chlorosuccinimide (NCS) by the basic reaction in organic chemistry (Figure 14). The
position 5 and 7 at quinoline ring are more favored for the reaction due to the mesomeric
electron-donating effect of 6-OMe group, but the position 7 is sterically hindered from
neighboring group. Therefore, the chlorinated product has occurred as a major product at only

position 5 in good yield.

NO, NO,
s
=
MeO anh. DMF MeO Z
60°C, 3 hr ol
1 2

Figure 14 Oxidation of 1 to create chlorinated product 2 by NCS.

According to tafenoquine (Figure 1 e), a well-known anti-malarial drug with improved blood
stage activity and drug haft-life compared to primaquine. Its structure contained a
trifluoromethyl group at -meta position of the 5-phenoxy ring. However, their substituent group-
activity relationship remained unclear. The electronic effect at the -para position on the 5-
phenoxy ring was studied. The phenol contained small substituents group either electron
withdrawing group or electron donating group (-OMe, -Br, -Cl, -F, -CF,, - CN, -CONH,) to
compare the anti-malarial activity in blood stage with unsubstituted phenol. Therefore, the
chlorinated product 2 was further used for synthesis of 5-phenoxy analog of primaquine via
nucleophilic aromatic substitution reaction (S,Ar) with various phenol under basic condition.
This method is commonly used in organic synthesis to functionalize aromatic molecules. The

first attempt using anhydrous DMF as a solvent was unsuccessful. The chlorinated product
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was not reacted with the phenol, due to the insolubility of the base, LiOH-H,0. Therefore, the
solvent was changed to dimethyl sulfoxide. At 100 °C, both the starting material and LiOH was
well dissolved, and the reaction proceeded to give the intermediate 3a-3g in Table 3 using

General procedure A.

Table 3 Synthesis of 3a-3g by nucleophilic aromatic substitution (S,Ar) reaction.

N\
—  — "5
MeO & LiOHH,0  MeO 7
cl DMSO, 100 °C O
0,
2 3a-3g
Compound R Yield (%)
3a H 74
3b OMe 83
3c Br 98
3d Cl 51
3e CN 40
3f F 100
39 CF, 25

This S,Ar reaction takes place by a two-step mechanism. In the first and rate-determining step,
C5 at quinoline ring where is the electron deficiency because it bonded to the chlorine atom, is
attacked by phenoxide ion (C,H,O’; a nucleophile). This step is accelerated and stabilized
because of the resonance effect of the p-NO, group. A tetrahedral intermediate was formed by
rehybridization of sp2 to sp3 carbon. In the second step, the aromaticity of quinoline ring was

restored by loss of a leaving group. (Figure 15)
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MeO
MeO I mio cl o\©\ c? o o
R R R \©\
R

Meisenheimer complex

Figure 15 Proposed mechanism of S, Ar reaction.

Subsequently, the nitro group of 3a-3g was reduced using either Sn in concentrated HCI
or 10% Pd/C to generate amine intermediate 4a-4g in table 4 using General procedure B. All
amine derivatives (4a-4g) were synthesized using route a, but the exception was 4c¢ (R = Br)

using route b.

Table 4 Synthesis of 4a-4g by reduction reaction via Sn/HCI or 10% Pd/C

NO, . Sn powder NH,
NS HCI, EtOH NS
@ | Cooled--> rt _
MeO F MeO
RO o
b
R 10% Pd/C R
=
3a-3g EtOH, rt 4a-4g
Compound R Method % yield
4a H a 94
4b OMe a 44
4c Br b 20
4d Cl a 100
4e CN a 100
4f F a 70
49 CF, a 100

The initial experiment began with 4a (R = H) and 4c (R = Br). These two compounds were
reduced by Pd/H,. However, the reaction proceeded very slowly at room temperature over two

nights. Alternatively, Sn and concentrated HCI were used instead, and the reaction and the
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desired products were achieved in good yields. The proposed mechanism is shown in Figure

16.
- 7Y - HO) OH
\Ojﬁp\ 0.0 HCl 0. -OH O.-OH N2
+ N
| N\ e | N\ | N\ e | N\ +2H | =
—_— —_— —_ —_— _—
MeO Z BN yeo Z MeO Z  5n)  yeo & MeO
RO RSt RSt L L
R R R R R
l»Hzo
HOg
HO_~ HO SN
Hoﬁ HO-\w CI-m N N
N H-Cl N <J N _ N B
| B N | A | A e | N e” | P
-~ N - ~<~—— MeO
MeO F MeO F MeO Z  (Sn) MeO Z (sn) o
jo et RS O j&
R
R R R R
. . /—\
"2 N;/\ NH NH NH,
N e N\ e N\ H(SI N\
| ) S l (Sn) l = l F
MeO F (Sn) MeQO’ 7 \ MeO MeO

Figure 16 Proposed mechanism of Sn/HCI reduction

In addition, N-alkylation of potassium phthalimide with 1,4-dibromopentane was easily

synthesized to afford precursor 5 in good yield. (Figure 17)

e}

1.0 eq. @NK
O,
(0} Pl 0
)l\/\/m )l\/\/N
2.0 eq. K,CO3 E 0

dry. DMF, 100°C, 3 hr

0 l(?eo o 3 o ©
)]\/\QI N;t@ — - )l\/},'(: _HKOL N
‘\/ o) 5 0]

transition state

Figure 17 Synthesis of 5 via S, 2 reaction
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Next, incorporation of the alkyl side chain to the 8-amino group 4a-4g was attempted via
reductive amination reaction. The amine compound 4a was initially alkylated by 2-(4-
bromopentyl)isoindoline-1,3-dione in small scale reaction using a reaction tube under neat
condition at 120 °C to give the phthalimide protected terminal amino i in good yield (80%)
(Figure 18)[6]. However, the later scale-up reaction was unsuccessful because the mixture was
unabile to stirred efficiently under neat conditions. Therefore, reductive amination was attempted
as an alternative pathway. This reaction occurred by the nucleophilic addition reaction between
nucleophilic nitrogen 4a-4g and the electrophilic carbonyl 5 to generate an imine intermediate.
However, for this step, the rate of the reaction at room temperature was too slow leading to low
yield, so the temperature was increased to 50 °C to accelerate the imine formation. The iminium
ion produced was then reduced by sodium cyanoborohydride (NaBH,CN) as a mild reducing
agent to produce 6a-6g in moderate yield. The mechanism of action of these is shown in figure
19. In addition, CN derivative (6e) was further hydrolyzed to amide derivative (6h) in moderate

yield (Table 5).

O
N: ?
HNJ\/\/ o
Q

g i§ ° N\ ° )\/\/ )I\/\/

NS A~ - SN " N

Pz [©) MeO N iii

MeO i = o) ii
o NEts, 120°C \©
i
4a

Figure 18 N-Alkylation of 4a and 2-(4-bromopentyl)isoindoline-1,3-dione.



Table 5 Synthesis of 6a-6g by reductive amination between 4a-4g and 5

o 0 o)
i J\/\/ J\/\/
N
NH; )l\/\/N HN HN N
N
N 5 0 o 50% HySO, AN °
—_— _—
= ; 6e
MeO NaBH;CN, AcOH  MeO 80°C, 6 hr MeO Z
L
R

dry. MeOH, O/N, rt fo)

4a-4g 6a-6g 6h
Compound R % yield
6a H 57
6b OMe 35
6c Br 80
6d Cl 44
6e CN 44
6f F 34
69 CF, 25
6h CONH, 58

(0]

o '/-\ 0, §:>
:OH
CHQOJ\ Protonation f\: NH, HQ+X/\/N
+ Hz
;:: (0] :\S > N (0]
(0] ( \ N\
> N —_—
N )l\/\/ /@1} /@)

Figure 19 Mechanism of action of reductive amination reaction
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Finally, the phthalimide deprotection of 6a-6h was achieved using hydrazine monohydrate
to give the desired 5-phenoxy primaquine 7a-7h in good vyield (Table 6). The mechanism of
action of phthalimide deprotection by hydrazine is shown in figure 20. In the first step, carbonyl
carbon was substituted by a lone pair of nitrogen of hydrazine. Subsequently, the ring opened.
Proton was then transferred by an intramolecular nucleophilic acyl substitution reaction. Finally,
the tetrahedral intermediate broke to provide the desired primary amine and the by-product of

the phthalhydrazide.

Table 6 Synthesis of 7a-7h by phthalimide deprotection of 6a-6h.

fo} §:>
HNJ\/\/N HNJ\/\/NHz
N O NH,NHzH,0 Ny
MeO F EtOH, reflux  pme0 /
o 1hr o
L, L
6a-6h 7a-7h
Compound R % yield

7a H 94
7b OMe 100
7c Br 54
7d Cl 68
Te CN 100
7f F 100
79 CF, 85
7h CONH2 100

(o

o N
-
HNJ\/\/N“ HNJ\/\/%H HNJ\/\/NHz
N
(o}

e 0
ORI N NH-NH, N
- . + HN HIN
MeO MeO +NH HN
H - MeQH !

> H,N=NH, >
= =
L L
R R

Figure 20 Mechanism of action of phthalimide deprotection by hydrazine
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1.2 Synthesis of tetraoxane unit and novel 5-phenoxy primaquine-tetraoxane conjugated
compound

The E209 analog of tetraoxane (11) was successfully synthesized. In the first step, the
commercially available phenol 8 was acetylated by acetic anhydride in the presence of
triethylamine to give 9 in quantitative yield. Next, this acetyl protected compound was
peroxidised under acid-catalytic conditions to form the gem dihydroperoxide intermediate
which then reacted with adamantan-2-one to provide a protected tetraoxane 10 in low yield.[6]
After that, 10 was deprotected under the basic condition to afford the desired tetraoxane 11 in
excellent yield. In addition, 11 was further converted to aldehyde 13 in low yield by ozonolysis
of alkene 12 which was prepared by O-alkylation of 11 with allyl bromide. On the other hand,
11 was alkylated by 1,4-dibromobutane to give the alkylated product 14 in good yield. This
precursor was further alkylated by primary amine of 7a to give the novel 5-phenoxy primaquine-

tetraoxane conjugated compound 15 in moderate yield without disubstituted product (Figure

21).
gem dihydroperoxide intermediate
/ 1. 30% H,0,,
Acetylation HCO,H/MeOH,
acetic anhydride 0 °Cto RT -0,
s NES’ DCM = II. 2-adamantonone, -0
0°Ctort 5 mol% Bi(OTf); 10-229%
Quant. yield DCM, rt, 1-2 hr. °
cyclisation LiOH H,0 .
THF, H,0 deprotection
Ozonolysis O-alkviati RT, 2 hr.
-alkylation
0-0 O3 ally bromide
DO o O 2 YO
0-0 DCM/MeOH chﬂoﬁ :Cztcr’]"e
PPh, reflux, r
17% 70—88% 92-100%
0-0 O-alkylation
0-0 1,4-dibromobutane
. K,COj3, MeCN,
8% 14 60°C, 6 hr
N-alkylation 75| Kz2COs, KI,
dry. DMF, rt

H
0-0
OO0
NS 0-0
MeO Z
(@)
\© 15

51%

Figure 21 The result from synthesis of tetraoxane unit
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1.3 Unsuccessful synthesis of 5-phenoxy primaquine-tetraoxane conjugated compounds.
1.3.1 Attempted synthesis of the novel conjugate by substitution of tetraoxane molecule into
position 5 of primaquine.

The S,Ar reaction of compound 2 with a phenoxide ion under basic condition gave the
product in good yield, but the reduction of nitro group into amine was unsuccessful because
the endoperoxide bond was easily decomposed to ketone in the presence of acid. Alternatively,
Pd/C under H, was used instead (Figure 22); however, many spots of by-products were
observed on TLC plate. Therefore, we did not pursue this synthetic route because there are

many remaining steps to afford the desired conjugate.

NH,
N
N
=
Sn, HCl _ MeO 0-0
o
e ~O-O0r
cooled-->rt 0-0
20 min 89% crude
Black viscous oil

NO, NO,

NS 1.0eq. 11 AN
4
MeO' Z MeO

0-0
Gl 1.0 eq. LIOH-H,0 O\©_<:><
2 DMSO, rt up Sy

to 60°C, 5 hr
50-82% crude

NH,

N
Sn, HCI =
=
AcOH ‘MeO
25°C, 30 min O\Q_QO‘O@
0-0
89% crude
Green viscous oil

NH,

N
Pd/C, H, A

=

—_—
EtOH MeO 0-0
0-0

100% crude
Green viscous oil

Figure 22 Reduction of nitro group of compound contains endoperoxide bond to amine using

Sn/HCl and Pd/C under H,

1.3.2 Attempted synthesis of the novel conjugate of ozonide phenol 0OZ288

The synthesis of this conjugate was not successful. Alkylation of 0Z288 which was
provided by BIOTEC with 1,4-dibromobutane in the first step did not provide the desired product
when the reaction was performed at 55-60 °C. The reaction temperature was then increased to

70 °C; however, this led to the decomposition of the compounds (Figure 23).
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0z288

i 8.0 eq. Br/\/\/Br 6.0 eq. KZCO?), DMF, KI 3

1 55-60°C : J\/\/H 0-0
: 0-0 L OHN ~""0 o
Ny : Br(H20>4OO—<:>",Ov : Ny

MeO Z MeO

Figure 23 O-alkylation of ozonide phenol (0Z288) with 1,4-dibromobutane

1.2.3 Attempted synthesis of the novel conjugate of dispiro 1,2,4,5-tetraoxane derivative

The bromoacetic acid was initially alkylated by 11 to form an amide linker of this conjugate.
Phenolates of 11 are formed when phenolic hydroxy groups are exposed to basic conditions.
This phenolate anion can be reacted with the bromoacetic acid using a catalytic amount of K
to promote this reaction. The iodide will act as an external nucleophile to generate a highly
reactive iodide intermediate. Anhydrous DMF as a polar aprotic solvent was used to prevent C-
alkylated by-product; however, the target product was not observed. They did not react with

each other to form the product even at 60°C. (Figure 24)

2.5eq. K,CO3
| 40eq. HOJ\/Br DMF, rt-60°C
0.2 eq.Kl
o
J\/\/NHZ HOJ\/O J\/\/
HN \n/\O
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N
AN
MeO MeO” i ;/

Figure 24 O-alkylation of tetraoxane (11) with bromoacetic acid using KI.
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2.1 Antimalarial activity
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Table 7 In vitro antimalarial activities (IC,,) against P. falciparum 3D7 and cytotoxicity (CC,,)

against African green monkey kidney fibroblast (Vero cells)

Compd. R IC., uM CC,, uM Selectivity Index (SI)

P. falciparum 3D7 Vero Cells

(blood stage)

Primaquine biphosphate - 11.33+£0.79 >100 >9
7a H 3.65+0.39 37.49+524 10.27
7b OCH, 7.89 £ 0.50 55.62 + 4.34 7.05
7c Br 7.03 £1.31 4216 +3.25 6.00
7d Cl 8.20 £ 0.83 46.38 + 5.68 5.66
7e CN 4.62 +0.56 >100 >25
7f F 4.97 £ 0.40 47.47 +3.23 9.55
79 CF, 4.63 £ 0.44 22.66 £ 3.74 4.89
7h CONH, 13.5+1.57 >100 >7
Conjugate 15 H 0.38 £ 0.11 17.33+0.36 45.61
PYR - 0.05 + 0.005 ND -
Elipticine - ND 5.97+ 0.14 -

Sl = CC,, (uM) on monkey Vero cells/IC,, (uM) in blood stage; Each IC,,and CC,, value
represent the mean + SD (n = 3), ND = not determined, PYR = pyrimethamine which targets

dihydrofolate reductase of P. vivax (PvDHFR).

Since primaquine is the only tissue schizonticide drug available for radical treatment of P.
vivax or P. ovale infections. It had weak blood schizonticide activity as a result of oxidative stress
which was generated from its hydroxylated metabolites at position 5 (Figure 4), but it also
produced hemolytic side effect. The effects of the various R group of 5-phenoxy derivatives of
primaquine were studied. The anti-malarial activity in Table 7 revealed that most of them had a
better inhibitory activity with the IC,, value of 3.65 — 7.89 pyM against asexual forms of P.
falciparum 3D7 chloroguine-sensitive strain than the standard primaguine with the IC, value of
11.33 £ 0.79 pM. In contrast, 7h with the IC,; of 13.5 + 1.57 uM had less potency than the
primaquine. According to the proposed mechanism of action of chloroquine, a well-known anti-
malarial drug. In blood stage infection, hemoglobin is digested to amino acids and heme by

parasites in its acidic digestive vacuole. This heme is toxic to parasites. Then, this heme is
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transformed to hemozoin by parasites through the heme polymerization process.[53] Therefore,
the presence of the phenoxy group at position 5 of primaquine may have a significance about
this process with the result of increasing inhibitory activity superior to that of the primaquine.[54]
However, this data assessed that the correlation between the various R group on the structure
and their blood stage activity were not significantly different. As expected, 15 exhibited
inhibitory activity with IC, values of 0.38 + 0.11 uM, which was 30-fold more potent than that of
the primaquine alone. Since the metabolic instability of amide derivative of lead candidate
RKA182 (Figure 8) was reported.[34] Therefore, 15 with different mode of action between the
5-phenoxyprimaquine molecule and the tetraoxane molecule was conjugated by an amine linker
which was designed to eliminate the metabolic liability. However, this conjugate had less anti-
malarial activity in blood stage than that of 11 which had IC,, = 29 nM (unpublished result).
Once 5-phenoxyprimaquine part inhibited heme polymerization similar to tafenoquine.[55] As
aresult, there is a lot of free heme which contains ferrous iron to reduce the endoperoxide bond
of the tetraoxane part result in cytotoxic carbon-centered radicals. The essential
macromolecules of malarial parasite could be alkylated by these radicals, leading to parasite’s
death. Therefore, these drug conjugates may exhibit a synergistic effect, leading to increased
inhibitory activity against P. falciparum in an asexual stage. However, the anti-malarial activity
of 11 and 1:1 of 5-phenoyprimaquine: tetraoxane were not evaluated for comparison, so the
actual source of activity could not conclude for this work. In addition, a heme polymerization
assay will be tested to confirm this proposed mechanism of our conjugate in the future.[56] In
addition, all synthesized compounds will be also studied with a chloroquine-resistant strain of
Plasmodium falciparum. The cytotoxicity of eight 5-phenoxyprimaquine derivatives (7a-7h)
including one 5-phenoxyprimaquine-tetraoxane conjugated (15) was then assessed using the
African green monkey kidney fibroblast (Vero cells) with sulforhodamine B (SRB) colorimetric
assay. Then, the selectivity index (SI) was calculated as the ratio of the 50% cytotoxic
concentration (CC,,) to the 50% inhibitory concentration (IC,,). The results in Table 7 show that
those compounds had cytotoxic concentration (CC,,) values and selectivity indexes from 17.33
to more than 100 uM and from 4.89 to more than 25, respectively. All synthesized compounds
are less toxic comparing with ellipticine which is an anti-cancer drug. Interestingly, 7e and 15

with high antimalarial activity had Sl values of more than 25 and 45.61, respectively.



47

CHAPTER IV CONCLUSION

In conclusion, three new (R = CN, CONH,, CF.) and five known (R = H, OMe, ClI, Br, F)
derivatives of 5-phenoxy primaquine were successfully synthesized over six steps with
moderate overall yields. Moreover, one new 5-phenoxy primaquine-tetraoxane conjugate was
also synthesized over eleven steps. The anti-malarial activity of all synthesized compounds was
investigated using Malaria SYBR Green I-base fluorescence (MSF) assay against P. falciparum
3D7 in the blood-stage. Comparing with the primaquine as a reference compound (IC,, = 11.33
+ 0.79 uM), most of the 5-phenoxy primaquine derivatives exhibited greater inhibition toward P.
falciparum 3D7 with IC, values ranging from 4.62 to 8.2 pM, but the exception was 7h (R =
CONH, IC,, = 13.5 = 1.57 uM); however, there was no significant difference in correlation
between the effects of the substituted group at the para position on the phenoxy ring and their
malarial activity. Therefore, the presence of the phenoxy group in position 5 can enhance the
inhibition of malarial parasite. Subsequently, the most potent derivative (7a) was conjugated
with tetraoxane 14 using a linker of four carbon to afford new 5-phenoxy primaquine-tetraoxane
conjugated (15). This conjugate was again evaluated for their anti-malarial activity using the
same previous method. The synthesized conjugate (15) exhibited inhibitory effects with
IC,, values of 0.38 = 0.11 uM, which was 30-fold more potent than that of the primaquine. Then,
all synthesized compounds were assessed using the African green monkey kidney fibroblast
(Vero cells) with sulforhodamine B (SRB) colorimetric assay. The selectivity index (Sl) was then
calculated. Compound 7e and 15 with high antimalarial activity had Sl values of more than 25
and 45.61, respectively. Therefore, this CN (7e) and new 5-phenoxyprimaquine-tetraoxane

conjugated 15 could be used for further drug discovery study in the future.
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Appendix A NMR spectra of 2 and 5

5-chloro-6-methoxy-8-nitroquinoline (2)

NMR (300 MHz, ) 6 8.99 (dd, 7= 4.1, 1.4 ), 8.62 (dd. J=8.7, 1.6 Hz), 7.90 (s), 7.61 (dd. /= 8.7, 4.1 Hz), 4.11 (s).
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2-(4-oxopentyl)isoindoline-1,3-dione (5)

‘H NMR (400 MHz, DMSO) § 697 (dq, /=62, 4.8 Hz, 1), 267(t, 7=6.8 Bz, 1K), 161 (¢t =71 Bz, 15), 117 (s, 1E), 0.89 (p. J= 6.9 Hz. 1E).
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Appendix B NMR and HRMS spectra of 7a-7h
N4-(6-methoxy-5-phenoxyquinolin-8-yl)pentane-1 ,/4-diamine (7a)

NMR (500 MHz. ) & 8.56 — 847 (m), 8.00 — 795 (m). 7.23 (ddd, J=15.7, 72 3.9 Hz). 6.94 (e, = T4, 0.7 Hz). 689 — 680 (m). 6.4 (s). 6.05 (s). 388 (s). 2.80 (t, J=6.7 Hz). 1.79 — 1.60 (m). 132 (d. J= 63 Ha).
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Figure 31 HRMS spectrum of 7a
N4-(6-methoxy-5-(4-methoxyphenoxy)quinolin-8-yl)pentane-1 ,4-diamine (7b)
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N*-(5-(4-bromophenoxy)-6-methoxyquinolin-8-yl)pentane-1,4-diamine (7c)
NMR. (300 MHz, ) & 8.34 (dd, 7=2.7, L3 Hz), 7.98 (4t J=8.5, 1.5 Kz, 7.31 (dd, J=0.1, 1.4 Hz), 727 (ddd, J= 8.3, 42, 1.4 H), 6.75 (dd, J=0.1, 1.4 Hz), 6.43 (5), 3.89 (s), 3.68 (), 2.78 (t, J= 6.4 Hz), 189 — 1.53
(m), 135 (d.J=63Hz).
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N*-(6-methoxy-5-(4-chlorophenoxy)quinolin-8-yl)pentane-1,4-diamine (7d)
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4-((8-((5-aminopentan-2-yl)amino)-6-methoxyquinolin-5-yl)oxy)benzonitrile (7e)

NMR (500 MHz, } & 8.56(dd, J=4.2, 14 Hz), 793 (dd, J=8.5, 1.5 Ha), 7.53 (d, /= 8.7Hz), 7.30 (dd, 7= 8.5, 4.1 H), 6.93 (d, J= 8.7 Ha), 6.42 (5), 6.17 (s). 3.8 (s), 3.69 (s), 2.79 (t, /= 6.8 Ha), 182~ 1.5T (m),
135(d J=63Ha.
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Figure 43 HRMS spectrum of 7e

N4-(5-(4-fIuorophenoxy)—6-methoxyquinolin-8-yl)pentane-1 ,4-diamine (7f)

'HNMR (500 MHz, CDCL,)  8.51 (d, /= 4.0 Hz, 1H), 8.01 (d. /=84 Hz. 1H), 725 (dd, /=77, 32 Hz, 1H), 6.90 (. /= 8.6 Hz. 2F), 6.79 (dd. J=9.0,4.2 Hz, 2H), 643 (5. 1E). 6.03 (s, 1H). 388 (. 3H), 367 (s.

1H). 2.89 (5. 2H). 1.89 - 1.62 (m. 4H). 130 (d. 7= 6.0 Hz. 3H).
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NMR (126 MHz, ) & 158.71 (s). 156.09 (& J= 177.0 ), 150.61 (s). 144.71 (s), 142.71 (s). 124.96 (s), 124.67 (s). 122.15 (s), 116.28 (d. J= 7.9 Hz), 115.90 (d. J= 315 Ha), 115.84 (s). 94.26 (s). 57.09 (s). 48.09 (s).
40.02 (s}, 33.75 (5), 24.58 (5), 2050 (s).
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N*-(5-(4-fluorophenoxy)-6-methoxyquinolin-8-yl)pentane-1,4-diamine (7g)

NMR (500 MEz, ) & 8.68 — 853 (m), 8.00 (ddd, /= 8.5, 3.5, 1.7 Hz), 7.61 (d, /= 8.0 Hz), 741 (add, /= 8.3, 4.1, 1.5 Ha), 7.01 (d, /= 83 Ez), 6.71 (dd, J=16.1, 14.9 Ez), 3.91 (dd, J=4.4, 1.7 Hz), 3.29(m), 194 (¢, /

=62Hz).298-279(m) 1 86—1.68 (m). 1.35(d. /=63 Hz).
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NMR (126 MHz, } & 150.72 (5), 144.80 (s), 144.58 (s}, 144.02 (s}, 133.30 (<), 131.04 (s), 12868 (g, J=4.1 ), 126.04 (g, /= 65.1 ), 124.02 (s), 122.87 (d, J= 7.7 Haz), 122.60 (q, 7= 265.0 Hz), 12248 (s), 11531 (s),
9273 (s), 56,14 (s}, 50,51 (s), 47 88 (s), 41214 (s), 3457 (5), 20.03 (5).
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4-((8-((5-aminopentan-2-yl)amino)-6-methoxyquinolin-5-yl)oxy)benzamide (7h)

NMR (500 MHz, ) 8 851 (dd, J=4.1, 1.4 Hz), 8.16 (dd, J=5.7, 3.4 Hz), 796 (dd, J= 111, 4.1 Hz), 7.77 (s), 7.76 (s), 732 (dd, J=8 4, 4.1 Hz), 6.81 (dd, J=83, 1.4 He), 6.58 (d, J=4 1 Hz), 384 (s), 382 3.77

(m), 2.95 (¢, J=72 Hz), 1.76 8, J=10.6 Hz), 131 (t, /= 5.5 H).
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NMR (126 MHz, } & 17051 (s), 162.49 (s), 150.44 (s). 144.76 (s), 143 46 (s), 133.37 (s), 131.63 (s), 120.34 (s), 128.97 (s), 126.72 (s), 125.56 (s}, 124.22 (), 123.76 (s} 122.07 (s), 114.36 (s), 93.29 (s), 35.84 (s),

3061 (5), 33.30 (5), 19.33 (5).
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Appendix C NMR of 11 and 15
4-(Dispiro[cyclohexane-1,3'-[1,2,4,5]tetroxane-6',2"-tricyclo[3.3.1.13,7]decan]-4-yl)phenol (11)

NMR (500 MEz, ) & 7.03(d, J= 8.5 Hz), 6.74 (d, J=8.1 Hz), 3.21 (d, J=38.1 Hz), 2.52 (tt, 7= 118, 3.6 Hz), 2.11 — 1.56 (m)
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N'-(4-(4-((1r,3r,5r,7r)-dispiroladamantane-2,3'-[1,2,4,5]tetraoxane-6', 1 "-cyclohexan]-4"-yl)

phenoxy)butyl)-N*-(6-methoxy-5-phenoxyquinolin-8-yl)pentane-1,4-diamine (15)

NMR (300 MHz, ) 8 8.52 (ddd, J=4.1, 1.6, 0.5 Hz), $.04 (ddd), 7.24 — 7.19 (m), 7.06 (4, J= 8.7 Hz). 6.95 (1. J=7.3, 0.5 Hz), 6.85 (d, /= 7.8 Hz), 6.72 (. J=8.4 Hz), 6.54 (), 3.90 (s, 3.86 — 3.77 (m), 3.72 (dd, /=

12.5,6.3 Hz), 322 (d, J =382 Hz), 298 — 2.81 (m), 251 (&, /= 11.6, 3.5 Hz), 2.08 — 1.39 (m), 130 (d, J= 6.3 Ha).
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NMR (126 MHz, ) § 13941 (), 157.11 (s), 150.53 (s), 145.05 (s), 142.70 (s), 13838 (s). 133.96 (s), 129.96 (s). 120.56 (5}, 127.79 (s), 125.06 (s). 12469 (s), 122.14 (s), 121.59 (s), 114.93 (5), 114.43 (s), 110.55 (s),
107.62 (s). 94.80 (s). 67.19 (s). 57.22 (s). 48.50 (s), 48.26 (5), 47.88 (5). 42.83 (), 37.04 (5). 3441 (5). 33.24 (s). 20.78 (5). 27.15 (5). 26.70 (5), 24.10 (5), 20.72 (s).
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