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In this thesis, we study holographic solutions of four-dimensional N =

6 gauged supergravity with SO(6) gauge group. The theory admits a unique

N = 6 supersymmetric AdS4 vacuum dual to a three-dimensional N = 6 SCFT

and gives us a number of supersymmetric domain walls interpolating between

this AdS4 vacuum and singular geometries in IR with SO(2) × SO(4), U(3),

SO(2) × SO(2) × SO(2), and SO(3) symmetries. These solutions describe RG

flows from N = 6 SCFT in UV to non-conformal field theories driven by mass

deformations. In particular, the solution with SO(2)×SO(4) symmetry coincides

with the known mass deformations of the dual N = 6 SCFT. Despite most of the

solutions preserving N = 6 supersymmetry, the SO(3) case preserves N = 6 or

N = 2 depending on the absence of pseudoscalars. We also give an analytic form

of supersymmetric Janus solution with SO(2)×SO(4) symmetry, which describes

a two-dimensional conformal defect in the N = 6 SCFT with unbroken N = (4, 2)

supersymmetry. Finally, we study supersymmetric AdS black hole with magnetic

charges and the horizon geometry of the form AdS2×H2. We find an N=2 super-

symmetric solution with SO(2)×SO(4) symmetry interpolating between the AdS4

vacuum and an AdS2×H2 fixed point, which is dual to a twisted compactification

of N = 6 SCFT on hyperbolic space H2.
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CHAPTER I

Introduction

General Relativity describes the dynamics of gravity by the presence of curvature

spacetime. This revolution leads to several fascinating phenomena and new under-

standings of astrophysics. Black holes are an object surrounded by a horizon from

which even light cannot escape [67, 68]. Gravitational waves recently discovered

in [70] is the ripples of spacetime traveling at the speed of light. Gravitational

lensing is a manifest example of how matter disturbs spacetime. Spectacular un-

Figure 1.1: The first image of

back hole at the center of galaxy

M87 (Credits: Event Horizon

Telescope collaboration et al.)

Figure 1.2: An illustration of

two black holes merging which

creates the ripples of space-

time called gravitational waves

(credit: LIGO/T. Pyle)

derstandings of Big Bang cosmology also result from general relativity with the

accidental discovery of cosmic microwave background (CMB) in 1940. The ex-

perimental discoveries of these consequences firmly support the idea of Einstein’s

gravity of general relativity. Despite these successes, physicists discovered some

disfavor aspects of general relativity. The presence of matter in general relativity

lacks a microscopic picture of quantum physics. As matters are squashed into a
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Figure 1.3: The image of a

distant galaxies is distorted by

nearer galaxies called the gravi-

tational lensing. (Credit: ALMA

(ESO/NRAO/NAOJ).)

Figure 1.4: The snapshop of

the universe when it was 380,000

years old is called CMB. (Cred-

its: ESA and the Planck Collab-

oration)

tiny region of spacetime, the curvature of spacetime becomes infinity leading to

a catastrophic situation for general relativity. As opposed to other fundamental

interactions, electromagnetic, weak, and strong interactions, gravity is short of

a quantum description, and cannot be quantized to quantum gravity in a usual

way of canonical quantization due to uncontrollable divergences, see some reviews

in [71,72]. Therefore, we think that promoting gravity to quantum gravity might

eventually lead to an aspect of the theory of everything.

String theory [74–79] is a quantum theory that contains one-dimensional

vibrating strings and p-dimensional spatial extended objects called p-branes. The

quantization of strings gives rise to different types of fields. It was first expected

to be a theory of quantum gravity, furthermore, it has been demonstrated as a

promising candidate for the theory of everything. There are five different versions

of self-consistent string theories: type I, type IIA, type IIB, Heterotic SO(32), and

Heterotic E8 × E8 living in ten-dimensional spacetime. Among these strings, M-

theory is an eleven-dimensional non-perturbative theory connecting them via du-

alities shown in figure (1.5). As a promising candidate of the theory of everything,

string/M-Theory should give effective field theories consistent with quantum field

theories in four-dimensional spacetime. In principles, this can be studied by the
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Figure 1.5: The image shows the

five different string theories liv-

ing in D = 10 which can be re-

lated to M-theory living in D =

11.

Figure 1.6: This imamge shows a

closed string together with open

strings with its ends being sub-

ject to p-branes (Credit: This

image created by Steuard Jensen

and brought to David Tong)

compactification of string theory on the product manifold R1,3×MD−4, where R1,3

is four-dimensional Minkowski spacetime and MD−4 is an internal compact man-

ifold which plays an important role to determine interactions. Moreover, things

get more interesting, when we study String/M-Theory in anti-de Sitter spacetime

(AdS).

According to the AdS/CFT correspondence [1–3], string theory in AdSd+1×

MD−d−1 spacetime is dual to a superconformal field theory (SCFT) which lives

on its boundary ∂AdSd+1 corresponding to d-dimensional Minkowski spacetime

R1,d−1. In this sense, local fields hi(x, r)1 in the bulk spacetime is dual to local

operators Oi(x) in the dual SCFT on the boundary. This allows us to calculate

correlation functions describing interactions in the dual SCFT. To treat calcula-
1Where (x, r) is the coordinate of the bulk AdS spacetime, and x is the coordinate on the

boudary of the AdS spacetime.

http://www.damtp.cam.ac.uk/user/tong/string.html
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Figure 1.7: This image shows that AdS/CFT correspodence is the equivalence be-

tween physics of gravity in the bulk of AdS5 and N=4 supersymmetric Yang-Mills

theory (SYM) on the boundary of AdS5. (Credit: https://www.quantum-bits.

org/?p=1134)

tions more traceable, we apply the low energy limit and the large-N limit [1]. In

this limit, the AdS/CFT duality suggests that strongly-coupled SCFTs is dual to

gauged supergravities. This duality is also called strong/weak duality which is one

of the most important results of string/M-Theory. We can generalize the duality by

studying string/M-Theory in2 AAdSd+1×MD−d−1 dual to non-conformal field the-

ories, quantum field theories. It is very important to have such a duality because

if string/M-Theory is truly a theory of everything, it must satisfy all theoretical

aspects in physics. One of the most famous example of the AdS/CFT correspon-

dence is that of type IIB string theory in AdS5 × S5 dual to four-dimensional

N = 4 supersymmetric Yang-Mills field theory as shown in figure (1.7). This

shows that type IIB string theory having its low-energy action as type IIB super-

gravity in AdS5 × S5 containing some properties that are dynamically equivalent

to four-dimensional N = 4 supersymmetric Yang-Mills field theory with gauge

group SU(N) and a coupling constant gYM . Therefore, the free parameters of

supersymmetric Yang-Mills theory are mapped to the free parameters obtained

from type IIB supergravity which is weakly curved in AdS5 × S5 spacetime.

On the other hand, supergravity is an extension theory of general relativity,
2AAdS is an asymptotic anti-de Sitter space.

https://www.quantum-bits.org/?p=1134
https://www.quantum-bits.org/?p=1134
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which is invariant under local supersymmetries. Supersymmetry gives the rela-

tion between the internal and spacetime symmetry. It introduces spinor generators

called supercharges along with graded Lie algebra. The commutation relations of

supercharges with internal and spacetime generators form Lie superalgebra. As a

result, for an elementary particle, there exists the corresponding particle called su-

perpartner forming a supermultiplet. For example, the superpartner of a massless

spin-2 graviton is a massless spin-3/2 gravitino. The introduction of supersymme-

try to general relativity also results in a better divergence behavior. Supergravity

is a gauge theory of supersymmetry living in various dimensions ranging from two

to eleven dimensions. We can also construct supergravity by coupling the grav-

ity multiplet to matter multiplets, a chiral multiplet, or a vector multiplet. On

the other hand, we can also increase the number of supersymmetry. The former

theory is called matter-coupled supergravities. The latter is called extended super-

gravities. Those theories are called ungauged supergravity since the gravitini are

not charged. We can further promote ungauged supergravities to more interest-

ing theories called gauged supergravities where gravitini are charged under gauge

fields of the theory by promoting a suitable subgroup of global symmetry group

to a gauge group. Studying supersymmetric solutions of gauged supergravities in

various dimensions also plays an important role in understanding string/M-theory.

In the AdS/CFT correspondence, these solutions provide the holographic tool to

investigate strongly-coupled systems of quantum field theories, conformal defects,

and condensed matter systems AdS/CMT [73]. In many cases, solutions of lower-

dimensional gauged supergravities can be uplifted to to higher-dimensional origins

via consistent truncations resulting in a complete description of AdS/CFT dual-

ities.

In this thesis, we study supersymmetric solutions from four-dimensional

N = 6 gauged supergravity with SO(6) gauge group. The theory has previously

been constructed in [4] by using embedding tensor formalism which is obtained

from a consistent truncation of the maximal N = 8 gauged supergravity [5], see
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also [6–8]. The N=6 gauged supergravity admits a unique N = 6 supersymmet-

ric AdS4 vacuum preserving SO(6) symmetry dual to three-dimensional N = 6

SCFT. A recent result on supersymmetric AdS vacua [9] also confirms the unique-

ness of N = 6 supersymmetric AdS4 vacua. The reserach paper [4] has also pointed

out that this AdS4 vacuum describes a consistent truncation of type IIA theory

on CP 3, so the AdS4 vacuum can be uplifted to type IIA theory in the form of

AdS4×CP 3 space. This has been shown in [10] and more recent studies in [11–14].

The dual N = 6 SCFT of type IIA theory has been studied in [15]. In general,

three-dimensional superconformal field theories (SCFTs) have the form of Chern-

Simons-Matter (CSM) theories because the usual gauge theories with Yang-Mills

gauge kinetic terms are not conformal. These SCFTs result from would-volume

theories of M2-branes on various transverse spaces and they play an important role

in understanding the dynamics of M2-branes. Studying supersymmetric solutions

of gauged supergravities may be useful for the use of their holographic descriptions

at least in the large-N limit.

Many supersymmetric solutions of gauged supergravities have been stud-

ied and interpreted in terms of their dual field theories. In this thesis, we will be

studying these solutions from four-dimensional N = 6 gauged supergravities. We

firstly look at supersymmetric domain wall solutions interpolating between the

N = 6 supersymmetric AdS4 vacuum and singular geometries. These solutions

describe RG flows from the dual N = 6 SCFT in UV to non-conformal phases

in IR resulting from mass deformations. There are a number of similar solutions

having intensively studied in N = 8 and N = 2 gauged supergravities, [17–25],

along with a recent studies of N = 3, 4, 5 gauged supergravities, [26–31]. We

hopefully expect that this work would fill up the complete solutions of gauged

supergravities in four dimensions. We will also study supersymmetric Janus so-

lutions in which the spacetime takes the form of AdS3-sliced domain walls inter-

polating between asymptotic AdS4 spaces. Holographically, these solutions are

dual to two-dimensional conformal defects within the N = 6 SCFT and break the
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superconformal symmetry in the three-dimensional bulk to a smaller one on the

two-dimensional surfaces. There is also this kind of solution in four-dimensional

gauged supergravities which has previously been studied, [28, 29, 31–35]. Finally,

we will look for supersymmetric solutions that take the form of AdS2×Σ2 geome-

tries with Σ2 being a Riemann surface, and interpolate between these AdS2 × Σ2

geometries and the supersymmetric AdS4 vacuum. These solutions describe su-

persymmetric black holes in asymptotically AdS4 space, and there is a number of

these solutions which has already been investigated in other gauged supergravi-

ties, [31, 36–46].

N = 6 gauged supergravity in four dimensions has the global symmetry

SO∗(12) with the compact maximal subgroup of U(6) ∼ SU(6) × U(1) together

with thirty real scalars encoded in a coset manifold of Mscl = SO∗(12)/U(6).

The gauge group SO(6) of the N = 6 gauged supergravity can be obtained

from a consistent truncation of the SO(8) gauge group of the maximal N = 8

gauged supergravity. The N = 8 gauged theory appears as a consistent trun-

cation of eleven-dimensional supergravity on S7 [50–55]. The four-dimensional

N = 6 gauged supergravity with SO(6) gauge group can be uplifted via consis-

tent truncations to eleven dimensions. On the other hand, the N=6 theory is also

a consistent truncation of type IIA theory on CP 3. As a result, all solutions of

the N = 6 theory which will be given here have higher-dimensional origins and

can be embedded in ten- or eleven-dimensional supergravities. Besides, the scalar

potential of the four-dimensional N = 6 gauged supergravity has already consid-

ered in [56] along with a recent version in a more general form of the embedding

tensor formalism in [4] where the fermion-shift matrices and the scalar potential

have been identified by consistent truncation of the N = 8 theory.

We will organize the thesis as follows. We will firstly review the impor-

tant ingredient of supergravity in the first few chapters. In the introduction, we

review all the relevant ideas of studying four-dimensional N = 6 gauged super-
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gravity with SO(6) gauge group. In chapter 2, we will review some properties of

a manifold for studying general relativity. Then, we apply such tools to describe

gravity in chapter 3. After that, we will recall some crucial properties of supersym-

metry and supergravity in chapter 4. In chapter 5, we will discuss the structure of

N = 6 gauged supergravity in four dimensions with SO(6) gauge group. Finally,

we will look at the holographic solutions of the N = 6 gauged theory in chapter

6. Then, we end this thesis with the conclusion and comments.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

Differential Geometry

Differential geometry is the study of curved space. In physics, it is very important

to define a locally flat space at every point on a curved space, so the curved space

is called a manifold. To study physics on a curved manifold, we need additional

structures such as a metric tensor and connections. A manifold equipped with the

metric tensor is said to be (pseudo-)Riemannian manifold denoted by (M, g), see

also [79–88].

2.1 Manifolds and Tensor Fields

A d-dimensional manifold is a locally flat topological space M with the differ-

entiable structure of class Ck.The manifold M, for every point on the manifold

pα ∈ M, has neighborhood homeomorphism from an open set uα which can be

mapped to a coordinate function Rd by Ψα as shown in figure (2.1). Ψα is the

coordinate function represented by d variables {xµ(p)} = {x1(p), x2(p), ..., xd(p)}
1. The pair of (uα,Ψα) is called a coordinate chart.

Ψα : uα ∈M→ Rd (2.1.1)

The collection of coordinate charts is called atlas “A”.

It is also possible to have more than one coordinate representation, so we

define the coordinate transformation xµ(p) = yν(p) as shown in figure (2.1) by

Ψα ◦Ψ−1
β : Rd → Rd. (2.1.2)

1If a d-dimensional manifold takes the form of M1,d−1, the local space becomes Lorentzian

space of R1,d−1.
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(Ψα ◦Ψ−1
β ) is a composite map between coordinate charts, if uα ∩ uβ ̸= ∅.

Figure 2.1: The map between overlapping coordinate charts

The definition of the differentiable structure of class Ck(1 ≤ k ≤ ∞) of a

d-dimensional manifold M is a collection of coordinate charts {(uα,Φα) | α ∈ A}

satisfying

1.
∪
α∈A

uα = M

2. (Ψα ◦Ψ−1
β ) is Ck, α, β ∈ A.

If k →∞, the manifold is said to be smooth manifold.

Let f : M→ N be a map between an m-dimensional and an n-dimensional

manifold as shown in figure (2.2) together with Φ(p) = {xµ}, Ψ(f(p)) = {yα},

and y = Ψ ◦ Φ−1, we can write a coordinate representation in terms of another

coordinate representation as

yν = f ν(xµ) (2.1.3)

where f is Ck times differentiable with respect to xµ around a point p ∈ M or

Φ(p) = {xµ}. If k → ∞, f is said to be smooth. f is called a diffeomorphism if

Φ ◦ f ◦Ψ−1 is invertible and both y = Φ ◦ f−1Ψ−1(x) and x = Ψ ◦ f ◦ Φ−1(y) are

smooth namely, C∞. The manifold M and N are diffeomorphic regarded as the

same manifold denoted by M ≡ N, and dim M=dim N.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Figure 2.2: The map between manifolds

2.1.1 Product Manifold

If both M and N are an m- and n-dimensional manifold, a product manifold 2

M ×M is an (m + n)-dimensional manifold. For example, the product manifold

of two one-sphere manifolds is a torus, T 2 = S1 × S1 as shown in figure (2.3).

Figure 2.3: The product manifold of M×N = S1 × S1 = T 2.

2.1.2 Curves and Scalars

A curve c(t) on a manifold shown in figure (2.4) which does not intersect with

itself can be parameterized by a parameter t where t ∈ (a, b) and (a, b) can be

extended to (−∞,∞). c(t) can be written in the coordinate representaion as

x(t) = Ψ ◦ c : R→ Rd (2.1.4)

where we can write {xµ(t)} = {x1(t), x2(t), ..., xd(t)}.
2A (1, d)-dimensional spacetime in supergravities can be studied by the compactification of

D-dimensional string/M-theory on a (D-d-1)-dimensional compact manifold via the product
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Figure 2.4: This figure shows the map between a curve on a manifold, coordinate

chart, and real numbers

A scalar function f on a manifold M is a smooth map from the manifold M

to real numbers R as shown in figure (2.5)

f : M→ R (2.1.5)

where f can be parameterized by a coordinate chart of d variables written as

f ◦Ψ−1 : Rd → R

f(x) = f ◦Ψ−1(x) (2.1.6)

which defines a real-valued function on M in terms of coordinate representation.

A set of smooth scalar functions on the manifold M is denoted by F(M).

2.1.3 Vectors and Dual Vectors

A vector on the manifold M can be defined as a tangent vector of a parametric

curve c(t) as shown in figure (2.6). The tangent vector at a point p = c(t = 0) is

determined by a directional derivative of a scalar function along the parametric

manifold of a non-compact manifold and the compact manifold of R1,d ×MD−d−1
internal .
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Figure 2.5: The map between a curve on manifold c(t), coordinate chart Ψ, and

real number R

curve f(c(t)) given by

df(c(t))

dt

∣∣
t=0

=
∂f

∂xµ
dxµ(t)

dt

∣∣
t=0

(2.1.7)

= V µ∂µf (2.1.8)

where we have used the chain rule by writting c(t) in terms of a coordinate repre-

sentation and V µ = dxµ(c(t))
dt

∣∣
t=0

.

We can define a tangent vector operator V on a manifold M at a point

p = c(t = 0) as

V = V µ∂µ (2.1.9)

where V µ is called a vector component of a basis vectors eµ = ∂µ.

The action of the tangent vector operator V on a scalar f can written as

V [f ] ≡ df(c(t))

dt

∣∣
t=0

= V µ∂µf (2.1.10)

which coincides with the equation (2.1.7).

However, there usually exists more than one parametric curve at a point

p which gives the same tangent vector, so we can define the equivalent class of

parametric curves on a manifold if the curves satisfy

1. c1(t = 0) = c2(t = 0) = p

2. dxµ(c1(t))
dt

∣∣
t=0

= dxµ(c2(t))
dt

∣∣
t=0

.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

Figure 2.6: This figure shows the map between a curve on manifold, coordinate

charts, and real number to define the general coordinate transformation

The curves c1(t) and c2(t) resulting in the same tangent vector V at a point p are

in the same equivalence class, manely c1(t) ∼ c2(t). All of the equivalence classes

of curves at a certain point p ∈M characterize all of the tangent vectors forming

a tangent vector space TpM . The collection of tangent vectors spaces
∪

p∈M
TpM

having the structure of a differentiable manifold is called the tangent bundle TM .

We can also define the transformation rule of the vector between different

coordinate representations as

V = V µ∂µ = V µ′
∂µ′ (2.1.11)

since the vector itself is a geometric object and is independent of coordinate rep-

resentations, we can define the transformation of the vector component

V µ′
=
∂xµ

′

∂xµ
V µ. (2.1.12)

and the transformation of the basis vector as

∂µ′ =
∂xµ

∂xµ′ ∂µ (2.1.13)

In general, ∂xµ′

∂xµ and ∂xµ

∂xµ′ are not constant, so the transformation of the vector

V µ(x)→ V µ′
(x′) is called general coordinate transformation (GCT). The new ba-

sis eµ′ of TpM is now the linear combination of the original one eµ.
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A dual vector (one-form) is a linear function mapping a vector to real num-

bers satisfying the linear properties

ω : Rn → R, (2.1.14)

ω(αv + βu) = αω(v) + βω(u) (2.1.15)

where v, w ∈ Rn. The dual vector space is a vector space (Rn)∗ dual to the vector

space Rn. Therefore, the dual tangent vector space at a point p ∈ M of TpM is

called cotangent space T ∗
pM . If ωp ∈ T ∗

pM ,

ωp : TpM → R. (2.1.16)

Regarding dxµ as a dual basis vector of T ∗
pM , we write a dual vector as

ω = ωµdx
µ. (2.1.17)

The action between a dual basis vector of T ∗
pM and a basis vector of TpM can be

defined as

⟨dxµ, ∂

∂xν
⟩ = δµν . (2.1.18)

We can define the inner product as ⟨ , ⟩ : T ∗
pM × TpM → R which maps a

vector and a dual vector to real numbers

⟨ω, V ⟩ = ωµV
ν⟨dxµ, ∂

∂xν
⟩ = ωµV

µ. (2.1.19)

Similar to the vector transformation (2.1.12), we can also define the dual vector

transformation under the change of coordinate representation3 given by

ω = ωµdx
µ = ωµ′dxµ

′
. (2.1.20)

The transformation of the dual vector component can be written as

ωµ′ =
∂xµ

∂xµ′ ωµ (2.1.21)

3This is true for an arbitrary tensor because a tensor is a geometrical object which is invariant

under the change of coordinate representation. However, the component of a tensor does change

due to the change of coordinate which we choose to represent. Then, whenever we write tensor

transformation, we mean the tensor component.
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and the transformation of dual basis vector reads

dxµ
′
=
∂xµ

′

∂xµ
dxµ. (2.1.22)

2.1.4 Tensors

A tensor is a multilinear map of r elements of tangent vector space TpM and q

elements of cotangent space T ∗
pM to real numbers R

T q,r ∈ (T ∗
1 (M)⊗ ...⊗ T ∗

r (M))⊗ (T1(M)⊗ ...⊗ Tp(M)) = T q
r,p(M) (2.1.23)

where T q
r,p(M) is an extended vector space at point p ∈M. T q,r is called a tensor

of rank (q, r). We can express the rank T q,r tensor in terms of dual basis vectors

and basis vectors as following

T q,k = T µ1...µq
ν1...νr

(
∂

∂xµ1
⊗ ∂

∂xµ2
⊗ ...⊗ ∂

∂xµq
⊗ dxν1 ⊗ dxν2 ⊗ ...⊗ dxνr). (2.1.24)

Similar to the (dual)-vector transformation (2.1.12), (2.1.21), a tensor transforms

according to the vector and the dual vector component with the upper and lower

indices, respectively

T µ′
1...µ

′
r
ν′1...ν

′
k
= (

∂xµ
′
1

∂xµ1

∂xµ
′
2

∂xµ2
...
∂xµ

′
r

∂xµr
)(
∂xν1

∂xν
′
1

∂xν2

∂xν
′
2
...
∂xνk

∂xν
′
k

)T µ1...µr
ν1...νk . (2.1.25)

If a vector is smoothly distributed at a point p ∈ M, the vector is said to be

a vector field. Similarly, a tensor field of type (r, k) is a smooth distribution of

element of T r
k,p(M) on each a point p ∈M. The set of the vector fields and tensor

fields on the manifold M can be represented by χ(M) and τ qr (M), respectively.

2.1.5 Lagrangian on Manifolds

Let M be a differentiable manifold with its tangent bundle TM , Lagrangian is a

map from the tangent bundle to real numbers

L : TM → R. (2.1.26)
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Lagrangian 4 is a function of position and velocity corresponding to a point on

manifold M and a tangent vector at that point, respectively. A map γ : M→ M

is a curve of the trajectory of the Lagrangian on a manifold M if γ extremizes the

functional action given by

S[γ, γ̇] ≡
∫ t2

t1

L(γ, γ̇)dt (2.1.27)

where γ̇ ∈ TMγ(t). The evolution of coordiante xµ of a point in motion satisfies

d

dt

∂L

∂V µ
=

∂L

∂xµ
. (2.1.28)

This is called Euler-Lagrange’s equation where γ̇(t) = dxµ

dt
∂µ = V µeµ.

2.2 Differential Forms

2.2.1 p-form tensors

A p-form tensor or p-form is a totally anti-symmetric rank (0, p) tensor defined as

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp (2.2.1)

where the wedge product is antisymmetric namely, dxµ ∧ dxν = −dxν ∧ dxµ, and

the space of p-forms is characterized by Λp(M).

2.2.2 Wedge Product

The wedge product of p-form and q-form on Λp(M) and Λq(M) respectively, can

be written as

(A ∧B)p+q =
1

p!q!
Aµ1...µpBν1...νqdx

µ1 ∧ ... ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνp

=
(p+ q)!

p!q!
A[µ1...µpBν1...νq ]dx

µ1 ∧ ... ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνp

= (A ∧B)µ1...µpν1...νqdx
µ1 ∧ ... ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνp .

(2.2.2)

4One of the most compact ways to encode the information of a physical system such as the

field’s equations, symmetries, etc.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

So, the component of the wedge product reads

(A ∧B)µ1...µpν1...νq =
(p+ q)!

p!q!
A[µ1...µpBν1...νq ]. (2.2.3)

2.2.3 Exterior derivative

The exterior derivative d allows us to differentiate a p-form to get a (p+ 1)-form,

or d is a map from Λp → Λp+1 given by

dωp = d(
1

p!
ωµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp)

=
1

p!
∂ρωµ1µ2...µpdx

ρ ∧ dxµ1 ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp

=
(p+ 1)!

p!
∂[ρωµ1µ2...µp]dx

ρ ∧ dxµ1 ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp

= (dω)ρµ1µ2...µpdx
ρ ∧ dxµ1 ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp .

(2.2.4)

So, we can read the component of the exterior derivative as

(dω)ρµ1µ2...µp = (p+ 1)∂[ρωµ1µ2...µp]. (2.2.5)

2.2.4 Hodge Duality

The hodge duality ∗ is a map ∗ : Λp → Λm−p given by

∗ωp =
1

p!
ωµ1µ2...µp ∗ (dxµ1 ∧ dxµ2 ∧ ... ∧ dxµp)

=
1

p!(n− p)!
ωµ1µ2...µpϵν1ν2...νn−p

µ1µ2...µpdxν1 ∧ dxν2 ∧ ... ∧ dxνn−p .
(2.2.6)

So, one can read the component of the hodge duality as

(∗ωp)ν1ν2...νn−p =
1

p!
ϵ µ1µ2...µp
ν1ν2...νn−p

ωµ1µ2...µp . (2.2.7)
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2.3 Riemannian Manifolds

A Riemannian manifold is a manifold equipped with a metric tensor. In this

section, we will review important quantities related to the metric tensor to study

physics on a manifold. One of the most important aspects of the metric tensor is

that it encodes the dynamics of gravity.

2.3.1 The Metric tensor and Vielbein

A metric tensor gµν is an additional structure on a manifold M so that we can

define an infinitesimal distance between two neighboring points

ds2 = gµν(x)dx
µdxν (2.3.1)

where gµν is a symmetric tensor, and it is a diagonalizable matrix under general

coordinate transformation (GCT)

g′µν(x
′) =

∂xρ

∂xµ
∂xσ

∂xν
gρσ(x). (2.3.2)

The type of Riemannian 5 manifold can be classified by the signature of the

eigenvalues of the diagonalized metric tensor namely, +1, 0,−1

gµν =



diag(−1, ..., 1, ..., 0), If there exists a zero eigenvalue,

gµν is degenerate, gµν does not exist.

diag(1, 1, ..., 1), If all eigenvalues are positive,

the manifold is the Riemannian manifold, or Euclidean space.

diag(−1, 1, ..., 1), If there exists one negative and non-zero eigenvalue,

the manifold is the pseudo-Riemannian manifold

, or Lorentzian space.

5The Euclidean manifold plays important role in the internal manifold of supergravities on

which string/M-theory are compactified, and Lorentzian manifold is the property of spacetime

in which we live especially four-dimensional spacetime.
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On other hand, in theories such as supergravities where fermions coupled

to gravity, we need to use a frame where the fermions belong called local Lorentz

tangent space. The diagonal metric tensor is quadratically related to this frame

in terms of a vielbein, eaµ, with the flat Minkowski metric ηab = diag(−1, 1, 1, 1).

gµν(x) = eaµ(x)ηabe
b
ν(x). (2.3.3)

The indices [a, b, c..] and [µ, ν, .., λ] are called tangent and spacetime indices,

respectively. Sometimes, we also use [µ̂, ν̂, .., λ̂] to refer the tangent indices. More-

over, we can use the vielbien to map a vector of spacetime indices to tangent

indices

V a = V µeaµ , V µ = eµaV
a (2.3.4)

Va = Vµe
µ
a , Vµ = eaµVa. (2.3.5)

The vielbien transforms as dual vector of the local Lorentz tangent space

e
′a
µ (x) = Λ−1a

b(x)e
b
µ(x). (2.3.6)

The transformation is called local Lorentz transformation because Λ(x) depends

on spacetime location x. Moreover, The vielbien also transforms under diffeomor-

phism as

e
′a
µ (x

′) =
∂xρ

∂xµ
eρ(x) (2.3.7)

Therefore, This indicates that the vielbien can also be seen as vectors forming an

orthonormal set in tangent space at each point

eaµgµνe
ν
b = ηab (2.3.8)

with eνa being the inverse vielbien.

The vielbien can be also considered as the local Lorentz vector defining the

local Lorentz basis 1-form

ea = eaµ(x)dx
µ (2.3.9)

which is dual to its inverse vielbien in the dual basis

ea = eµa(x)∂µ. (2.3.10)
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2.3.2 Covariant Derivatives

Tensors are geometrical objects on a manifold, so the differentiation of tensor

should result in a tensor satisfying the tensor transformation (2.1.25). To make

the consideration more traceable, we consider the derivative of a vector as a ten-

sor of rank (1,1) and express the tensor transformation under general coordinate

transformation as

∂µV
ν → ∂µ′V ν′ = (

∂xµ

∂µ′

∂

∂xµ
)(
∂xν

′

∂xν
V ν)

=
∂xµ

∂xµ′ ∂µ(
∂xν

′

∂xν′
)V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂µV

ν .

(2.3.11)

The first term causes the transformation not to be the tensor transformation unless

∂µ(
∂xν′

∂xν′ ) = 0. This implies the linear transformation on a flat manifold, which is

not always the case.

Therefore, we will introduce a connection, which compensates the curvature

effect and preserves the transformation rule. As a result, the ordinary derivative

is now replaced by the covariant derivative given by

∇νV
µ =

∂V µ

∂xν
+ Γµ

νρ(g)V
ρ (2.3.12)

where Γµ
νρ(g) is Christoffel symbol.

Moreover, we could also define the covariant derivative of dual vector 6 as

∇νωµ = ∂νωµ − Γρ
νµ(g)ωρ. (2.3.13)

In the absence of fermions, we have the torsion free condition Γρ
νµ = Γρ

µν and the

metric compatibility7 ∇ρgµν = 0, so we can define the Christoffel symbol in terms

of the metric tensor as

Γρ
νµ(g) =

1

2
gρλ(∂νgλµ + ∂µgνλ − ∂λgνµ). (2.3.14)

As a result, Christoffel symbol is not a free field but written in terms of the

metric tensor. In particular, Christoffel symbol is not gauge field of gravitational
6We use the fact that ∇µ(ωνv

ν) = ∂µ(ωνv
ν)

7A manifold admits locally flat space, so at a certain point gµν → ηµν and ∇ρηµν = 0. This

is a tensor equation which holds true in any coordinate.
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interaction but the metric tensor, which is governed by Einstein’s field equation.

In the presence of a torsion, Christoffel symbol is not symmetric and cannot

be completely determined by the metric tensor. Then, we need an extra variable

to describe spacetime instead of the metric tensor alone. We therefore define

T ρ
µν = 2Γρ

[µν] = Γρ
µν − Γρ

νµ (2.3.15)

where T ρ
µν = −T ρ

νµ is called torsion tensor. Then, the Christoffel symbol Γρ
µν(g)

is replaced by a connection Γρ
µν given by

Γρ
µν = Γρ

µν(g) +
1

2
(T ρ

ν µ + T ρ
µ ν + T ρ

µν) (2.3.16)

where the first term is defined in(2.3.14) the last term is called the contorsion

tensor written as

Kρ
µν =

1

2
(T ρ

ν µ + T ρ
µ ν + T ρ

µν). (2.3.17)

The connection is said to be Levi-civita connection or Christoffel symbol in the

absence of the torsion tensor.

Γρ
µν = Γρ

µν(g) =
1

2
gρλ(∂νgλµ + ∂µgνλ − ∂λgνµ) (2.3.18)

On the other hand, when we consider a two-form in the local Lorentz frame

from the one-form (2.3.9)

dea =
1

2
(∂µe

a
ν − ∂νeaµ)dxµ ∧ dxν (2.3.19)

which leads to the local Lorentz transformation as

d(Λ−1a
be

a) = Λ−1a
bde

a + dΛ−1a
be

a. (2.3.20)

Similar to the vector transformation under GCT, to compensate the extra second

term in the transformation, we introduce the anti-symmetric two-form connection

called the spin connection given in the first Cartan structure equation

T a = dea + ωa
b ∧ eb (2.3.21)

where T a is the torsion 2-form.

We can define the covariant derivative for the local Lorentz frame called the

Lorentz covariant derivative

DµV
a = ∂µV

a + ω a
µ bV

a , and DµVa = ∂µVa − ω b
µ aVb. (2.3.22)
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The affine connection of Christoffel symbol is not an independent field but

is written in terms of the metric tensor field as in (2.3.14) by imposing the metric

compatible and torsionless condition.

Similarly, we assume that the spin connection is completely determined by

the vielbien if we impose the torsionless condition.

Dµe
a
ν −Dνe

a
µ = ∂µe

a
ν − ∂µea µ + ω a

µ be
b
ν − ω a

ν be
b
µ = 0 (2.3.23)

The unique solution of (2.3.23) is

ωµab[e] =
1

2
(e ν

a ωµνb − e ν
b ωµνa − e ρ

a e σ
b e c

ρ ωρσc) (2.3.24)

where ωµνa = ∂µeνa − ∂νeµa.

The presence of the torsion in supergravity results from the existence of

fermions not spacetime itself, and we can rewrite the torsion free spin connection

with the torsion contribution from fermions to the torsion free spin connection via

the contorsion tensor as

ω ab
µ = ω ab

µ [e] +Ka b
µ (2.3.25)

where Ka b
µ is called the contorsion (2.3.17).

In calculations, we always assume spacetime to be torsion free since we

physically think that the intrinsic properties of spacetime can be completely char-

acterized by the spacetime interval through the metric tensor defined in (2.3.1).

However, in the presence of fermions, we can think of the presence of torsion as

a direct result of the fermions’ properties, which equivalently turns out to be the

presence of the higher order of fermions entering the torsion free spin connection

via the contorsion tensor mentioned in (2.3.25).

2.3.3 Curvature Tensors

In the absence of fermions, the intrinsic curvature of the geometry can be defined

by the commutation of covariant derivative given by

[∇ρ,∇σ]V
µ = Rµ

νρσV
ν . (2.3.26)
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Moreover, we can express Riemann tensor in terms of the metric tensor as

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γµ
νλΓ

λ
νσ − Γµ

σλΓ
λ
νρ. (2.3.27)

Riemann tensor is the only tensor that can be constructed from the metric tensor

with the properties

Rρ[σµν] = 0,

Rρσµν = Rµνρσ,

Rρσµν = −Rρσνµ,

Rρσµν = −Rσρµν ,

∇[λRρσ]µν = 0.

(2.3.28)

The fourth equation is called Bianchi’s identity. For an n-dimensional manifold,

Riemann tensor has n2(n2 − 1)/12 independent components.

We can contract Riemann tensor with the metric tesnor, so we obtain Ricci

tensor Rµν

Rµν = Rρ
µρν = gλρgλσR

σ
µρν (2.3.29)

Finally, we can do the contraction of Ricci tensor with the metric tensor,

and we get Ricci scalar

R = gµνRµν (2.3.30)

which is invariant under GCT.

The curvature tensor can also be evaluated by a two-form curvature written

in the second Cartan’s structure equation given by

Rab = dωab + ωa
c ∧ ωc

b (2.3.31)

where the components in spacetime read

Rab =
1

2
Rab

µνdx
µ ∧ dxν (2.3.32)

which can be written in terms of the spin connection

R a
µν b = ∂µω

a
ν b − ∂νω a

µ b + ω a
µ cω

c
ν b − ω a

ν cω
c

µ b. (2.3.33)
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Ricci identities are the commutation relations of Lorentz covariant derivative

on various fields given by

[Dµ, Dν ]ϕ =
1

2
RµνabM

abψ,

[Dµ, Dν ]V
a = R a

µν bV
b,

[Dµ, Dν ]ψ =
1

4
Rµνabγ

abψ

(2.3.34)

with Mab, γab,ϕ, and ψ being Lorentz generators, gamma matrices, scalar field,

and fermion field respectively. These equations give rise to a generalization of

spacetime covariant identity (2.3.26) as

[∇µ,∇ν ]V
ρ = R ρ

µν σV
σ − TµνσDσV

ρ. (2.3.35)

2.3.4 Parallel Transport and Geodesics

In a curved manifold, there is no well-defined way to say whether or not two

vectors at different points are parallel because we can only compare vectors at the

same point.

In a flat manifold, the transport of a vector along a curve xµ(λ) preserves

the direction of the vector since there is no effect from the curvature as shown in

figure (2.7). This statement can be extended to an arbitrary tensor, so we can

write the equation of parallel transport in a flat manifold as

0 =
d

dλ
Tα1α2...αm

β1β2...βn =
dxµ

dλ
∂µT

α1α2...αm
β1β2...βn . (2.3.36)

In curved manifold, the vector is manifestly influenced by the curvature

effect as shown in figure (2.8), so we will replace the ordinary derivative with the

covariant derivative

0 =
dxµ

dλ
∇µT

α1α2...αm
β1β2...βn . (2.3.37)

To obtain a path in which a free particle travels in spacetime called geodesics,

we need to generalize a straight line on a flat manifold to a curved manifold. The
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Figure 2.7: This figure shows the parallel transport on flat plane, so the vector

along the curve will not be affected by the curvature.

Figure 2.8: This figure shows that the vector transported along the closed loop is

affected by the curvature of the sphere.

geodesic path is a curve xµ(λ) that parallel transports its tangent vector. We can

write the geodesic equation as

0 =
dxµ

dλ
∇µ(

dxν

dλ
)

=
d2xα

dλ2
+ Γα

µν
dxµ

dλ

dxν

dλ
.

(2.3.38)

If we have the initial conditions of position xµ(λ0) and the direction dxµ

dλ
|λ0 , we can

compute a unique geodesic path. The direction condition can be also considered

as an inertial velocity if we choose λ = τ where τ is a proper time of the moving

particle.

2.3.5 Integration on Manifold

The invariant volume element denoted by ΩM is given by

ΩM =
√
−gdx1 ∧ dx2 ∧ ... ∧ dxn = edx1 ∧ dx2 ∧ ... ∧ dxn (2.3.39)

where g is the determinant of the metric tensor and e is the determinant of the

vielbein. Then, we can define the integration of scalar functions f ∈ F(M) over



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

the manifold as ∫
M

fΩM =

∫
M

√
−gdx1 ∧ dx2 ∧ ... ∧ dxm. (2.3.40)

Moreover, We can also express the invariant volume element in terms of hodge

star as

∗1 =

√
−g
m!

ϵ̃µ1µ2...µmdx
µ1 ∧ dxµ2 ∧ ... ∧ dxµm =

√
−gdx1 ∧ dx2 ∧ ... ∧ dxm (2.3.41)

where ϵ̃µ1µ2...µm is called Levi-Civita symbol,

ϵ̃µ1µ2...µm =


+1, if (µ1µ2...µm) is an even permutation of 012...m

−1, if (µ1µ2...µm) is an odd permutation of 012...m

0, otherwise.

The Levi-Civita symbol can be related to the Levi-Civita tensor given by

ϵµ1µ2...µm =
√
−gϵ̃µ1µ2...µm . (2.3.42)

On the other hand, we can write

ϵµ1µ2...µm =
1√
−g

ϵ̃µ1µ2...µm . (2.3.43)

We can also write the volume form of spacetime indices in terms of tangent indices

as

ϵµ1...µndx
µ1 ∧ · · · ∧ dxµn = ϵa1...andx

a1 ∧ · · · ∧ dxan (2.3.44)

where ϵa1...an coincides with the Levi-Civita symbol ϵ̃µ1µ2...µn ,denoted by ϵ0̂1̂2̂3̂ = 1.

We can also define an interval distance from the infinitesimal length

l =

∫ √
gµν ẋν ẋµdλ (2.3.45)

which leads to the geodesic equation parameterized by a parameter λ

ẍµ +
1

2
gµλ(∂ρgλσ + ∂σgρλ − ∂λgρσ)ẋρẋσ = 0. (2.3.46)

This equation coincides with the geodesic equation obtained in (2.3.38) where

ẋν = dxν

dλ
, ẍµ = d2xν

dλ2 , and Γµ
ρσ(g) =

1
2
gµλ(∂ρgλσ + ∂σgρλ − ∂λgρσ).
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2.4 Symmetry On Manifold

Symmetry on a manifold is a set of map which leaves geometry invariant or maps

the manifold to itself. We first review a map between manifolds. We define a

Figure 2.9: Φ is a map between a manifold M and N

pullback of f on N to M by Φ as shown in (2.9) given by

Φ∗f ≡ f ◦ Φ : M→ R. (2.4.1)

The pullback Φ∗ is a composite map of Φ and f . We define the pushforward of a

vector as

(Φ∗V )(f) = V (Φ∗f). (2.4.2)

This gives a generalization of the vector transformation under the general coordi-

nate transformation because M and N are not necessarily the same manifold, and

the component reads

(Φ∗V )α∂α = V µ∂y
α

∂xµ
. (2.4.3)

Then, we can also define pullback of one-form as

(Φ∗ω)(V ) = ω(Φ∗V ) (2.4.4)

with the component

(Φ∗ω)µ =
∂yα

∂xµ
ωα. (2.4.5)
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Therefore, we can pushforward any arbitrary tensor fields of rank (k, 0) as

(Φ∗T )
α1...αl =

∂yα1

∂xµ1
...
∂yα1

∂xµN
T µ1...µN (2.4.6)

and pullback any arbitrary tensor fields of rank (0, l) as

(Φ∗S)µ1...µN
=
∂yα1

∂xµ1
...
∂yα1

∂xµN
Sα1...αl

(2.4.7)

but not for any arbitrary tensor fields of rank (k, l).

However, if Φ is invertible, or Φ−1 exists, the manifold M and N are then

diffeomorphic or they are the same manifold. As a result, we can define both

pushforward and pullback on an arbitrary vectors and an arbitrary one-form at

the same time. In general, Φ and Φ−1 allow us to move any tensor fields of rank

(k, l) by pullback or pushforward as

(Φ∗T )(ω
(1), ..., ω(k), V (1), ..., V (k)) = T (Φ∗ω(1), ...,Φ∗ω(k), [Φ−1]∗V

(1), ..., [Φ−1]∗V
(l)).

(2.4.8)

The component of the tensor reads

(Φ∗T )
α1...αk

β1...βl
=
∂yα1

∂xµ1
...
∂yαk

∂xµk

∂xν1

∂yβ1
...
∂xνl

∂yβl
Tα1...αk

β1...βl
(2.4.9)

where Φ∗ = [Φ−1]∗. Pullback is the inverse of pushforward. This gives us the

advantage that we can use the diffeomorphism map of Φ to move tensor fields

from one point to another point on the manifold. This can be also considered as

active coordinate transformations.

Then, we are able to compare tensor fields at different points on the manifold.

Therefore, we can define Lie derivative as

LV T
µ1...µk

ν1...νl
= lim

t→0
(
∇tT

µ1...µk

t
) (2.4.10)

where

∇tT
µ1...µk

ν1...νl
(p) = Φ∗

t [T
µ1...νk

ν1...νk
(Φt(p))]− T µ1...µk

ν1...νl
.

Lie derivative indicates the rate of change of tensor field along the tangent vector

V µ of Φt a curve parametrized by t and it does not change the rank of the tensor.
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The component of Lie derivative on an arbitrary tensor field of rank (k, l)

can be defined as

LV T
µ1µ2...µk

ν1ν2...νl
= V σ∇σT

µ1µ2...µk
ν1ν2...νl

− (∇λV
µ1)T λµ2...µk

ν1ν2...νl

− (∇λV
µ2)T µ1λ...µk

ν1ν2...νl
− ...

+ (∇ν1V
λ)T µ1µ2...µk

λν2...νl

+ (∇ν2V
λ)T µ1µ2...µk

ν1λ...µl
+ ...

(2.4.11)

Now, we can define the symmetry on manifold that the map Φt, diffeomorphism,

is a symmetry of any tensor fields if the tensors are invariant under pullback under

Φt along the integral curve of V µ, which can be written as

Φ∗
tT = T (2.4.12)

and the symmetry of metric tensor is called isometry defined as

LV gµν = 2∇(µKν) = ∇µKν +∇νKµ = 0. (2.4.13)

This equation is called Killing equation, and Φt and Kµ are called isometry and

Killing vector, respectively.

The maximally symmetric space admits the maximal number of Killing vec-

tors. It is homogeneous and isotropic space with n(n+ 1)/2 Killing vectors and a

constant scalar curvature. In Euclidean space, these spaces are Rn, Sn, and Hn

corresponding to a flat, spherical, and hyperbolic space respectively. In Lorentzian

space, these spaces are Minkowski, de Sitter(dS), and anti-de Sitter(AdS) space.

2.5 Anti-de Sitter space

An d-dimensional anti-de Sitter Space (AdSd) is the maximally symmetric space

with d translations and
(
d
2

)
= d(d−1)

2
rotations with a constant negative scalar cur-

vature. Due to the symmetries, the Riemann curvature of a maximally symmetric

space is invariant under both translations and rotations.
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As a result, we can write the Riemann curvature tensor of a maximally

symmetric space in terms of the metric tensor as

Rµνρσ =
κ

L2
(gµσgνρ − gµρgνσ) (2.5.1)

where κ defines the type of space as

κ =


+1, de-Sitter Space of positive scalar curvature.

−1, anti-de Sitter space of negative scalar curvature.

0, Euclidean or Minkowski space.

L is called AdS radius which appears in the embedding space where it is more con-

venient to studyAdSd+1 by embedding it in R2,d with a metric ηAB = diag(−,+,+, ...,+,−).

The coordinate for the embedding space is given by Y A, A = 0, 1, 2, ..., d, d+

1. Therefore, any points on AdS can be defined by

AdSd+1 := {x ∈ R2,d| − (Y 0)2 +
d∑

i=1

(Y i)2 − (Y d+1)2 = −L2}. (2.5.2)

We can also determine Ricci tensor as

Rµν =
κ

L2
dgµν (2.5.3)

and Ricci scalar as

R =
κ

L2
(d+ 1)d. (2.5.4)

Moreover, we can also use the Poincare coordinate by firstly defining Y A →

(x0, xi, u),

Y 0 = Lux0,

Y i = Luxi,

Y d =
1

2u
[u2(L2 − x2)− 1],

Y d+1 =
1

2u
[u2(L2 + x2) + 1]

(2.5.5)

where i = 1, 2, ..., d − 1, x2 = ηαβx
αxβ with α, β = 0, 1, 2, ..., d − 1, and ηαβ is

d-dimensiomal Minkowski metric. Therefore, we can write the metric as

ds2 = L2[
du2

u2
+ u2ηαβdx

αdxβ]. (2.5.6)
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Figure 2.10: The image shows

Anti-de Sitter space of constant

negative scalar curvature.

Figure 2.11: The image shows de

Sitter space of constant positive

scalar curvature.

Figure 2.12: The image shows Minkowski

space of zero scalar curvature.

We can rewrite the metric in the Poincare coordinate (xα, z) as

ds2 =
L2

z2
[ηαβdx

αβ + dz2] (2.5.7)

where u = 1
z
.

Finally, we use a coordinate which we will use to study holographic solutions

by defining

e
r
L =

L

z
. (2.5.8)
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Therefore, we get the AdS metric of the form

ds2 = e
2r
L ηαβdx

αdxβ + dr2. (2.5.9)

Not only is AdS the maximally symmetric space, but also it preverses all su-

persymmetries of theory. However, when we consider the asymptotically anti-de

Sitter (AAdS) space which becomes AdS at some certain points called AdS fixed

points. We can rewrite the metric in general form as

ds2 = e2A(r)ηαβdx
αdxβ + dr2. (2.5.10)

This spacetime is called “Domain wall” and the AdS fixed point is a point that

A(r) becomes r/L.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

General Relativity

General relativity is a theory of gravity that describes the dynamics of gravity

in terms of spacetime curvature. This results from Einstein’s brilliant thought

experiment so-called the principle of equivalence. The principle of equivalence

states that in a sufficiently small region of spacetime we can remove the effect of

gravitation so that physics obeys special relativity. This interpretation coincides

with the mathematical idea of the manifold where the geometry is locally flat. In

this case, the spacetime is represented by a pseudo-Riemannian manifold. Due to

redundancy of coordinate representations on a manifold, the symmetry underlying

general relativity is a general coordinate transformation (GCT), see also for an

incomplete list of review on general relativity, [79, 82–84,87, 88, 105].

3.1 Minkowski Spacetime

We have already mentioned that General Relativity is a generalization of Special

Relativity, so we first review some crucial features about special relativity or a

flat Minkowski spacetime. Special relativity is a theory that proposes the relation

between space and time giving rise to a description of spacetime. Special relativity

is a theory which invariant under Poincare group ISO(d, 1) called “the maximal

isometry group of d + 1-dimensional Minkowski spacetime”. Poincare group can

be written as a semi-direct product of translation group and Lorentz group of

ISO(d, 1) =
(
R⊕ Rd

)
⋊O(d, 1) (3.1.1)
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respectively. The Lorentz group O(d, 1) contains a subgroup of SO(d, 1) with

positive determinant forming a proper Lorentz group of boosts and rotations and

the other elements with negative determinant corresponding to parity and time

reversal transformation.

Physically, special relativity is based on two postulates

1. The laws of physics take the same form in all inertial frames.

2. The speed of light is the same for all observers in all inertial frames.

These postulates lead to an important result called “simultaneity’’. It states that

events that occur at the same time in an inertial frame do not necessarily occur

at the same time in another inertial frame moving relative to the first one.

To characterize an event, we need both space and time. These postulates

Figure 3.1: The relation between two obervsers in inertial frames

break down the idea of absolute space and time in Newtonian mechanics and

Galilean transformation as shown in figure (3.1).

t′ = t,

x′ = x− vt,

y′ = y,

z′ = z.

(3.1.2)
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The generalization of Galilean transformation which obeys special relativity is

called “Lorentz transformation” given by

t′ = γ(t− xv),

x′ = γ(x− vt),

y′ = y,

z′ = z

(3.1.3)

where γ =
√
1− v2

c2
.

It is more useful at this point to introduce the idea of Minkowski spacetime,

which was proposed by Hermann Minkowski by generalizing Euclidean space to

Minkowski spacetime. The invariant distance between two points in Euclidean

Figure 3.2: The image shows the

distance in Euclidean space.

Figure 3.3: The image shows

the distance in Minkowski space-

time.

space obeying Pythagoras’ theorem is also generalized to spacetime interval given

by

ds2 = dx2 + dy2 → ds2 = −dt2 + dx2. (3.1.4)

In spacetime, the more you move in space, the less you move in time. In

four-dimensional spacetime, we can conveniently write the spacetime interval as

ds2 = ηµνdx
µdxν (3.1.5)
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where ηµν is Minkowski metric

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (3.1.6)

Not only does the spacetime diagram help us to unify space and time, but

also introduces the idea of the light cone diagram as shown in (3.4). The light

cone is a physical structure of spacetime, unlike the coordinate which is just a

convenient choice of frame. The light cone divide spacetime into three regions of

spacetime as follows

ds2


< 0, timelike.

> 0, spacelike.

= 0, lightlike.

A timelike path is a path on which massive particles move such as electrons, pro-

tons, neutrinos, etc. A lightlike interval is a track for massless particles such

as photons, gravitons, etc. To move along a spacelike trajectory, particles must

exceed the speed of light which violates special relativity. Therefore, points con-

nected by spacelike paths cannot influence each other. In spacetime diagram, the

Lorentz transformation can be shown in figure (3.5).

It is manifestly obvious that the speed of light is constant in both frames as

shown in (3.5) because the light cone appears the same. Let us further review the

mechanics satisfying special relativity or the machanics in Minkowski spacetime

so-called “Relativistic Mechanics”. Let xµ = xµ(τ) = (t, x⃗) be a path in spacetime

of a particle, we can define four-velocity uµ of the particle as

uµ ≡ dxµ

dτ
= γ(1, v⃗) (3.1.7)

where τ is time elapsed in a frame moving with particle, t is a time coordinate,

and v⃗ is a velocity through space.

We can further define a four-momentum pµ as

pµ ≡ muµ = γ(m,mv⃗) (3.1.8)
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Figure 3.4: The image shows tra-

jectory of massive particles must

be in the light cone.

Figure 3.5: The image shows the

relation between two obervsers

in spacetime diagram via Lorentz

transformation.

where γm is the energy of the particle and p⃗ = γmv⃗ is the momentum in space of

the particle.

Then, we can write the famous mass-energy relation from the invariant

product of pµpµ = pµ
′
pµ′ . Once we choose pµ′

= (m, 0) for the rest frame, and

pµ = (E, p⃗) for an abitrary frame, we obtain the mass-energy relation

E2 = p2 +m2. (3.1.9)

Now, we can move to a curved spacetime which is dynamical and responding to

matters and energies. Such a curved spacetime can be interpreted as the existence

of gravity.

3.2 General Relativity

The dynamical variable of gravity can be represented by either the metric tensor

gµν or vielbien eaµ. In the presence of only bosonic fields, there is no difference

between the two. To find Einstein’s field equation which governs the dynamics of

gravity, we will use the principle of least action where the action of gravity has to

be invariant under GCT. The Lagrangian must be also invariant under GCT and

written in terms of either the metric tensor or vielbien.
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Therefore, we write Lagrangian being a scalar function of Ricci scalar tensor,

f(R) as

Sf(R)[R] =
1

2κ2

∫
M

d4x
√
−gf(R) (3.2.1)

where κ is a constant. The action is called f(R) gravity action where R is Ricci

scalar tensor, and g = detgµν .

Einstein’s field equation can be obtained by varying the action (3.2.1) with

respect to the inverse of metric tensor gµν

δgS[R]f(R) =
1

2κ2

∫
M

d4x((δ
√
−g)f(R) +

√
−gδf(R))

=
1

2κ2

∫
M

d4x(−1

2
gµν
√
−gδgµνf(R) + ∂f(R)

∂R
δR)

=
1

2κ2

∫
M

d4x(−1

2
gµν
√
−gδgµνf(R) + ∂f(R)

∂R
(Rµνδg

µν + gµνδRµν))

(3.2.2)

where we use the following properties

δ
√
−g = −1

2

√
−ggµνδgµν

gµνδRµν = gµν□δgµν −∇µ∇νδg
µν

(3.2.3)

with □ = gµν∇µ∇ν . By the vanishing of the surface integration after doing the

integration by part, the variation of the action becomes

δgSf(R)[R] =
1

2κ2

∫
M

d4x
√
−g
(
F (R)Rµν −

1

2
gµνf(R) + (gµν□−∇µ∇ν)F (R)

)
δgµν

(3.2.4)

where F (R) = ∂f(R)
∂R

.

Let f(R) = R in which the action is called the Einstien-Hilbert action and

δgSf(R)[R] = 0 for ∀δgµν , we can finally obtain Einstein’s field equations in vacuum

as

Gµν = Rµν −
1

2
gµνR = 0 (3.2.5)

where Gµν is called Einstein tensor.

To couple gravity or spacetime with matter fields, we require the action of

matter fields to be invariant under GCT. This can be done by introducing the

minimal coupling to the action of matter fields where the ordinary derivative and
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volume element are replaced by the covariant derivative and the invariant volume

element.

∂ → ∇ (3.2.6)∫
M

d4x →
∫
M

√
−gd4x (3.2.7)

respectively. This is also known as the principle of general covariance.

The action of matter-coupled gravity can be written as

S = SEH + Smatter

=

∫
M

d4x
√
−g
(

1

2κ2
(R− 2Λ) + 2Lmatter

) (3.2.8)

where we also add a cosmological constant Λ into the Einstein-Hilbert action.

Einstein field’s equation with matter fields can be found by varying the

Einstein-Hilbert action and a matter-field term with respect to the inverse of the

metric tensor gµν .

δgS =
δSEH

δgµν
δgµν +

δSmatter

δgµν
δgµν . (3.2.9)

If we define the stress-energy tensor as

Tµν =
−2√
−g

δSmatter

δgµν
, (3.2.10)

we can write the variation of the matter field explitly as

δgSmatter =

∫
M

d4x

(
δ(
√
−g)Lmatter +

δLmatter

δgµν
√
−gδgµν

)
=

∫
M

d4x

(√
−g
(δLM

δgµν
− 1

2
LMgµν)δg

µν

)
=

∫
M

d4x
√
−g (−Tµν) δgµν .

(3.2.11)

After the variation, δgS can be written as

δgS =
1

2κ2

∫
M

d4x
√
−g
(
Rµν −

1

2
gµνR + Λgµν − κ2Tµν)δgµν . (3.2.12)

The constant κ =
√

8πG
c4

which can be computed by using Newtonian limit of

non-relativistic regime and weakly static gravitational field. We finally obtain the

Einstein’s field equations with the stress-energy tensor

Gµν + Λgµν = 8πGTµν (3.2.13)
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where G is the universal gravitational constant. We also notice that Einstein’s

field equation is a generalization to Passion’s equation

∇2Φ = 4πGρ (3.2.14)

where the gravitational field Φ is replaced by the metric tensor gµν and the matter

density ρ is generalized to the stress-energy tensor Tµν . We will consider Tµν for

a few examples of matter fields.

3.2.1 Scalar Fields

We first consider a matter field in terms of a real scalar field ϕ(x) given by

Sscalar =

∫
M

√
−gd4x(−1

2
gµν∂µϕ∂νϕ−

1

2
m2ϕ2). (3.2.15)

In order to find stress-tensor energy for scalar fields, we need to do the variation

with respect to the metric tensor field gµν

δSscalar = −
1

2

∫
M

d4x
(√
−g∂µϕ∂νϕδgµν + (∂ρϕ∂

ρϕ−m2ϕ2)δ
√
−g
)

= −1

2

∫
M

d4x
√
−g(∂µϕ∂νϕ−

1

2
gµν(∂ρϕ∂

ρ −m2ϕ2))δgµν
(3.2.16)

So, we get the stress-energy tensor of the scalar field

Tµν = ∂µϕ∂νϕ−
1

2
gµν(∂ρϕ∂

ρ −m2ϕ2). (3.2.17)

3.2.2 Vector Fields

We now consider the situation where a vector field couples to the gravitational

field. This can be done simply by considering the Maxwell field describing elec-

tromagnetic fields in a four-dimensional curved spacetime

Svector = −
1

4

∫
M

d4x
√
−gFµνF

µν (3.2.18)
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where Fµν = ∂µAν − ∂νAµ. The variation is given by

δgSvector = −
1

4
δ

∫
M

d4x
√
−gFµνF

µν

= −1

4

∫
M

d4x
(√
−gδ(FµνF

µν) + δ
√
−gFµνF

µν
)

= −1

2

∫
M

d4x
(√
−gFµλF

λ
νδg

µν +
1

2
FµνF

µνδ
√
−g
)

= −1

2

∫
M

d4x
√
−g
(
FµλF

λ
ν −

1

4
gµνFρσF

ρσ
)
δgµν .

(3.2.19)

Then, we have the stress-energy tensor on the curved spacetime

Tµν = FµλF
λ
ν −

1

4
gµνFρσF

ρσ. (3.2.20)

One of the most useful features is that the trace of T µν is zero

gµνTµν = 0. (3.2.21)

This is true only in four-dimensional spacetime.

3.3 First and Second-Order of Gravity Theory

We have used the metric tensor as a dynamical variable to describe gravity and

the action is given by

S[g] =

∫
M

d4x
√
−g( 1

2κ2
R(g) + Lmatter) (3.3.1)

where the matter fields in Lmatter are bosonic matter fields.

However, in order to construct an interacting theory of fermion fields and

gravity, we must have expressed the metric tensor in terms of the vielbein eaµ to

which the fermion fields couple. Therefore, we can use the relation between the

metric tensor gµν and the vielbein ea µ given in (2.3.3), so that we can write the

equivalent form of Einstein-Hilbert action

S[ω(e)] =

∫
M

d4xe(
1

2κ2
R(e) + Lmatter) (3.3.2)

with only the presence of the boson fields, the field’s equations are second-order

in gµν or ea µ since Christoffel symbol Γρ
µν and the spin connection ωa

b can be
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fully determined by the metric tensor and the vielbein, respectively. This is called

second-order formalism.

However, we can also construct the alternative theory of gravity under the

non-torsion free condition called “Palatini action” given by

SP [e, ω] =

∫
M

d4xe(
1

2κ2
eµae

ν
aR

ab
µν((ω, e)) + Lmatter). (3.3.3)

In vacuum, Lmatter = 0. The field’s equation for the Palatini action can be ex-

pressed in terms of two sets of the first-order field’s equations of motion of the

vielbein and the spin connection, respectively.

The former results from doing the variation of the action with respect to the

vielbein δSP/δe
µ
a . The latter results from doing the variation of the action with

respect to the spin connection δSP δ/ωµab. This formalism is called first-order

formalism. Then, we have the variation of the Palatini action as follows

δSP [e, ω] = −
1

2
e

(
Ra

µ −
1

2
ea µR

)
δeµa −

3

2
e(Dµe

a
ν)e

µ
[ae

ν
be

ρ
c]δω

cb
ρ . (3.3.4)

However, the spacetime in physics appears torsion-free, so the second-order and

the first-order result in the same physics. As a result, the Palatini formulation

is exactly equivalent to the second-order formalism of the Einstein-Hilbert action

because of the vanishing of the second term in the variation of the Palatini action.

However, if Lmatter contains fermion fields, the two theories will not be the

same, rather differ by the presence of ψ4 terms resulting from the torsion of fermion

fields. For example, the action of interacting fields between massless Dirac field ψ

and gravity in the second-order formalism is given by

S =
1

2κ2

∫
M

d4xe
[
R(ω(e))− κ21

2
ψγµ∇µψ + κ2

1

2
ψ
←−
∇µγ

µψ
]

(3.3.5)

where ψ = ψ†iγ0 is the Dirac adjoint, and ∇µ = Dµψν − Γµν
ρψρ. In this case

the spinor has no coordinate indices, so ∇ → D. Then, we can write ∇µ =

∂µ +
1
4
ωµ

abγab and ←−∇ =
←−
∂µ − 1

4
ωµ

abγab.

We can add the term of ψ4 by considering the first-order formalism. the

first-order formalism, we can find the field equation of the spin connection and

find the torsion from δωSEH + δωSDirac = 0. We can relate the torsion and the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

contorsion terms to each other.

Now, we can substitute the contorsion consisting of ψ4 via ω = ω(e) +

K through the Ricci scalar tensor R(ω) and covariant derivative D(ω) in the

first-order formalism. Therefore, we obtain the second-order formalism with the

existence of ψ4 in the action given by

S =
1

2κ2

∫
M

d4xe
[
R(ω(e))− κ2ψγµ∇µψ + κ2ψ

←−
∇µγ

µψ + κ4
1

16
(ψγµνρψ)(ψγ

µνρψ)
]
.

(3.3.6)

As a result, the physical effects of the existence of fermion fields with and without

torsion will differ by the presence of ψ4. However, the existence of the terms of

ψ4 plays no rule in general relativity of gravity, but plays a very important rule

to prove the invariance of supersymmetry in supergravity.

Therefore, the first-order formalism would be easier to prove the local su-

persymmetric property of supergravity by the existence of quartic terms in the

fermionic fields especially when we replace the massless Dirac field with the grav-

itino. We will discuss this process more carefully in the next chapter, once we

construct gravity theory which is invariant under N = 1 local supersymmetry.

On the other hand, the second formalism is very convenient for many applications

in an ordinary theory of gravity where fermions are neglected.

3.4 Black Holes

Black holes are an object that even light cannot escape from a certain distance

called the “event horizon”. They naturally arise in the solution of general relativity,

and black holes have been named after their solutions. Here, we will recall some

important solutions and discuss some crucial properties of the corresponding black

hole, see also [67–69].
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3.4.1 Schwarzschild Balck hole

The Schwarzschild solution is the first analytic solution of Einstein’s equation

solved by Karl Schwarzschild and the corresponding spacetime is also called Schwarzschild

spacetime. Schwarzschild spacetime is an exterior solution of a spherically static

massive object. There are four Killing vectors for Schwarzschild spacetime. Three

of them generate an isometry group of SO(3) on the space-like hypersurface Σt.

The other is a stationary Killing vector Kµ = (∂t)
µ implying the time-independent

metric tensor elements namely, ∂
∂t
gµν = 0.

Schwarzschild spacetime can be written as

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2(dθ2 + sin2 θdϕ2). (3.4.1)

The exterior vacuum condition implies that Tµν = 0, so Einstein’s equation be-

comes

Rµν −
1

2
Rgµν = 0. (3.4.2)

After the calculation for an asymptotically flat spacetime, we find β = −α and

e2α(r) = 1 +
c

r
. (3.4.3)

The constant c can be found by using Newtonian limit and the asymptotically flat

Schwarzschild spacetime, manely gµν → ηµν .

We can finally write the Schwarzschild metric as

ds2 = −(1− 2GM

r
)dt2 +

1

(1− 2GM
r

)
dr2 + r2(dθ2 + sin2 θdϕ2) (3.4.4)

where the metric tensor can be written as

gµν =


−(1− 2MG

r
) 0 0 0

0 1
(1− 2MG

r
)

0 0

0 0 r2 0

0 0 0 r2 sin θ

 . (3.4.5)

At the boundary r = 2MG is called ”event horizon” and r = 0 is called

singularity. We can consider the metric in the Eddington-Finkelstein coordinate

ds2 = −(1− 2M

r
)dv2 + (dvdr + drdv) + r2dΩ2 (3.4.6)
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where v = t + r∗, u = t − r∗, r∗ = r + 2M log( r
2M
− 1). Eddington-Finkelstein

coordinate states that there is no problem at Schwarzschild radius, it is just a

point that the light cones tilt over from time-like becoming space-like and all

future-directed paths point in the direction of decreasing r. Moreover, we can

make a maximal extension of the Schwarzschild spacetime to describe the whole

manifold by Kruskal-Szekeres diagram as shown in figure (3.6) or condense it into

a finite region constructing its conformal diagram called Penrose diagram as shown

in figure (3.7).

Figure 3.6: This images shows

the Schwarzschild mretic in the

Kruskal-Szekeres coordinate.

Ask a Mathematician/Physicist.

Figure 3.7: This image shows

the Penrose diagram of ex-

tended Schwarzschild spacetime.

jila.colorado.edu.

3.4.2 Reissner-Nordstrom Black holes

The Reissner-Nordstrom spacetime is an extension of Schwarzschild spacetime

where the spherically non-rotating object has the electric charge q and the mag-

netic charge p. Even though in astrophysics, the Reissner-Nordstrom Black hole

rarely exists because the evolution of a black hole would be quickly neutralized

by inverse beta decay. Therefore, most of the matter would be neutral. However,

Reissner-Nordstrom black hole represents several important features.

https://www.askamathematician.com/2009/11/q-if-black-holes-are-rips-in-the-fabric-of-our-universe-does-it-mean-they-lead-to-other-universes-if-so-then-did-time-begin-in-that-universe-at-the-inception-of-the-black-hole-could-we-be-in/u-v/
https://jila.colorado.edu/~ajsh/insidebh/penrose.html
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The action of the Reissner-Nordstrom spacetime can be written as

SEM =

∫
M

d4x
√
−g
( 1

2κ2
R− 1

4
FµνF

µν). (3.4.7)

This is called Einstein-Maxwell theory and the field equations are also called

Einstein-Maxwell’s equation.

Rµν −
1

2
gµνR = 8πGTµν (3.4.8)

where Tµν = FµλF
λ

ν − 1
4
gµνFρσF

ρσ is the stress-energy tensor of electromagnetic

fields.

The Maxwell’s equations results in the electromagnetic stress tensor in spher-

ical coordinate given by

Fµν =


0 qr−2 0 0

qr−2 0 0 0

0 0 0 p sin θ

0 0 −p sin θ 0

 . (3.4.9)

Then, the Reissner-Nordstrom metric written in terms of spherical coordinate is

given by

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 (3.4.10)

where dΩ2 = r2dθ2 + r2 sin θ2dθ2. By solving Einstein’s field equations, we can

obtain

A(r) =

(
1− 2m

r
+

(q2 + p2)

r2

)
= B(r)−1

(3.4.11)

where we set G = 1. Therefore, the Reissner-Nordstrom metric is given by

gµν =


−
(
1− 2m

r
+ (q2+p2)

r2

)
0 0 0

0
(
1− 2m

r
+ (q2+p2)

r2

)−1

0 0

0 0 r2 0

0 0 0 r2 sin θ2

 . (3.4.12)
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The Ricci scalar is

R =
12(mr − (q2 + p2))2

r6
+

2(q2 + p2)2

r8
. (3.4.13)

As we have discussed in Schwarzschild black hole, there is only one real curva-

ture singularity at r = 0. The difference between Schwarzschild black hole and

Reissner–Nordstrom Black hole is that Reissner-Nordstrom Black hole has more

than one possible event horizon where

A(r±) = 0 =
(
1− 2m

r±
+

(q2 + p2)

r2±

)
= 0. (3.4.14)

We obtain

r± = m±
√
m2 − (q2 + p2) (3.4.15)

with the following possibilities.

1. m2 < (q2 + p2) There is a naked singularity, just like the M < 0 in

Schwarzschild spacetime. A(r) is always positive. Timelike coordinate be-

comes space-like coordinate only at r = 0. This solution is unphysical.

2. m2 > (q2 + p2) This solution is realistic gravitational collapse and A(r) is

negative between r+ and r−. In region 1 outside r+, a particle moves along

a time-like coordinate until r reaches r+, at which the time-like coordinate

becomes a space-like coordinate. In region 2 between r+ and r−, the particle

inevitably moves toward r− where the space-like coordinate becomes a time-

like coordinate. In region 3, the particle can choose either to move to the

singularity or move in the direction of increasing r until the particle reaches

r− where again the time-like coordinate becomes a space-like coordinate. At

this stage, the particle is forced to move out of the event horizon at r+.

3. m2 = (q2 + p2) This solution is called extremal Reissner-Nordstrom solution

which is very important in supersymmetric theories.

Let us consider the extremal Reissner-Nordstrom black hole. The extremal Reissner-

Nordstrom black hole is a special case of the Reissner-Nordstrom black hole in
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which the mass of a black is equal to the charge of the black hole m = q without

the monopole.

The metric of the extreme Reissner-Nordstrom black hole can be written as

ds2 = −(1− m

r
)2dt2 + (1− m

r
)−2dr2 + r2dΩ2. (3.4.16)

By defining the radial coordinate transformation

r = r −m, (3.4.17)

we find that there is an isotropic form of the metric.

ds2 = −(1− m

r
)−2dt2 + (1− m

r
)2(dr2 + r2dΩ2). (3.4.18)

We can rewrite it as

ds2 = −H2
1 (r)dt

2 +H2
2 (r)[dr

2 + r2dΩ2]. (3.4.19)

where H1 = (1− m
r
)−1 and H2 = H1

−1.

We can look at the near-horizon limit of such a background, as r → 0

ds2 = − r2

(m)2
dt2 + (m)2

dr2

r2
+ (m)2dΩ2

2. (3.4.20)

Then, we define a new coordinate ν = r2

(m)2
, and we rewrite the near-horizon

solution again

ds2 ≈ (m)2

ν2
(−dt2 + dν2) + (m)2dΩ2

2. (3.4.21)

We can see that the metric turns asymptotically into two two-dimensional spaces,

which are characterized (t, r) and (θ, ϕ). The (θ, ϕ)-space is a two-sphere with

radius m, and (t, r)-spacetime is the two-dimensional anti de-Sitter spacetime

AdS2, with radius m. They both are a maximally symmetric space and can be

written as coset manifolds given by

S2 =
SO(3)

SO(2)
, and AdS2 =

SO(2, 1)

SO(1, 1)
(3.4.22)

AdS2 × S2 is the horizon geometry of AdS supersymmetric black hole solution

that would be useful to study the AdS/CFT correspondence. It is also known as

the Bertotti-Robinson solutions, which are the solution of the Einstein-Maxwell

equation.
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3.5 The Black Hole Mechanics

We look at the first realization of the holographic principle resulting from the

information paradox of the black hole. The question arises from whether or not

information of the falling object disappears. The study has shown that the area

of the black hole is always increasing, namely δA ≥ 0, which is equivalent to the

fact that the changing of entropy of a system should also be greater than zero,

namely δS ≥ 0.

However, this leads to a problem because if the black hole has entropy, it

must have a non-zero temperature. This means that the black hole must radiate.

According to classical general relativity, nothing can escape from the black hole,

so the temperature of the black hole must be zero. Nevertheless, Stephen Hawking

shown that the black hole has radiation called ”Hawking radiation”.

Holographically, this indicates that the information somehow does not disap-

pear, but it is encoded in the area of the event horizon. Therefore, the information

of bulk spacetime can be related to the physics of the boundary of the bulk space-

time, which is called the holographic principle, in particular with the AdS/CFT

correspondence being a particular example.

3.5.1 Killing horizons and Surface gravity

A Killing horizon is a null hypersurface Σ where Killing vector fields χµ become

null and normal to the Killing horizon. This is also the regime that the timelike

vector becomes spacelike at this boundary. Therefore, Stephen Hawking in 1972

shown that the killing horizon Σ, in stationary asymptotically flat spacetime, is

not necessarily the Killing horizon of the stationary Killing vector Kµ = (∂t)
µ

rather some Killing vector fields of χµ.

For a trivial example, if the spacetime geometry is static (The Schwarzschild

geometry), the corresponding Killing vector field χµ coincides with the stationary

Killing vector Kµ = (∂t)
µ which represents time translations. However, if the

spacetime is stationary but not static (The Kerr geometry), the Killing vector
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field will be the linear combination between the stationary Killing vector Kµ and

the rotational axisymmetric Killing vector field Rµ = (∂ϕ)
µ as χµ = Kµ + ΩHR

µ

for a constant ΩH describing the angular velocity of the black hole.

One of the most important features of the Killing vector is the association

with the surface gravity κ̃. Since the event horizon is a null hypersurface namely,

χµχµ = 0 everywhere on the horizon, the gradient is normal to null hypersurface

Σ. In particular, it is parallel to itself

∇ν(χ
µχµ) = −2κ̃χν . (3.5.1)

Regarding the LHS as the Killing’s equation. We obtain

χµ∇µχ
ν = −κ̃χν (3.5.2)

where κ̃ is the surface gravity which is some function of the coordinates and will

be constant over the horizon. Finally, the surface gravity is given by

κ̃2 = −1

2
(∇µχν)(∇µχν). (3.5.3)

In static black holes, the surface gravity can be interpreted as the acceleration

of a static observer near the horizon or the exerted force to keep a test-particle

stationary on the horizon observed by a static observer at infinity. The surface

gravity of the Schwarzschild spacetime is

κ̃SH =
1

4m
. (3.5.4)

The surface gravity of the Schwarzschild solution decreases as the mass of the

black hole increases. It means that the surface gravity of a supermassive black

hole is smaller than a small black hole.

3.5.2 Thermodynamics and black holes

We have focused on surface gravity because it plays an important role in the con-

nection between other physical quantities and physical properties of black holes.

The first one is that the existence of the entropy of the black hole

S =
A

4
(3.5.5)
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where A is an area of the black hole horizon. The second one is the temperature

of the black hole called “Hawking temperature”

THB =
κ̃ℏ
2π

(3.5.6)

where κ̃ is a surface gravity.

The zeroth law of the black hole Mechanics. If the stress tensor Tµν
obeys the dominant energy condition, the surface gravity of a stationary black

hole is constant over the horizon. This is analogous to the zeroth law of thermo-

dynamics which states that the temperature is constant over a body in thermal

equilibrium. Therefore, surface gravity is analogous to temperature.

The first law of the black hole Mechanics. The change of stationary

black holes with (m, J, q) to another black holes with (m+δm, J+δJ, q+δq) with

(κ̃,ΩH ,ΦH) is given by

dm =
κ̃

κ
dA+ ΩHdJ + ΦHdq (3.5.7)

where (m, J, q) are mass, angular momentum, and charge, respectively.(κ̃,ΩH ,ΦH)

are surface gravity of the event horizon, angular velocity, and electric surface

potential, respectively. Analogously, the first law of thermodynamics states the

conservation of energy of the system.

The second law of the black hole Mechanics. The second law corre-

sponds to Hawking and Bekenstein’s area theorem that the change of the area of

a black hole horizon is always greater than or equal to zero. This is analogous to

the second law of thermodynamics stating that the change of the entropy in an

isolated system is always greater than or equal zero.

dA

dt
≥ 0 (3.5.8)

Provided that Tµν satisfies weak energy condition and the cosmic censorship hy-

pothesis. It is a strong statement of a link between entropy and the area of a black

hole horizon.
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The third law of the black hole. It is impossible to make an extreme

black hole from a normal one by setting Q =M and J =M in order to have the

vanishing surface gravity and the temperature of the black hole.

A certain black hole obeys “the no-hair theorem”. It states that no mat-

ter what the initial condition of a star used to have, at the end it is just described

by three parameters which are mass, charge, and angular momentum.

We can use the same idea in thermodynamics of black hole that the en-

tropy of the system has to be calculated by the microscopic degree of freedom via

Boltzmann’s equation

Sstat = lnN(M,Q, J). (3.5.9)

It must agree with the macroscopic parameters in classical gravity which is char-

acterized by M,Q, and J as in equation (3.5.5). To account for the microstate of

the black holes, we need a quantum theory of gravity. This is also the quest for

studying black holes in string theory [112]. Moreover, the computation of AdS

black hole entropy can be also holographically calculated by studying the holo-

graphic supersymmetric AdS black hole solution of gauged supergravity in various

dimensions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

Supergravity

4.1 Supersymmetry

Supersymmetry is a theoretical conjecture of the relation between bosons and

fermions. They lead to a multiplet called supermultiplet. In this chapter, we will

review some crucial points about supersymmetry, see also [89–93,108,111].

4.1.1 Superalgebra

The No-go theorem proposed in 1967 by Coleman-Mandula which states that the

most general symmetries of the S-matrix based on conventional Lie algebra are

the direct sum of the Poincare group with an internal symmetry group

Ponicare⊗ Internal. (4.1.1)

So, there is no mix between Poincare Lie algebra and internal Lie algebra. In op-

posed to the No-go theorem, supersymmetry algebra is an extension of Poincare

algebra where we can add fermion generators because we replace Lie algebra by

the so-called graded Lie algebra. A similar idea was also applied to add fermions

into string theory to develop superstring theory by Schwarz, Gervais, and Sakita.

In 1974, Haag, Lopouszanski, and Sohnuis showed that fermion operators of su-

persymmetry are spinors of representation (1
2
, 0) and (0, 1

2
) called supercharges

given by

Qi
a , and Q

i

ȧ (4.1.2)
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respectively where i, j,= 1, ..., N and a, ȧ = 1, 2. These operators obey the graded

Lie algebra of the form

[Oa,Ob} = OaOb − (−1)ηaηbObOa = f c
ab Tc (4.1.3)

and Super-Jacobi identity

(−1)ηaηc [[Oa,Ob},Oc}+(−1)ηaηb [[Ob,Oc},Oa}+(−1)ηbηc [[Oc,Oa},Ob} = 0 (4.1.4)

where ηa defines the type of generators as

ηa =

1, if Oa is bosonic generators.

0, if Oa is fermionic generators.

These are called Lie superalgebra. Moreover, we can find the commutation rela-

tions of superalgebra given by

[P ρ, Jµν ] = i(ηµνP ν − ηνρP µ),

[P µ, P ν ] = 0,

[Jµν , Jρσ] = −i(Jµσηνρ − Jνσηµρ + Jνρηµσ − Jµρηνσ),

[P µ, Qai] = [P µ, Q
i

ȧ] = 0,

[Qai, J
µν ] = i(σµν) b

a Qbi,

[Q
ȧ
i, Jµν ] = i(σµν)ȧ

ḃ
Q

ḃi
,

{Qai, Qbj} = −
1

2
ϵabZij,

{Qai, Q
j

ȧ} = −
1

2
δjiσµaȧP

µ,

{Qi

ȧ, Q
j

ḃ} = −
1

2
ϵȧḃZ

ij

(4.1.5)

where P µ is translation generators, Jµν is Lorentz generators, and Zij is an anti-

symmetric matrix providing the abelian subalgebra of internal symmetries which

commutes with the other generators

[Z ij, P µ] = [Zij, Jµν ] = [Zij, Qk
α] = [Zij, Zkl] = [Zij, TA] = 0 (4.1.6)

where TA are internal generators of supersymmetry with the algebra

[TA, TB] = f C
AB TC ,

[Qai, TA] = (SA)
j

i Qaj,

[Q̄i
ȧ, TA] = −(S∗A)i jQ̄

j
ȧ

(4.1.7)
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where (SA)
j

i is generators TA in representation of supercharges and f C
AB is the

structure constant. Moreover, supersymmetry is also equipped with its own inter-

nal symmetry called R-symmetry denoted by HR.

4.1.2 Supermultiplet

Supermultiplet is a set of fermions and bosons that transform into each other under

supersymmetry. In supergravity, we are interested in gravity multiplet comprising

graviton and gravitino. The number of gravitino corresponds to the number of

supersymmetry N which is constrained by the number supercharges 4N . In four-

dimensional spacetime, the number of gravitinos can vary from 0 ≤ N ≤ 8. If

N = 0, we get general relativity and if N = 8, the theory is called maximal

supergravity. In supermultiplet, the number of boson (nB) is equal to the number

of fermion (nF )

nB = nF . (4.1.8)

This valids in any supermultiplet.

Massless Multiplet

Massless representation is very crucial in order to construct the theory of elemen-

tary particle physics. The category of massless gravity multiplet in four dimensions

can be shown as in the table (4.1). Moreover, for N ≤ 4, we can also couple gravity

multiplet to other matter multiplets. For N = 1, 2, we can couple chiral, vector,

and scalar multiples to gravity multiplet. For 3 ≤ N ≤ 4, we can only couple vec-

tor multiplet to gravity multiplet. The massless representation of supersymmetry

of N = 1 supermultiplet comprises of only two states given by

|pµ, λ⟩ , and |pµ, (λ+
1

2
)⟩ (4.1.9)

with λ and λ+ 1
2

being the helicity of a particle and the corresponding superpart-

ner. To account for the discrete CPT symmetry, we usually start with the negative

helicity of the particle and add the CPT conjecture helicity of the supermulitplet.
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supermultiplet of gravity λ = −2

The number of

Supersymmetry

s=2 s=3/2 s=1 s=1/2 s=0

N=1 1 1

N=2 1 2 1

N=3 1 3 3 1

N=4 1 4 6 4 1+1

N=5 1 5 10 10+1 5+5

N=6 1 6 15+1 20+6 15+15

N=7 1 7 21+7 35+21 35+35

N=8 1 8 28 56 70

Table 4.1: The table shows the field contents in supermultiplet of gravity.

We can write possible N = 1 supermultiplets as follows.

Chiral multiplet

We will set λ = −1
2
, we therefore obtain

|pµ, λ = 0⟩ , and |pµ, λ = ±1

2
⟩. (4.1.10)

These states represent a pair of partcles of spin 0 and 1/2, respectively.

Gauge or Vector multiplet

We will set λ = −1, we therefore obtain

|pµ, λ = ±1

2
⟩ , and |pµ, λ = ±1⟩. (4.1.11)

This representation shows a pair of particles of spin 1/2 and 1, respectively.

Gravity multiplet

Finally, if we set λ = −2, we eventually get

|pµ, λ = ±2⟩ , and |pµ, λ = ±3

2
⟩. (4.1.12)
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This representation shows the massless spin-2 particle with its massless superpart-

ner gravitino of spin 3/2.

To find an extended supermultiplet, we can simply apply the same method

of (4.1.9) for each of the resulting states until we reach the desired number of

supersymmetry. In four dimensions, the maximum number of supersymmetry is

N = 8, we then get the previous table of massless gravity multiplet λ = −2.

Rarita-Schwinger field

The action of massive the Rarita-Schwinger in D-dimensional flat Minkowski

spacetime is given by

SRS = −
∫
dDxψµ(γ

µνρ∂ν −mγµρ)ψρ (4.1.13)

where γµνρ ≡ 1
3!
γ[µγνγρ].

To write the action of gravitino which is the massless spin-3/2 field, we can

generalize the action of massive the Rarita-Schwinger in D-dimensional flat to

the action of massless the Rarita-Schwinger in a D-dimensional curved spacetime

given by

SRS = − 1

2κ2

∫
dDxψµγ

µνρDνψρ (4.1.14)

where e =det e a
µ , γµ = e µ

a γa, and Dµ = ∂µϵ +
1
4
ωµabγ

ab. The term 1
2κ2 is added

to be consistent when we consider supergravity.

4.1.3 Manifolds in Supergravity

Supergravity is an extension of general relativity, so the geometry of manifold

still plays an important role. From a geometrical physics point of view, there

is the idea of isometry which means the equality of measure under a group of

transformations called the isometry group Giso. The elements of the isometry

group are diffeomorphism. Besides, in order to complete the idea of isometry, we

need to define a variable associated with the measurable quantities, such as area,

volume, length, angle, etc. The variable is the metric tensor g(x). As a result,
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we can characterize the geometry of spacetime based on the isometry group of

transformations equipped with the metric tensor. The geometry is either called

Riemannian or pseudo-Riemannian manifold denoted by (M, g(x)). [81, 95]

Coset Manifold

To relate Lie group G with the isometry of a group Giso, we need to impose an

additional constraint to the property of the isometry group called the transitive

action on Giso, which means that any two points can be related to each other

by the isometry group. Moreover, the manifold is said to be homogeneous. This

means that the isometry group can be described by a given Lie group G, Giso → G.

Therefore, the homogenous manifold can be represented by the coset manifold M.

M =
G

H ′ (4.1.15)

G is a transitive action group on a generic point on M and act on bosonic fields,

graviton eaµ, vector fields AΛ
µ , and scalar fields ϕi. H

′ is a holonomy group that

leaves a generic point on M invariant. As a result, the elements which describes

the manifold M are the set of g′ ∼ g if g = g
′
h where g′ ∈ G and h ∈ H ′ meaning

that g′
X0 = X and hX0 = X0, then gX0 = g

′
h = g

′
X0 = X. Therefore, the

dimension of coset manifold is dim(G)-dim(H ′), which corresponds to the number

of coordinate characterizing the coset manifold. Moreover, the manifold is said to

be homogenous symmetric space meaning that a holonomy group H ′ becomes the

holonomy group H of the compact maximal subgroup of non-compact group G,

and G becomes a semi-simple group. The coset manifold can be written as

M =
G

H
. (4.1.16)

H = HR × Hm is holonomy group acting on fermionic fields, gravitinos ψ, and

chiral fields χi of spin 1/2, where HR is the R-symmetry, automorphism group

of supersymmetry, and Hm is a compact subgroup acting on matter fields. For

N ≥ 5, H = HR because there is no matter multiplets. In four dimensional

spacetime with 1 ≤ N ≤ 8, if N < 8, HR = U(N) and if N = 8, HR = SU(8).
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4.2 Supergravity

The law of physics is usually based on symmetries, spacetime symmetries, and in-

ternal symmetries. Besides, there exists the biggest symmetry relating spacetime

symmetries and internal symmetries together so-called supersymmetry. Field the-

ories being invariant under supersymmetry is called supersymmetric field theory.

Like other symmetries, supersymmetry has both global (rigid) and local (gauge)

versions. The generalization of local supersymmetric field theory is called super-

gravity which allows us to have the interacting field theory between graviton with

other spin-s particles. We will focus on supergravities in four-dimensional space-

time, and there are many excellent reviews on supergravity, see [79, 87, 89, 96, 97,

105–111]. In this section, we will discuss the general properties of supergravity

and we will work on N = 6 supergravity in detail in the next chapter.

4.2.1 Minimal N = 1 Supergravity in four dimensions

We start with the “minimal N = 1 pure supergravity” where we will implement

the idea of second and first-order formalism. The latter is used to conveniently

include the higher order terms in gravitino ψµ. In second-order formalism, the

action of minimal N = 1 pure supergravity can be written as the combination of

the usual Einstien-Hilbert action of massless spin-2 graviton and Rarita-Schwinger

action of massless spin-3/2 gravitino given by

S =
1

2κ2

∫
M

d4xe
(
R(ω)− ψ̄µγ

µνρDνψρ

)
(4.2.1)

where the supersymmetry variations are given by

δeaµ =
1

2
ϵ̄γaψµ (4.2.2)

δψµ = Dµϵ = ∂µϵ+
1

4
ωµabγ

ab (4.2.3)

with useful formulas resulting from the above ones

δe =
1

2
e(ϵ̄γρψρ) (4.2.4)

δeµa = −1

2
ϵ̄γµψa and δeµa = −1

2
ϵ̄γµψa. (4.2.5)
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We now consider the supersymmetry variation between graviton and gravitino.

We first consider the action of gravity S2 expressed in terms of frame fields

S2 =
1

2κ2

∫
M

d4xeR(ω)

=
1

2κ2

∫
M

d4xegµνgρλeaρe
b
νRλµab(ω)

=
1

2κ2

∫
M

d4xeeµaeνbRµνab(ω)

(4.2.6)

and its supersymmetry variation given by

δS2 =
1

2κ2

∫
M

d4x
(
(δe)eµaeνbRµνab + 2e(δeµa)eνbRµνab + eeµaeνb(δRµνab)

)
=

1

2κ2

∫
M

d4xe

(
1

2
e(ϵ̄γρψρR(ω) + 2e(−1

2
ϵ̄γρψaeνbRµνab(ω)))

)
=

1

2κ2

∫
M

d4xe

(
1

2
ϵ̄γρψρR(ω)− ϵ̄γρψλeaλg

νσebσRµνab(ω)

)
=

1

2κ2

∫
M

d4xe

(
1

2
ϵ̄γρψρR(ω)− ϵ̄γρψλRµλ(ω)

)
=

1

2κ2

∫
M

d4xe

(
Rµν −

1

2
gµνR

)
(−ϵ̄γµψν) .

(4.2.7)

The last term of the first line vanishes due to the surface terms.

We next look at S3/2 given by

S3/2 = −
1

2κ2

∫
M

d4xeψ̄µγ
µνρDνψρ (4.2.8)

and, consider the supersymmetry variation of the gravitino action S3/2

δS3/2 = −
1

2κ2

∫
M

d4xe
(
δψ̄µγ

µνρDνψρ + ψ̄µγ
µνρDνδψρ

)
= − 1

κ2

∫
M

d4xe
(
δψ̄µγ

µνρDµψρ

)
= − 1

κ2

∫
M

d4xeϵ̄
←−
Dµγ

µνρDνψρ

=
1

κ2

∫
M

d4xe (ϵ̄Dµγ
µνρDνψρ + ϵ̄γµνρDµDνψρ)

=
1

κ2

∫
M

d4xeϵ̄γµνρDµDνψρ

=
1

2κ2

∫
M

d4xeγµνρ[Dµ,Dν ]ψρ

=
1

8κ2

∫
M

d4xeϵ̄γµνργabRµνabψρ

(4.2.9)
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where the factor of 2 from the second line results from the identical contribution of

the variation of ψ and ψ̄, we use the integration by part on third line and neglect

the surface term, the vanishing of first term of fourth line due to γµνρDψρ =

γµνρ∇νψρ and ∇µγν = 0, and the existence of Riemann tensor of the last line

results from [Dµ,Dν ]ψ = 1
4
Rµνabγ

abψ.

To continue, we use

γµνργτσ = γµνρτσ + 6γ[µν [τδ
ρ]
σ] + 6γ[µδν [τδ

ρ]
σ]. (4.2.10)

Then, we have

γµνργabRµνab = γµνρabRµνab + 6Rµν
[ρ
bγ

µν]b + 6γ[µRµν
ρν]

= γµνρabRµνab + 2Rµν
ρ
bγ

µνb + 4Rµν
µ
bγ

νρb

+ 4γµRρν
µν + 2γρRµν

νµ

= 4γµRµν
ρν + 2γρRµν

νµ

= 4γµRµ
ρ + 2γρ(−R)

(4.2.11)

where the rank fifth gamma matrix γµνρab vanishes in four dimensions, the second

term of the second line vanishes due to Rµ[νρσ] = 0, and the third term of the second

line vanishes by the contraction of symmetric Rνb and anti-symmetric matrix γµρb.

We finally obtain

δ3/2S =
1

8κ2

∫
M

d4xe (4ϵ̄γµψρRµ
ρ − 2ϵ̄γρψρR)

=
1

2κ2

∫
M

d4xe

(
ϵ̄γµψνRµν −

1

2
ϵ̄γµψνgµνR

)
=

1

2κ2

∫
M

d4xe

(
Rµν −

1

2
gµνR

)
(ϵ̄γµψν) .

(4.2.12)

Therefore, the action is manifestly invariant δS2+δS3/2 = 0 under local supersym-

metry to the first order in ψν which also holds for any D-dimensional spacetime.

To complete the local supersymmetry of the theory, we need to add ψ4
µ terms to

the theory by using the first order formalism. In particular, we use ω = ω(e)+K.
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K can be obtained by the field equation for the spin connection given by

δωS2 =
1

2κ2

∫
M

d4xeeµaeνbδRµνab

=
1

2κ2

∫
M

d4xeeµaeνb (∇µδωνab −∇νδωµab)

=
1

2κ2

∫
M

d4xeeµaeνb
(
2∇µδων

ab + Tµν
ρδωρ

ab
)

=
1

2κ2

∫
M

d4e (Tρa
ρeνb − Tρbρeνa + Tab

ν) δων
ab

(4.2.13)

where we use δRµνab = ∇µδωνab −∇νδωµab in the first line, 2∇[µψν] = 2D[µψν] −

T ρ
µνψρ and omitting the surface term.

We get

δωS3/2 = −
1

2κ2
δω

∫
M

d4xeψ̄µγ
µνρDνψρ

= − 1

8κ2

∫
M

d4xe
(
ψ̄µγ

µνργabψρ

)
δων

ab

= − 1

8κ2

∫
M

d4xe
(
ψ̄µ(6γ

[µeν [be
ρ]
a])ψρ

) (4.2.14)

where we use Dµ = ∂µ+
1
4
ωab
µ γab in the first line, and γµνργab = γµνρab+6γ[µeν [be

ρ]
a]

with again the fifth rank gamma matrix γµνρab = 0 in four dimensions for the

second line.

By δωS2 + δωS3/2 = 0, we obtain

Tρa
ρeνb − Tρbρeνa + Tab

ν =
1

2
(ψ̄aγ

νψb + ψ̄ργ
ρψae

ν
b − ψ̄ργ

ρψbe
ν
a) (4.2.15)

and

Tab
µ =

1

2
ψ̄aγ

µψb. (4.2.16)

We then obtain the contorsion K given by

Kµνρ = −
1

4
(ψ̄µγρψν − ψ̄νγµψρ + ψ̄ργνψµ). (4.2.17)

Finally, we can substitute the contorsion in ω = ω(e) +K entering via Riemann

tensor R(ω), and D(ω) in the first order formalism action. Then, we obtain the

equivalent second-order formalism of the minimal N = 1 supergravity action with

the extra term of ψ4 written as

S =
1

2κ2

∫
M

d4xe
[
R− ψ̄µγ

µνρ∇νψρ +
1

4
(ψ̄µγ

νψν)(ψ̄
µγρψρ)

− 1

16
(ψ̄ργµψν)(ψ̄ργµψν + 2ψ̄ργνψµ)

]
. (4.2.18)
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This action is completely invariant under local supersymmetry to all order in ψ.

4.2.2 Extended Supergravity

Scalar Sector In supergravity, scalar fields ϕi, i = 1, 2,…, ns describe the

coordinate of a manifold, so such a manifold is said to be the Riemannian scalar

manifold Mscl with the definition of the metric tensor Gst(ϕ). The behavior of

scalar fields can be described by non-linear sigma model coupling to graviton

written as

Ls = −
1

2
Gst(ϕ)∂µϕ

s∂µϕt. (4.2.19)

To couple scalar fields to vector and fermion fields for a certain N extended

supersymmetry, we need extra constraints and additional structures on the scalar

manifold Mscl. The first extra structure is a flat symplectic bundle on Mscl and

the symplectic electric-magnetic duality. The second structure results from the

fact that fermion fields transform under the local Lorentz group which displays

the properties of spacetime and they also transform in the representation of the

holonomy group H of the scalar manifold which would correspond to the holonomy

of the Levi-Civita connection. Therefore, these would determine the interaction

between scalar fields and vector fields, and fermion fields respectively.

The coset gh, g ∈ G where G is the global symmetry group and h ∈ H

of manifold Mscal can be characterized by the set of coordinates of dimensions

dim(G)-dim(H). Therefore, the representation of scalar coset manifold can be

written in terms of scalar fields as

L(ϕs(x)) =
G

H
(4.2.20)

such that the action of h on L(ϕs(x)) is fixed to be local right action h → h(x)

on L(ϕs(x)) while the action of g on L(ϕs(x)) is said to be globally left action on

L(ϕs(x)).
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Vector sector In supergravity, there exist AΛ
µ , Λ = 1, 2, 3…, nv which

define the electric field strength FΛ
µν given by

FΛ
µν = ∂µA

Λ
ν − ∂νAΛ

µ (4.2.21)

and the magnetic dual tensor GΛµν defined as

GΛµν = −ϵµνρσ
∂L

∂FΛ
µν

= RΛΣF
Σ
µν − IΛΣ ∗ FΣ

µν (4.2.22)

where

∗FΛ
µν =

1

2
ϵµνρσF

Λρσ (4.2.23)

This relation shows the duality between the electric field and the magnetic field.

We can also express FΛ and GΛ as a 2nv dimensional vector as

G = (
1

2
GM

µνdx
µdxν) =

FΛ

GΛ

 dxµdxν

2
(4.2.24)

we have

GM =

FΛ

GΛ

 . (4.2.25)

G would describe the electric field and the magnetic dual tensor where the index

M = (Λ,Λ ), so the field equations and Bianchi’s identities can be written as

dGM = 0 (4.2.26)

And the duality properties can be written as

∗G = −CM(ϕ)G (4.2.27)

where C is a symplectic matrix

C = (CMN) =

 0 Inv

−Inv 0

 (4.2.28)

with M(ϕ) also a symplectic matrix

M(ϕ)CM(ϕ) = C. (4.2.29)

M(ϕ) would contain the matrix IΛσ and RΛΣ which characterize the non-minimal

couplings of the scalars to the vector fields.
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Global symmetry group For supergravity N > 1, G is the symmetry

group of scalar action, now we need to promote G to be global symmetry group

of the bosonic action, both vector field and scalar field.

The action of g ∈ G on scalar and vector fields are non-linear and linear

action written as

ϕr → g ⋆ ϕr , non-linearFΛ

GΛ

 = RV [g]

FΛ

GΛ

 , linear
(4.2.30)

where in general the symplectic representation of g can be written as

RV [g] =

A[g]ΛΣ B[g]ΛΣ

C[g]ΛΣ D[g] Σ
Λ

 . (4.2.31)

Both symplectic representation of RV [g] and M[ϕ] form a flat symplectic struc-

ture on scalar manifold M. To preserve the field’s equations, Bianchi’s identity,

and Lagrangian, so we need B[g]ΛΣ=0. The corresponding group is the electric

subgroup of the isometry group, Gel ∈ G.

RV [g]
M
N =

A[g]ΛΣ 0

C[g]ΛΣ D[g] Σ
Λ

 (4.2.32)

In N = 6 supergravity, Mscl =
SO∗(12)
U(6)

, where SO∗(12) is a special non-compact

form of SO(12) with maximal compact subgroup of U(6) ∼ SU(6)×U(1) and the

symplectic representation of RV [g] = 32c.

Fermion sector The fermionic fields transform under the holonomy group

of local H while the bosonic fields transform under the global symmetry group of

G. The fermionic sector comprises gravitinos of spin-3/2 denoted by ψµA and spin-
1
2

particle denoted by χABC , λIA, and λα with the corresponding charge conjugate

spinors ψA
µ , χABC , λAI , and λα respectively. The fermionic fields can be represented
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by the Weyl spinors with positive chirality

γ5


ψµA

χABC

λIA

λα

 =


ΨµA

χABC

λIA

λα

 (4.2.33)

while the chirality of the charge conjugate is negative

γ5


ψµA

χABC

λAI

λα

 = −


ΨµA

χABC

λAI

λα

 (4.2.34)

To couple bosonic fields and fermionic fields, we need quantities that transform

in both H and G. The coset representative L(ϕ) is such a quantity. Therefore,

the scalar sector is the link of the interaction between bosonic fields and fermionic

fields. Moreover, the transformation under G and the local group H is similar to

general coordinate transformation (GCT) and local Lorentz transformation (LLT)

in spacetime respectively.

Since, bosonic fields or tensors transform under GCT and fermionic fields or

spinors transform under LLT, the Lagrangian density which is invariant under H

must have the form of covariant derivative having Q as the composite connection

since H is a gauge symmetry

Dµψ = ∇µψ +Qµ ◦ ψ. (4.2.35)

Dµ can be written in terms of spin connection ω and Christoeffel connection Γ.

4.2.3 Gaugings

In this section, we will promote a suitable subgroup Gg of the electric subgroup

Gel belonging to the isometry group G to a gauge group gauged by vector fields

of the theory with the non-Abelian structure of vector fields. This procedure is

to obtain gauged supergravity from the ungauged one with the same number of
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supersymmetry by using embedding tensor formalism.

The theory is gauged by the vector fields AΛ̂ belonging to the adjoint rep-

resentation of Gg of the theory so we have the condition

dimGg ≤ nv. (4.2.36)

We introduce the minimal coupling with the gauge connection defined by

Ωgµ = gAΛ̂
µXΛ̂ (4.2.37)

where g is a gauged coupling constant, and XΛ̂ is gauge generators of the gauge

group of Gg.

The gauge generators can be written in terms of symplectic representation

of Rv[XΛ̂] as

(XΛ̂)
M̂
N̂
= Rv[XΛ̂]

M̂
N̂
=

 X Σ̂
Λ̂ Γ̂

0

−XΛ̂Σ̂Γ̂ X Γ̂
Λ̂Σ̂

 (4.2.38)

We are interested in the case that XΛ̂Σ̂Γ̂ = 0 with the quadratic constraint on

gauge generators written as

[XΛ̂, XΣ̂] = −X
Γ̂

Λ̂Σ̂
XΓ̂ (4.2.39)

We also have the linear constraint

X(Λ̂Σ̂Γ̂) = 0. (4.2.40)

Under the infinitesimal gauge transformation of g(x) ∈ Gg, and g(x) = 1 +

gξΛ̂(x)XΛ̂, we define the covariant derivative as

∇µξ
Λ̂ ≡ ∂µξ

Λ̂ + gX Λ̂
Σ̂Γ̂

AΣ̂
µξ

Γ̂ (4.2.41)

which is the total covariant derivative of general coordinate transformation and

local Lorentz transformation including H and Gg. We will also redefine the cur-

vature 2-form as

F Λ̂
µν = 2∂[µA

Λ̂
ν] + gX Λ̂

Σ̂Γ̂
AΣ̂

µA
Σ̂ν (4.2.42)

and define Ω̂µ = P̂µ + Q̂µ as

Ω̂µ = L−1∇µL = L−1(∂µ − gAΛ̂
µXΛ̂)L (4.2.43)
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where

P̂µ = Pµ − AΛ̂
µPΛ̂

Q̂µ = Qµ − AΛ̂
µQΛ̂

. (4.2.44)

PΛ̂ and QΛ̂ represent projection of L−1XΛ̂L onto subspace of coset space t and h

respectively, written as

PΛ̂ = L−1XΛ̂L|t

QΛ̂ = L−1XΛ̂L|h
(4.2.45)

where g is Lie algebra of G and g = h⊕ k with t ∈ k and h ∈ h being generators

of the coset space and Lie algebra of H, respectively.

Embedding Tensor The embedding tensor ΘΣ
Λ̂

is the projection operator

from Lie algebra of global symmetry group ofGel onto to Lie algebra of gauge group

Gg as

XΛ̂ = ΘΣ
Λ̂
tΣ (4.2.46)

ΘΣ
Λ̂

is in the representation of nv × adj(Ge), Λ̂ = 1, ..., nv and Σ = 1, ..., dim(Gel).

Moreover, the embedding tensor is independent of symplectic frame. We can write

the locality constraint as

CMNΘa
MΘb

N = 0 (4.2.47)

which implies that dim(Gg) = rank(Θa) ≤ nv and the embedding tensor is invari-

ant under a gauge transformation.

these deformations with the introduction of minimal coupling, the Lagrangian

of ungauged supergravity will not be invariant under supersymmetry transforma-

tions, and the extra terms are needed. Such a term can be written in terms of a

tensor under the holonomy group H called T-tensor as

TM = L N
M
L−1XNL. (4.2.48)

Then, we can write this in the complex basis as

TM,N
P = L M

M
L N
N
X P

MN (L−1) P
P

(4.2.49)
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We can also write the local, linear, quadratic constraint of T-tensor as

CMNT a
M
T b
N

= 0

T(MNP ) = 0

[TM , TN ] + T P
MN

TP = 0

(4.2.50)

To preserve the supersymmetry of the original theory after applying minimal cou-

pling, we need to add the extra terms of the order of g to the deformed action.

Such a term is called “Yukawa term” written as

e−1LYukawa = g(−2ϕA

µγ
µνψB

ν SAB + λ
I
γµψAµN

A
I + λ

I
λJMIJ) + c.c. (4.2.51)

where SAB,N A
I , MIJ are called fermion-shift matrices. Moreover, the supersym-

metric variations will also be deformed with the extra term at order g given by

δψAµ = ∇µϵA − gSABγµϵ
B + ... (4.2.52)

δλI = P̂A
µ Iγ

µϵA + gN A
I ϵA + ... (4.2.53)

Besides, if we do the variation of Yukawa term with respect to ψAµ and λI , there

exist the term of order g2 because δψAµ and δλI contain g. Such an extra term of

order g2 can be canceled by adding the quadratic term of the fermion-shift matrices

SAB and N A
I into the action. Such an extra term is called ”scalar potential” and

can be written as

δBAV = g2(N I
AN

B
I − 12SACS

CB). (4.2.54)

In summary, to promote ungauged to gauged supergravity, we can deform

the original ungauged supergravity by introducing minimal coupling and the mod-

ified tensor field strength with the non-Abelian gauge field. We obtain the super-

gravity L
(0)
gauged which is invariant under gauge group Gg, but it is not invariant

under supersymmetry.

To preserve supersymmetry of the original supergravity, we need to add

the “Yukawa term” and “scalar potential term” into the theory and the extra
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terms into the supersymmetry transformation of fermion fields. The complete

Largrangian is given by

e−1Lgauged = e−1Lungauged(∂ → ∇, dA→ dA+A∧A)+LYukawa+c.c.−V (4.2.55)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

N=6 gauged supergravity with

SO(6) gauge group

N=6 gauged supergravity with SO(6) gauge group gets more attention due to the

compactification from the type IIA supergravity on ten-dimensional AdS4 × CP3

[10–14] and eleven-dimensional supergravity on AdS4×S7 [50–55]. In this section,

we will review the structure of N=6 gauged supergravity with SO(6) gauge group

in the embedding tensor formalism as described in [4]. We also discuss the relation

between the fermion-shift matrices and, T-tensor, coset representative, and gauge

group generators.

5.1 Supermultiuplet of N = 6 supergravity

In N=6 supergravity, there exists only the gravity supermultiplet without mat-

ter multiplets due to the constraints of supersymmetry. Field contents of four-

dimensional N=6 supergravity are

(eµ̂µ, ψµA, A
AB
µ , A0

µ, χABC , χA, ϕAB). (5.1.1)

The bosonic sector consists of the single graviton eµ̂µ, sixteen vectors AAB
µ = −ABA

µ

and and A0
µ, fifteen complex scalars ϕAB = −ϕBA. Real and imaginary parts of

ϕAB are usually called scalars and pseudo-scalars, respectively. The manifold of

the N = 6 supergravity is the scalar manifold of the form

Mscl =
G

H
=
SO∗(12)

U(6)
(5.1.2)
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with isometry symmetries forming the global symmetry group of G = SO∗(12)

with only R-symmetry sitting in the maximal compact subgroup H = HR = U(6)

of G = SO∗(12). The fermion sectors comprise six gravitini ψµA, , twenty-six

spin-1
2

fields χABC = χ[ABC] and χA.

In order to study N=6 gauged supergravity, we follow most of the con-

vention of N=6 gauged supergravity truncated from maximal N=8 gauged su-

pergravity [4] with the gauging procedure following [96]. In this thesis, we will

follow the spacetime and tangent space indices denoted by µ, ν, . . . = 0, 1, 2, 3 and

µ̂, ν̂, . . . = 0, 1, 2, 3, respectively. Moreover, we also use the indices of A,B, . . . =

1, 2, . . . , 6 as the fundamental representation of SU(6) being the subgroup of the

R-symmetry U(6) ∼ SU(6) × U(1). The 15 complex scalar denoted by ϕAB are

the set of coordinates spanning the scalar manifold SO∗(12)/U(6) written by the

coset representative in representation 32 of SO∗(12) of the form

VM
M = A†eY (5.1.3)

with the Claley matrix

A =
1√
2

 I16 iI16
I16 −iI16

 (5.1.4)

and

Y =


0 01×15 0 ϕCD

015×1 015×15 ϕAB
1
2
ϵABCDEF ϕ̄

EFϕCD

0 ϕ̄CD 0 01×15

ϕ̄AB 1
2
ϵABCDEFϕEF 015×1 015×15

 . (5.1.5)

where ϕ̄AB = (ϕAB)
∗.

In following analysis, it is more useful to define 16×16 submatrices of VM
M

by the use of this identification

VM
M =

 h̄ Λ
Λ hΛΛ

f̄ΛΛ fΛ
Λ

 (5.1.6)
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where we can define f, h, f̄ and h̄ such that they satisfy the relations

(ff†)T = ff†, (hh†)T = hh†, fh† − f̄hT = iI16,

f†h− h†f = −iI16, fTh− hT f = 0 . (5.1.7)

We can write the inverse of VM
M in terms of f and h as

VM
M =

 −ifΛ
Λ ihΛΛ

if̄ΛΛ −ih̄ Λ
Λ

 . (5.1.8)

The sixteen electric gauge fields AAB and A0 can be combined into a single AΛ =

(A0, AAB) along with its magnetic dual AΛ written as

AM = (AΛ, AΛ) (5.1.9)

where, the gauge fields transform as 32 representation of SO∗(12)

5.2 Gaugings

Gaugings can be efficiently described by the embedding tensor formalism in which

we define the linear combination of the generators of global symmetry as gauge

generators

XM = θM
ntn (5.2.1)

where tn is the global SO∗(12) generators and θMn is called the embedding tensor.

Therefore, we can define the covariant derivative introducing the minimal coupling

of various fields written as θMm.

Dµ = ∇µ − gAM
µ XM . (5.2.2)

∇µ is the usual spacetime covariant derivative including the local U(6) composite

connection if exist. g is the gauge coupling constant which we can absorb into the

definition of θMm.

In 32 representation and SO∗(12) generators (tn)MN , the embedding tensor

can be described by the generalized structure constants

XMN
P = θM

n(tn)N
P . (5.2.3)
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To preserve all of the original supersymmetry of the ungauged theory under a

proper gauging procedure, the embedding tensor must satisfy linear and quadratic

constraints written respectively as

X(MN
LΩP )L = 0 and θM

mθN
nfmn

p +XMN
P θP

p = 0 (5.2.4)

where fmn
p is the SO∗(12) structure constants. The former implies that the em-

bedding tensor θMm belongs to the representation 351 of SO∗(12) and the latter

results in

[XM , XN ] = −XMN
PXP . (5.2.5)

As a result, the gauge generators form a closed sub-algebra and XMN
P act as the

corresponding structure constants.

In gauging an ungauged supergravity theory, the invariant of supersymme-

try requires some deformations of the ungauged theory and also supersymmetric

transformations. Such deformations are of first and second order in the gauge

coupling constant g, and can be encoded in terms of the T-tensor written as

TMN
P = VM

MVN
NVP

PXMN
P . (5.2.6)

In general, both of the electric and magnetic fields can play a role in the gaugings

which leads to various possible gauge groups. Nevertheless, in this work, we focus

only on SO(6) gauge group embedded electrically in U(6) ⊂ SO∗(12). Therefore,

the gauging only associates with electric gauge fields AAB where we have the gauge

generators written as

XI1J1,I2J2
I3J3 = 4gδ

[I3
[I1
δI2][J2δ

J3]
J2]

and XI1J1
I3J3

I2J2
= −XI1J1,I2J2

I3J3 (5.2.7)

with all remaining components of gauge generators vanishing. In particular, the

components of XΛ
M

N which couples to the magnetic gauge fields vanish.

5.2.1 T-Tensor and Fermion-Shift Matrices

In order to find the expression of T-tensor and fermion-shift matrices, we follow

the truncation of N=8 gauged supergravity to N=6. The T-tensor of the N=8
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theory can be written as

T pq
ij,kl = − 1

2
√
2
δ
[p
[kN

q]
l]ij −

√
2δ

[p
[kSl][iδ

q]
j] (5.2.8)

where there are only SAB, N
A
B, NAB, N

A
BCD fermion-shift matrices survived in

truncated N=6 theory along with the splitting of indices Λ,Σ, . . . as (0, [AB]).

Therefore, we can write the various component of T-tensor associated with

the fermion-shift matrices as

SAB =

√
2

5
TC(A,B)E

CE,

NA
B − 2

√
2Tαβ,BC

AC ,

NAB = −8
√
2

2
TC[A,B]E

CE,

NA
BCD = −2

√
2T[CD,B]E

AE − 1

2
δA[BNCD].

(5.2.9)

These upper and lower indices of the fermion-shift matrices are related to each

other by the complex conjugate, for example, SAB is a symmetric matrix, and

SAB = (SAB)∗.

Moreover, the SAB tensor will play a crucial role in the association of su-

perpotential. This implies how many the supersymmetry of a certain holographic

solution will be preserved corresponding to the number of non-vanishing Killing

spinors.

5.2.2 T-Tensor and Gauge Structure Constant

The non-vanishing structure constant of gauge group of SO(6) can be written as

(XΛ)
Γ

Σ =

X Γ
ΛΣ 0

0 X Σ
Λ Γ

 (5.2.10)

where the indices split Λ, Σ, and Γ to (0, [I1J1]), (0, [I2J2]), and (0, [I3J3]) respec-

tively under SO(6) [I, J ] = 1, 2, ..., 6.

X I3J3
I1J1I2J2

= 4gδI3[I1δJ1][I3δ
J3]
J2]

X I3J3
I1J1 I2J2

= −X I3J3
I1J1I2J2

(5.2.11)
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We can write down the expression of T-tensor with the structure constant

of gauge group as

T P
M,N = [L−1 ⋆ X] P

M,N

= (L−1) M
M (L−1) N

N̄ L P
P X P

MN

= (L−1) Λ
M (L−1) Σ

N (L) P
Γ X Γ

ΛΣ + (L−1) Λ
M (L−1)NΓL

ΣPX Γ
Λ Σ.

(5.2.12)

Plugging in the above condition with the splitting of indices Λ,Σ, . . . = (0, [IJ ])

and the definition (5.2.6), we find the component of T-tensor associated with the

coset representative as

T CD
EF,AB = −g

2
f I1J

EF (f
JJ1

ABh̄
CD

I1J1
+ hI1J1AB f̄

JJ1CD),

T CD
αβ,AB = −g

2
f I1J

αβ(f
JJ1

ABh̄
CD

I1J1
+ hI1J1AB f̄

JJ1CD)

= T CD
AB

= −g
2
f I1J(fJJ1

ABh̄
CD

I1J1
+ hI1J1AB f̄

JJ1CD).

(5.2.13)

It is straightforward to obtain all the fermion-shift matrices and the scalar poten-

tial, once we define the explicit parametrizations of scalar fields.

5.2.3 Scalar Potential

By considering N=8 Ward identity

δijV
N=8(ϕ) = g2

(
−12Sik

jk +
1

6
N klm

j N i
klm

)
, (5.2.14)

the truncated scalar potential of the N=6 theory can be expressed in the fermion-

shift matrices as

V (ϕ) =

(
−2SABSAB +

1

36
N BCD

A NA
BCD +

1

6
N B

A NA
B

)
. (5.2.15)

This scalar potential can be used to consider supersymmetric AdS4 critical points

if the critical point of the scalar potential coincides with the superpotential,. This

plays an important role in considering holographic solutions.
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5.3 Lagrangian and Supersymmetry transforma-

tion

To write down the field’s equations of the N = 6 gauged supergravity, we first

write down the bosonic Lagrangian as

e−1L =
1

2
R− 1

24
PµABCDP

µABCD − i

4

(
NΛΣF

+Λ
µν F

+Σµν −NΛΣF
−Λ
µν F

−Σµν
)
− V .

(5.3.1)

The first term is the Einstein-Hilbert action of general relativity while the second

and the third term are scalar and gauge kinetic terms, respectively. The scalar

kinetic terms can be written in term of the vielbein PABCD
µ = (PµABCD)

∗ on the

scalar coset manifold of SO∗(12)/U(6) as

PABCD
µ = VABMDµVM

CD

= i
(
f̄ΛABDµh̄

CD
Λ − h̄ AB

Λ Dµf̄
ΛCD

)
. (5.3.2)

and the scalar matrix N appearing in the gauge kinetic terms of the Lagrangian

is also given by

NΛΣ = −h̄ Λ
Λ (f−1)ΛΣ (5.3.3)

where NΛΣ is the complex conjugate of NΛΣ. Besides, the complex self-dual and

anti-self-dual gauge field strengths can be defined as

F±Λ
µν =

1

2

(
FΛ
µν ±

i

2
ϵµνρσF

Λρσ

)
(5.3.4)

with FΛ
µν written as

FΛ
µν = ∂µA

Λ
ν − ∂νAΛ

µ +XΓΣ
ΛAΓ

µA
Σ
ν . (5.3.5)

Moreover, the deformed supersymmetry transformations of the N = 6 gauged

supergravity, with all fermionic fields vanishing, are given by

δψµA = DµϵA − SABγµϵ
B − 1

4
√
2
F̂+
ρσABγ

ρσγµϵ
B, (5.3.6)

δχA = − 1

4!
ϵABCDEFP

BCDE
µ γµϵF +NB

AϵB −
1

2
√
2
F̂+
µνγ

µνϵA, (5.3.7)

δχABC = −PµABCDγ
µϵD +ND

ABCϵD −
3

2
√
2
F̂+
µν[ABϵC] . (5.3.8)
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Despite, the vanishing of all fermionic fields, the variations of fermionic fields are

not necessarily zero. Furthermore, we also note the chiralities of the fermionic

fields

γ5ψµA = −ψµA, γ5χABC = −χABC , γ5χA = −χA (5.3.9)

with the opposite chiralities for ψA
µ , χABC and χA. We can also write tensors

F̂+
µνAB = (F̂−AB

µν )∗ as

F̂−AB
µν = VM

ABG−M
µν (5.3.10)

where

GM
µν =

 FΛ
µν

GΛµν

 (5.3.11)

and GΛµν = iϵµνρσ
∂L

∂FΛ
ρσ

. We can also write

F̂+
µν = (VM

0G−M
µν )∗. (5.3.12)

In addition, we define the covariant derivative of ϵA as

DµϵA = ∂µϵA +
1

4
ωµ

abγabϵA +
1

2
QµA

BϵB (5.3.13)

with the composite connection QµA
B given by

QµA
B =

2i

3

(
hΛAC∂µf̄

ΛAB − fΛ
AC∂µh̄

BC
Λ

)
− gAM

µ QMA
B (5.3.14)

where QMA
B can be obtained from

QMAB
CD = VAB

PXMP
NVN

CD (5.3.15)

with the relation QMAB
CD = 4δ

[C
[AQMB]

D]. This will play an important role in find-

ing the supersymmetric AdS4 black holes in which we preserve the supersymmetry

by performing topological twists which we will discuss later.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

Holographic solutions of N=6,

D=4 Gauged Supergravity

In this chapter, we will be working out various types of supersymmetric solutions

to the N = 6 gauged supergravity with SO(6) gauge group. The N = 6 theory has

been studied in [4] and the theory admits supersymmetric N = 6 AdS4 vacuum

with the cosmological constant V0 = −48g2 and vanishing scalar fields. Thanks to

the AdS/CFT correspondence, this is dual to a three-dimensional N = 6 SCFT.

We will find asymptotically AdS4 geometric solutions which can be interpreted as

various types of deformation of the dual N = 6 SCFT [113].

6.1 Holographic RG flows

In low energy limit and large-N limit of the AdS/CFT correspodence, gauged su-

pergravities theories in AdSd+1 spacetime dual to strongly-coupled superconformal

field theories (SCFTs) at the d-dimensional boundary of anti-de Sitter spacetime.

We can consider the flow in the radial coordinate r of the AdS spacetime as the en-

ergy scale of the operators in SCFTs, so the correspondence relates the IR regime

of the SCFTs at the deep interior of AdS and the UV regime of SCFTs at the

boundary. On the other hand, when gauged supergravities are only in asympoti-

cally anti-de Sitter space AAdSn+1, the dual theories that appear at the boundary

are just approximated SCFTs and they are superconformal field theory at only the

conformal fixed points. As a result, the flow from the UV regime of the dual SCFT
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at the boundary to the IR regime of quantum theory at the deep interior could

break conformal symmetry, or supersymmetry and the corresponding quantum

theory could become non-conformal field theories. This is called “Renormaliza-

tion group flow” or “holographic RG flow” or ”RG flow”. Different types of IR

geometries horizon describe different types of RG flows, see also [98–100].

Therefore, the holographic RG flow is the study of supersymmetric solutions

of gauged supergravity which characterizes the flows from SCFTs at the conformal

fixed point in (UV) to other conformal fixed points or non-conformal phases of

the deformed dual SCFTs at (IR). This means that we can study the behavior of

superconformal field theory in UV related to conformal field theory or quantum

field theory in IR. This helps us to understand the dynamics of strongly-coupled

quantum field theory providing a non-perturbative technique of quantum mechan-

ical system.

To preserve the Poincare symmetry on AAdS4 of RG flows, supersymmetric

solutions of gauged supergravities must take the form of the domain wall spacetime

ds2 = e2A(r)dxµdxνηµν + dr2. (6.1.1)

Then, we can calculate the corresponding spin connection by using Cartan’s equa-

tion

deµ̂ = eν̂ ∧ ωµ̂
ν̂ (6.1.2)

where

eµ̂ = eA(r)dxµ,

er̂ = dr.
(6.1.3)

with ′ denoting r derivative, and the non-vanishing component of spin connection

ωµ̂r̂ = ωµ̂
r̂η

r̂r̂

= A
′
(r)eµ̂.

(6.1.4)

In supersymmetric domain wall solutions, the scalar fields and Killing spinors will

only depend on the coordinate r denoted by Φ(r) and ϵA(r), respectively. We also
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switch off one-form and two-forms in our theory.

The supersymmetry variations for fermions must vanish. For the µ = 0, 1, 2,

the partial derivative of Killing spinors ϵA vanishes. The components of gravitino

supersymmetry transformation of N = 6 gauged supergravity take the form

δψAµ = ∇µϵA − SABγµϵB

=
1

4
ω ab
µ γabϵB − SABγµϵB

=
1

2
A

′
γµ̂γµ̂γr̂ϵA − SABγ

µ̂γµ̂e
µ̂
µϵ

B

= (
1

2
A

′
δABe

iΛ − SAB)ϵ
B

= 0.

(6.1.5)

To solve all the BPS conditions, we have used the projection condition

γ r̂ϵA = eiΛϵA (6.1.6)

for Λ being a real function of r. In this thesis, we will use the Majorana repre-

sentation for which the gamma matrices are real, but γ5 is purely imaginary. The

projection condition relates the two chiralities of Killing spinors of the domain

walls, ϵA, and ϵA. As a result, the flow solutions preserve only half of the original

supersymmetry or 1/2-BPS solutions or 12 supercharges in this case.

Since SAB is a symmetric matrix, one can diagonalize SAB with its eigenval-

ues leading to the “superpotential” as

SAB =
1

2
WδAB. (6.1.7)

Then, we get

A
′
eiΛ −W = 0 (6.1.8)

and obtain the equation

A
′
= ±|W|,

eiΛ = ± W

|W|
.

(6.1.9)

In the following, we define W = |W| and choose the upper sign to make the

supersymmetric AdS4 critical point locate at r → ∞. Then, we can also look at
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the r component of the gravitino variation

δψAr = ∇µϵA − SABγµϵB

= ∂rϵA −
1

2
Wγr̂ϵ

A

= ∂rϵA −
1

2
A

′
ϵA

= 0.

(6.1.10)

This gives the solution of Killing spinors as

ϵA(r) = e
A
2 ϵ̃A (6.1.11)

where ϵ̃A is constant spinor satisfying the projection condition.

To find the full set of BPS equation, we also need to consider δχABC = 0,

δχA = 0

δχABC = −PµABCDγ
µϵD +ND

ABCϵD

= −Pr̂ABCDγ
r̂ϵD +ND

ABCϵD

= (−Pr̂ABCDe
−iΛ +ND

ABC)ϵD

(6.1.12)

and

δχA = − 1

4!
ϵABCDEFP

BCDE
µ γµϵF +NF

AϵF

= − 1

4!
ϵABCDEFP

BCDE
r̂ γ r̂ϵF +NF

AϵF

= (− 1

4!
ϵABCDEFP BCDE

r̂ e−iΛ +NF
A)ϵF .

(6.1.13)

Once the last two variations are satisfied, we get the BPS equations of four-

dimensional gauged supergravity. However, it is very complicated to do the cal-

culation of thirty scalar fields, so we will be working on some of the thirty scalar

fields non-vansihing. In order for the solution of non-vanishing scalar fields to

satisfy the field’s equations of thirty scalar fields, we will choose a set of singlet

scalar fields under a subgroup of gauge group of SO(6).

6.1.1 Solutions with SO(2)× SO(4) symmetry

We first consider solutions with SO(2) × SO(4) symmetry. The embedding of

SO(6) implies that the scalar ϕAB transform as an adjoint representation of SO(6).
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The singlet of SO(2)× SO(4) ⊂ SO(6) can be explicitly written by

ϕAB = ϕ(δ1Aδ
2
B − δ1Bδ2A). (6.1.14)

We can write ϕ as

ϕ = φeiζ (6.1.15)

where the r dependent φ and ζ are a real scalars.

By a straightforward computation using the equations given in the previous

section, we find the scalar potential

V = −8
(
1 + 4e2φ + e4φ

)
g2 (6.1.16)

and the fermion-shift matrix of SAB

SAB =
1

2
WδAB . (6.1.17)

The real superpotential is given by

W = 4g coshφ. (6.1.18)

As we mention in the previous section, SAB implies that the solution of the singlet

scalar SO(2) × SO(4) would either preserve the full N = 6 supersymmetry with

all components Killing spinors ϵA non-vanishing or no supersymmetry at all if all

the Killing spinors vanish. Moreover, in order that the critical point of the scalar

potential to be a supersymmetric N = 6 AdS4 vacuum, the scalar potential critical

point must coincide with the superpotential’s critical point, which is the case at

φ = 0.

From the δψAµ, we have

A′ = 4g coshφ , and eiΛ = 1 . (6.1.19)

The variations of δχABC and δχA result in the following BPS equations

φ′ = −4g sinhφ , and ζ ′ = 0 . (6.1.20)

As a result, we finally obtain the set of BPS equations solving all the supersym-

metry conditions. These equations also imply the second-order equations from the
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Lagrangian

e−1L =
1

16
e−4φ

(
−(−1 + e4φ)ζ ′2 − 16e4φφ′2)+ 8

(
1 + 4e2φ + e4φ

)
g2. (6.1.21)

Therefore, we can analytically solve these BPS equations with the solutions

given by

4gr = ln(1 + eφ)− ln(1− eφ), (6.1.22)

A = φ− ln(1− e2φ). (6.1.23)

where we have neglected the integration constants in these equations by shifting

the radial coordinate and scaling the x0,1,2 coordinates, respectively. As r → ∞

corresponding to AdS critical point, we find that

φ ∼ e−4gr ∼ e−
r
L and A ∼ 4gr ∼ r

L
(6.1.24)

with L being the AdS4 radius related to the cosmological constant by

L =

√
− 3

V0
=

1

4g
. (6.1.25)

For the choice of convenience, we have defined g > 0.

According to

m2L2 = ∆(∆− d) (6.1.26)

with d = 3, and m2L2 = −1, we can see that the behavior of φ is dual to a relevant

operator of dimensions ∆ = 1, 2 in the dual SCFT. Besides, there also exists the

singularity at r → 0 with

φ ∼ ± ln(4gr) and A ∼ ln(4gr) . (6.1.27)

We find that near the singularityφ→ ±∞, the scalar potential

V ∼ −8g2e±2φ → −∞ . (6.1.28)

By the criterion given in [57], we find that the singularity of the solution with

SO(2) × SO(4) symmetry is physical. Therefore, we have the solution that de-

scribes the RG flows from the UV N = 6 SCFT to a non-conformal phase in the
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IR. Such a flow is governed by an operator of dimensions ∆ = 1, 2 correspond-

ing to scalar or fermion mass terms in three dimensions. Moreover, the flow will

break superconformal symmetry but preserves all of the N = 6 Poincare super-

symmetry. The R-symmetry SO(6) is broken to SO(2) × SO(4) subgroup. This

precisely agrees with the field theory result given in [16]. Therefore, the solution

would describe mass deformations of N = 6 SCFT in three dimensions.

6.1.2 Solutions with U(3) symmetry

We continue with solutions of a residual symmetry U(3) ∼ SU(3)×U(1) ⊂ SO(6).

The U(3) generators can be written in SO(6) fundamental representation as

X =

 A3×3 S3×3

−S3×3 A3×3

 (6.1.29)

where the A3×3 and S3×3 matrices are anti-symmetric and symmetric, respectively.

The matrices A3×3 generate an SO(3) ⊂ SU(3) resulting in a diagonal subgroup of

SO(3)× SO(3) ⊂ SO(6). Moreover, the U(1) factor corresponds to the matrices

of S3×3 = I3. Therefore, we have only one singlet scalar given by

ϕAB =

 03×3 ϕI3
−ϕI3 03×3

 = ϕJAB . (6.1.30)

where the matrix JAB is identified with the Kahler form of CP 3 on which the

ten-dimensional type IIA theory compactifies [4].

By the definition of ϕ = φeiζ , we find the scalar potential

V = −24g2e−2φ(1 + e4φ) (6.1.31)

which coincides with the potential given in [4] which admits AdS4 critical point at

φ = 0 dual to an N = 6 SCFT in three dimensions. We also find the fermion-shift

matrix SAB

SAB =
1

2
WδAB (6.1.32)

along with the complex superpotential

W =
1

2
e−3φ−iζ

[
(e6φ + 3e2φ)(1 + eiζ) + (1 + e4φ)(eiζ − 1)

]
. (6.1.33)
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Besides, the supersymmetry variations of δχA and δχABC result in

e−iΛ(2φ′ ± i sinh(2φ)ζ ′) = −ge−3φ(e4φ − 1)[1− eiζ + e2φ(1 + eiζ)] (6.1.34)

implying ζ ′ = 0. In addition, the field’s equations obtained from Lagrangian

e−1L = − 3

16
e−4φ

(
(−1 + e4φ)ζ ′2 + 16e4φφ′2)+ 24g2e−2φ(1 + e4φ) (6.1.35)

also requires ζ ′ = 0 resulting in ζ = ζ0 which are compatible with all the BPS

equations. In the following task, we set ζ0 = 0, so the BPS equations can be

written as

φ′ = −e−φ(e4φ − 1) and A′ = ge−φ(3 + e4φ). (6.1.36)

The analytic solutions can also found as

A = 3φ− ln(1− e4φ), (6.1.37)

4gr = 2 tan−1 eφ − ln(1− eφ) + ln(1 + eφ). (6.1.38)

Similar to the SO(2) × SO(4) case, the solution is asymptotic to the su-

persymmetric AdS4 with φ dual to an operator of dimensions ∆ = 1, 2. At the

singularity r = 0, the solutions become

φ ∼ ln(gr) and A ∼ 3φ ∼ 3 ln(gr) (6.1.39)

and

φ ∼ − ln(gr) and A ∼ −φ ∼ ln(gr). (6.1.40)

Both of these give

V ∼ −24g2e±2φ → −∞, (6.1.41)

so, both singularities are physical which results in the interpretation of a holo-

graphic dual of RG flows from the N = 6 SCFT to non-conformal phases in the

IR. The flow solution will preserve N = 6 Poincare supersymmetry in three di-

mensions similar to the SO(2)×SO(4) case. However, the flow breaks the SO(6)

R-symmetry to U(3) by the mass deformation of the dual N = 6 SCFT similar to

the SO(2)× SO(4) case.
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6.1.3 Solutions with SO(2)× SO(2)× SO(2) symmetry

We move to a more interesting solution by considering a smaller symmetry of

SO(2)× SO(2)× SO(2) ⊂ SO(6) symmetry. The parameterization of the singlet

complex scalars can be explicitly given by

ϕAB =


ϕ1iσ2 02×2 02×2

02×2 ϕ2iσ2 02×2

02×2 02×2 ϕ3iσ2

 . (6.1.42)

with the complex scalars defined similarly as in the previous solutions

ϕα = φαe
iζα , α = 1, 2, 3. (6.1.43)

We find the scalar potential

V = −16g2[cosh(2φ1) + cosh(2φ2) + cosh(2φ3)]. (6.1.44)

It is obvious that the potential admits the critical point at φ1 = φ2 = φ3 = 0

which is the supersymmetric N = 6 AdS4 vacuum along with the fermion-shift

matrix SAB

SAB =
1

2


W1I2 02×2 02×2

02×2 W2I2 02×2

02×2 02×2 W3I2

 (6.1.45)

where

W1 =
1

2
ge−φ1−φ2−φ3

[
ei(ζ1−ζ2−ζ3)(e2φ1 − 1)(e2φ2 − 1)(e2φ3 − 1)

−(1 + e2φ1)(1 + e2φ2)(1 + e2φ3)
]
. (6.1.46)

W2 and W3 are similar to W1 with only the phase ei(ζ1−ζ2−ζ3) replaced by ei(ζ2−ζ1−ζ3)

and ei(ζ3−ζ1−ζ2), respectively.

To be able to write these eigenvalues Wa as the superpotential in term of

which the scalar potential (6.1.44) can be written, we need the condition that

ζ1 = ζ2 = ζ3 = 0. This is also implied by the consistency of the field’s equations

given from the Lagrangian

e−1L =
1

16
e−4(φ1+φ2+φ3)(−e−4(φ2+φ3)(−1 + e4φ1)2ζ ′21 − e4φ1(e4φ3(−1 + e4φ2)2ζ ′22 +

e4φ2((−1 + e3φ3)2ζ ′23 + 16e4φ3(φ′2
1 + φ′2

2 + φ′2
3 )))) (6.1.47)
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In the following, we set ζ1 = ζ2 = ζ3 = 0, which results in eiΛ = ±1, and the set

of BPS equations can be written as

φ′
1 = −ge−φ1−φ2−φ3 [e2(φ1+φ2) + e2(φ1+φ3) − e2(φ2+φ3) − 1], (6.1.48)

φ′
2 = −ge−φ1−φ2−φ3 [e2(φ1+φ2) + e2(φ2+φ3) − e2(φ1+φ3) − 1], (6.1.49)

φ′
3 = −ge−φ1−φ2−φ3 [e2(φ1+φ3) + e2(φ2+φ3) − e2(φ1+φ2) − 1], (6.1.50)

A′ = ge−φ1−φ2−φ3 [e2(φ1+φ2) + e2(φ1+φ3) + e2(φ3+φ3) + 1]. (6.1.51)

Nevertheless, we find the analytic solutions by writing the linear combination of

these equations as

φ′
1 + φ′

2 = −2ge−φ1−φ2−φ3(e2(φ1+φ2) − 1). (6.1.52)

we further transform to a new radial coordinate ρ given by

dρ

dr
= e−φ1−φ2−φ3 (6.1.53)

and obtain a first solution as

φ2 = 2gρ− φ1 −
1

2
ln(e4gρ + C2) (6.1.54)

with C2 being a constant for φ2 solution.

We follow the same strategy to find other solutions by substituting the φ2

solution, in the combination φ′
1 + φ′

3. We get

φ3 = 2gρ− φ1 −
1

2
ln(e4gρ + C3). (6.1.55)

After that, the φ1 solution can be obtain by inserting φ1 and φ2 in (6.1.48)

φ1 =
1

4
ln
[

e4gρ(e4gρ + C1)

(e4gρ + C2)(e4gρ + C3)

]
. (6.1.56)

Finally, we are able to evaluate the solution for A given by

A = gρ+
1

4
ln(e4gρ + C1) +

1

4
ln(e4gρ + C2) +

1

4
ln(e4gρ + C3). (6.1.57)

We therefore are able to consider the behavior of the solutions as φα ∼ 0

resulting in ρ ∼ r and

φ1 ∼
1

4
(C1−C2−C3)e

−4gρ, φ2,3 ∼ −
1

4
(C1−C3,2)e

−4gρ, A ∼ 4gρ . (6.1.58)
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This is the kind of what we expect because the solutions are asymptotic to the

supersymmetric AdS4 vacuum. Similar to the previous cases, the singularity of

the solutions occurs as 4gρ → ln(−Cα) which can be categorized as the follows.

For C1 ̸= C2 ̸= C3, there are three possibilities:

• For C1 > C2,3, the singularity occurs as 4gρ→ ln(−C1) with

φ1 ∼
1

4
ln(4gρ− C̃1), C̃1 = ln(−C1),

φ2,3 ∼ −φ1, A ∼ φ1 . (6.1.59)

• For C2 > C1,3 or C3 > C1,2, we find that

φ1 ∼ −
1

4
ln(4gρ− C̃2,3), C̃2,3 = ln(−C2,3),

φ2,3 ∼ φ1, A ∼ −φ1 . (6.1.60)

In the first scenario, we find φ1 → −∞ and φ2,3 →∞ while in the second scenario,

the solution gives φ1,2,3 →∞. All of these behaviors lead to V → −∞. Therefore,

the singularities are physically acceptable, so the set of fully preserved N = 6

Poincare supersymmetric solution describes different types of mass deformations

within the dual N = 6 SCFT to non-conformal phases with SO(2)×SO(2)×SO(2)

symmetry.

6.1.4 Solutions with SO(3) symmetry

As a final RG flow solution, we consider solutions with a residual symmetry of

SO(3) ⊂ SO(3)× SO(3) ⊂ SO(6) generated by the A3×3 antisymmetric matrices

in the upper-left block of (6.1.29). There are three singlet scalar written as

ϕAB =

 03×3 03×3

03×3 Â3×3

 (6.1.61)

with

Â =


0 ϕ̃1 ϕ̃2

−ϕ̃1 0 ϕ̃3

ϕ̃2 −ϕ̃3 0

 . (6.1.62)
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For convenience, we set the three singlet scalars ϕ̃α = φαe
iζα to the form

φ1 = Φ cos θ, φ2 = Φ sin θ cosϑ, φ3 = Φ sin θ sinϑ (6.1.63)

and

ζ1 = ζ, ζ2 = ζ + η, ζ3 = ζ + ξ. (6.1.64)

We find the scalar potential

V = −g2
[
16 cos4 θ(2 + cosh 2Φ) + 16 cosh4 θ sin4 θ(2 + cosh 2Φ)

+16 sin4 θ sin4 ϑ(2 + cosh 2Φ)− cos2 θ sin2 θ cos2 ϑ×

(cosh 4Φ− 8 cos 2η sinh4Φ− 36 cosh 2Φ− 61) + sin2 θ sin2 ϑ×[
8 sinh4 Φ(cos2 θ cos 2ξ + cos2 ϑ sin2 θ cos[2(η − ξ)])

+(61 + 36 cosh 2Φ− cosh 4Φ)(cos2 θ + cos2 ϑ sin2 θ)
]]
. (6.1.65)

In the present case, the scalar potential explicitly depends on the phases of

the complex scalars, so the analysis would be more complicated. In order that

the calculation is more practical, we will truncate away a singlet scalar ϕ̃3 = 0

which is equivalent to setting ϑ = 0 and ξ = −ζ. We find the eigenvalues of the

diagonalized fermion-shift matrix SAB

Sdiag
AB = diag(−2g coshΦ×4,

1

2
W+,

1

2
W−) (6.1.66)

where we write W± for

W± = 2g(cos 2η + 2 sin η) sinh4 Φ

2
(cos 4θ sin η ± i sin 2θ)

−1

4
g(3 + 12 coshΦ + cosh 2Φ) (6.1.67)

and the corresponding eigenvectors are

ϵ̂± = −1

2
sec 2θ

(
2 cos η sin 2θ ∓

√
3 + cos 2η + 2 cos 4θ sin2 η

)
. (6.1.68)
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To further do the calculation, we write the Lagrangian of scalar kinetic term

as

Lkin = −1

2
Gαβϕ

α′ϕβ ′

= −Φ′2 − sinh2 Φθ′2 − 1

4
sinh2 2Φζ ′2 − 1

2
sin2 θ sinh2 2Φζ ′η′

−1

4
sin2 θ sinh2 Φ(3 + cosh 2Φ− 2 cos 2θ sinh2Φ)η′2 (6.1.69)

with ϕα = (Φ, θ, ζ, η). It is very useful to state the inverse of Gαβ

Gαβ = −1

2


1 0 0 0

0 csch2Φ 0 0

0 0 −sech2Φ + csch2Φ sec2 θ −csch2Φ sec2 θ

0 0 −csch2Φ sec2 θ 4csc22θcschΦ

 . (6.1.70)

The scalar potential can be obtained from the real superpotential W = |W+| =

|W−| as

V = −2Gαβ ∂W

∂ϕα

∂W

∂ϕβ
− 3W 2

= g2
[
cos2 θ sin2 θ

(
cosh 4Φ− 8 cos 2η sinh4 Φ− 36 cosh 2Φ− 61

)
−4(3 + cos 4θ)(2 + cosh 2Φ)] . (6.1.71)

By setting ϵ1,2,3,4 = 0 along with the projection conditions

γr̂ϵ± = e±iΛϵ± with e±iΛ =
W±

W
, (6.1.72)

we find the BPS equation as follows

Φ′ =
1

16W
g2
[
8 sinh3 Φ coshΦ(cos 2η + 2 cos 4θ sin3 η)− 30 sin 2Φ− sinh 4Φ

]
,

(6.1.73)

θ′ = − 1

W
g2 sin2 η sin 4θ sinh2 Φ, (6.1.74)

ζ ′ =
2

W
g2 sin 2η sin2 θ sinh2 Φ, (6.1.75)

η′ = − 2

W
g2 sin 2η sinh2 Φ, (6.1.76)

A′ = W . (6.1.77)
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These equations can be written in a more compact form as

ϕα′ = 2Gαβ ∂W

∂ϕβ
. (6.1.78)

It is straightforward to show that the BPS equations satisfy the second-order

equations resulting from the Lagrangian given above. We can see from these equa-

tions that there exists only one supersymmetric critical point, at Φ′ = θ′ = ζ ′ =

η′ = 0, with ϕα = 0.

We also mention that even though the superpotential and the scalar poten-

tial do not depend on ζ, ζ ′ does not vanish anyway because of the existence of

the mixed terms between ζ and η in the matrix Gαβ. Furthermore, we can further

truncate away some scalars. For example, once we set η = 0 or θ = 0, we find the

BPS equations in the case of N = 6 supersymmetry with all the six eigenvalues

of SAB leading to

W = 4g coshΦ . (6.1.79)

This is similar to the case of N = 5 gauged supergravity [31] in which the exis-

tence of the differences in the phases of the scalars play an important role in the

supersymmetry breaking to lower supersymmetry.

We now look at the BPS solutions to the equations by combining η′ and θ′,

so we get
dθ

dη
=

1

4
sin 4θ tan η (6.1.80)

The corresponding solution is given by

cot 2θ = C1 cos η . (6.1.81)

By doing similar strategy, combining ζ ′ and η′, we get

dζ

dη
= − sin2 θ . (6.1.82)

Along with the previous solution of θ, we find the solution for ζ as

ζ = ζ0 −
η

2
+

√
C2

1 + sec2 η cos η tan1
√
2C1 sin η√

2+C2
1 (1+cos 2η)√

4 + 2C2
1(1 + cos 2η)

(6.1.83)
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where ζ0 is constant.

We then combine Φ′ and η′ equations by using all the previous solutions

with the change of variable

Φ̃ = sinhΦ (6.1.84)

and find
dΦ̃

dη
= csc2η(1 + Φ̃2)

(
Φ̃ tan2 η

C2
1 + sec2 η +

2

Φ̃

)
. (6.1.85)

The solution is written as

Φ̃2

4
= − 1 + C2

1 cos2 η − C2

√
(1 + cos 2η)(2 + C2

1(1 + cos 2η))
3 + 4C2

1 cos2 η + cos 2η − 4C2

√
(1 + cos 2η)(2 + C2

1(1 + cos 2η))
.(6.1.86)

By taking into an account all the previous results in η′, we eventually find

the solution for η(r) written implicitly as

8gr = sinh−1

[
2C2

√
Ξ− 1

(1 + C2
1)[2 + (C2

1 − 4C2
2)(1 + Ξ)]

]

− tanh−1

√
(1 + C2

1 − 4C2
2)(1 + Ξ)

Ξ− 1
(6.1.87)

where we write

Ξ = cos 2η . (6.1.88)

The final solution of A(Ξ) can be found as

A =
1

4
(tanh−1 α+ − tanh−1 α−)−

1

2
tanh−1

[
2C2

√
Ξ + 1

2 + C2
1(1 + Ξ)

]
−1

8
ln
[
4C4

1(1 + Ξ)2 + (3 + Ξ)2 − 4(1 + Ξ)[8C2
2 + C2

1(4C
2
2(1 + Ξ)− 3− Ξ)]

]
+
1

4
ln[2 + (1 + Ξ)(C2

1 − 4C2
2)] (6.1.89)

where α± given by

α± =

√√√√− 2 + C2
1(1 + Ξ)

(1 + Ξ)
[
1 + C2

1 − 4C2(2C2 +±
√

4C2
2 − C2

1 − 1)
] . (6.1.90)
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The solution preservesN = 2 supersymmetry and breaks SO(6) R-symmetry

to SO(3). The singularity of the solution occurs when

cos2 η = − 1

1 + 2C2
1 − 8C2

2 ± 4C2

√
4C2

2 − C2
1 − 1

(6.1.91)

This results in Φ̃→ ±∞ or Φ→ ±∞ leading to

V → g2e4|Φ| cos2 θ sin2 η sin2 θ . (6.1.92)

It is obvious that the scalar potential is unbounded as by V → +∞, so the IR

singularities of the N = 2 solutions are unphysical. However, if θ = 0 or η = 0,

the solution becomes the N = 6 solution as mentioned above and are physical.

6.2 Supersymmetric Janus solutions

Supersymmetric Janus solution is another form of the solution of gauged super-

gravity where the metric takes the form of AdS3-sliced domain wall

ds2 = e2A(r){e
2ξ
ℓ (−dt2 + dx2) + dξ2}+ dr2. (6.2.1)

We can use the supersymmetric Janus solution to explain the defect in conformal

field theory which allows us to study the structure and the dynamics of conformal

field theory. In the limit ℓ→ ±∞, we would get the original domain wall spacetime

of the form

ds2 = e2A(r)(−dt2 + dx2 + dξ2) + dr2

= e2A(r)ηµνdx
µdxν + dr2.

(6.2.2)

The vielbeins read

eµ̂ = eA(r)+ ξ
ℓ dxµ,

eξ̂ = eA(r)dξ,

er̂ = dr

(6.2.3)
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with the non-vanishing spin connection

ωµ̂r̂ = A
′
(r)eµ̂,

ωµ̂ξ̂ =
1

ℓ
e−Aeµ̂,

ωr̂ξ̂ = A
′
eξ̂.

(6.2.4)

We can consider the variation of the gravitino δψAµ = 0 along the direction of

µ = 0, 1

δψµA = DµϵA − SABγµϵ
B

= ∂µϵA +
1

4
ω ab
µ γaγbϵA − SABγµϵ

B

=
1

2

(
ω µ̂r̂
µ̂ γµ̂γr̂ + ω µ̂ξ̂

µ̂ γµ̂γξ̂

)
− SABγr̂ϵ

B

(6.2.5)

where we use {γâ, γb̂} = 0, for a ̸= b. We obtain

A′γr̂ϵA +
1

ℓ
e−Aγξ̂ϵA −WϵA = 0. (6.2.6)

This equation leads to

A′2 +
1

ℓ2
e−2A = W 2 (6.2.7)

where W = |W| is the absolute value of eigenvalue of fermion-shift matrix SAB.

Moreover, we also impose an additional projection condition as

γξϵA = iκeiΛϵA (6.2.8)

where we have κ2 = 1 implying κ = ±1 which defines the chirality of the Killing

spinors on the two-dimensional defects. Therefore, the two projection conditions

in supersymmetric Janus solutions read

γr̂ϵA = eiΛϵA,

γξϵA = iκeiΛϵA.

These projection conditions also lead to the phase factor

eiΛ =
A′

W
+
iκ

ℓ

e−A

W
. (6.2.9)

If the eigenvalue of W is real, then

eiΛ =
W

A′ + iκ
ℓ
e−A

. (6.2.10)
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We can also consider the variation of gravitino along the direction of ξ which reads

δψξ̂A = ∂ξ̂ϵA +
1

2
ω r̂ξ̂

ξ̂
γr̂γξ̂ − SABγξ̂ϵ

B

= e−A∂ξϵA +
1

2

(
A′γr̂γ ˆ̂

ξ
ϵA −Wγξ̂ϵ

A
)

= e−A∂ξϵA −
1

2l
e−AϵA

= 0.

(6.2.11)

We then obtain the Killing spinors as

ϵA = e
ξ
2l εA(r) (6.2.12)

where εA depends only on r. In the supersymmetric Janus case, we can finally

look at the variation of the gravitino in the radial direction

δψAr = 0

= ∇µϵA − SABγµϵB

= ∂rϵA −
1

2
Wγr̂ϵ

A

= 2∂rϵA − A
′
γr̂ϵ

A

= 2∂rεA − A′εA − i
κ

l
e−AεA

(6.2.13)

where we have used (6.2.6), (6.2.12), and the projection conditions. Then, we

obtain the solution of Killing spinors in case of supersymmetric Janus solution as

ϵA = e
A
2
+ ξ

2l
+iΛ

2 ϵ
(0)
A (6.2.14)

where ϵ(0)A is constant Killing spinor satisfying the projection conditions and we

can see that ϵA is in different representations can have different phase factor eΛ.

If we take ℓ → ∞, we would obtain the domain wall scenario. Finally, one can

also look at δχA, and δχABC , and it turns out that they are the same as the case

of the supersymmetric domain wall. As a result, one could obtain the same form

of Killing spinors equations and, we can proceed by a similar analysis with the

redefinition of phase factor in (6.2.13).

It turns out that in the previous singlet scalars there are only SO(2) ×
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SO(4) and SO(3) case which can possess supersymmetric Janus solutions because

of the non-vanishing pseudoscalars. For SO(3) case, the analysis is extremely

complicated as we have already seen in the RG flow solution. Therefore, we will

only consider supersymmetric Janus solution with SO(2)×SO(4) symmetry which

is more traceable and can be analytically calculated.

6.2.1 Janus solutions with SO(2)× SO(4) symmetry

In this case, we have a real superpotential

W = 4g coshφ, (6.2.15)

so we will use the definition of the phase eiΛ of the form (6.2.10). We note

that ϵ1,2 and ϵA with A = 3, 4, 5, 6 transform differently under SO(2)× SO(4) as

(2,1)+ (1,4), so they satisfy different projection conditions. We further find that

the consistency of BPS equations require κ = 1 and κ = −1 for ϵ1,2 and ϵ3,...,6,

respectively. Therefore, the surface detect preserves N = (2, 4) or N = (4, 2)

superconformal symmetry.

The BPS equations are given by

φ′ = −8g2ℓ2A′e2A sinh(2φ)
1 + ℓ2A′2e2A

, (6.2.16)

ζ ′ = − 16g2κℓeA

1 + ℓ2A′2e2A
, (6.2.17)

A′2 +
e−2A

ℓ2
= 16g2ℓ2 cosh2 φ . (6.2.18)

We also note that for ℓ→∞, these equations reduce to the equations of RG

flow studied in the case of domain wall solutions.

To find the solution, we take φ as an independent variable, so we can evaluate

A(φ) and ζ(φ) given by

A = C − ln sinhφ, (6.2.19)

cosh(2φ) =
32g2ℓ2 tanh2[4g(r − r0)]

16g2ℓ2 − 1
, (6.2.20)

κ tan ζ = −
√

1− 16g2ℓ2 sinh[4g(r − r0)] (6.2.21)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

where C and r0 are constant. We note that these solutions are similar to those in

N = 8, 5, 3 gauged supergravities, see [32], [33] and [31] .

We also mention that the unbroken supersymmetries on the conformal de-

fects in these cases are N = (4, 4), N = (4, 1) and N = (2, 1). All of these

solutions should be related by the consistent truncations of the maximal N = 8

gauged supergravity to N = 3 and N = 5, 6 theories. Thanks to the AdS/CFT

correspondence, we expect that the dual N = 3, 5, 6 SCFTs possess the same two-

dimensional conformal defect as in the N = 8 SCFT.

Finally, we also comment on the possible SO(3) symmetric Janus solution

due to the complicated analysis. By doing partial analysis, it turns out that the

BPS equations for Janus solutions being very similar to the case of N = 5 theory

in [31]. Therefore, we expect that N = 6 gauged supergravity should also give a

supersymmetric N = 2 Janus solution with SO(3) symmetry.

6.3 Supersymmetric AdS black holes

In this section, we will study the supersymmetric AdS4 black hole by considering

solutions interpolating between AdS4 and AdS2 × Σ2 geometries. The AdS4 de-

scribes the asymptotic spacetime at a large distance from the black hole and the

AdS2 × Σ2 governs the near horizon geometries with Σ2 being a two-dimensional

Riemann surface.

We can write down the metric ansatz as

ds2 = −e2f(r)dt2 + dr2 + e2h(r)(dθ2 + F (θ)2dϕ2). (6.3.1)

The metric on Σ2 takes the form of two-sphere S2 and hyperbolic H2, with

F (θ) =

sin θ, if Σ2 = S2.

sinh θ, if Σ2 = H2.

As mentioned above, we are interested in the asymptotic anti-de Sitter space, so

a result one should expect at large distance limit r →∞ is given by

f = h→ r

L
(6.3.2)
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with L being AdS4 radius. Moreover, in order that the solution approaches an

supersymmetric AdS2 ×Σ2 fixed point at near horizon limit r → −∞, we require

the boundary condition as

φ′
I → 0, h′ → 0, and f ′ → 1

LAdS2

. (6.3.3)

with I indicates the number of scalars.

We can also write down the vielbein as

et̂ = ef(r)dt, er̂ = dr, (6.3.4)

eθ̂ = eh(r)dθ, eϕ̂ = eh(r)F (θ)dϕ. (6.3.5)

The non-vanishing components of spin connection are

ωt̂r̂ = f
′
(r)et̂, ωθ̂r̂ = h

′
(r)eθ̂, (6.3.6)

ωϕ̂r̂ = h
′
(r)eϕ̂, ωθ̂ϕ̂ =

F
′
(θ)

F
e−heϕ̂. (6.3.7)

To further consider the BPS equations of supersymmetric AdS4 black hole solu-

tions, we first consider the supersymmetry variation of the δψµA given by

δψµA = DµϵA − SABγµϵ
B − 1

4
√
2
F̂+
ρσABγ

ρσϵB (6.3.8)

along the direction of ϕ̂

δψϕ̂A = Dϕ̂ϵA −Wγϕ̂δABϵ
B − 1

4
√
2
F̂+
ρσABγ

ρσϵB

=
1

4
ω ϕ̂r̂

ϕ̂
γϕ̂r̂ϵA +

1

2
ω θ̂ϕ̂

ϕ̂
γθ̂ϕ̂ϵA +

1

2
Q B

ϕ̂A
ϵB −

1

2
Wγϕ̂ϵ

A − 1

4
√
2
F̂+
ρσABγ

ρσγϕ̂ϵ
B

=
1

2

F ′

F
e−hγθ̂ϕ̂ +

1

2
h′γϕ̂r̂ϵA +

1

2
Q B

ϕ̂A
ϵB −

1

2
Wγϕ̂ϵ

A − 1

4
√
2
F̂+
ρσABγ

ρσγϕ̂ϵ
B.

(6.3.9)

In general, the existence of Riemannian surface Σ2 on the world-volume of the

domain wall will break supersymmetries. However, there is a method called the

topological twist that will preserve some amount of supersymmetry. To preserve

such supersymmetries, we need to turn on gauge fields along Σ2 written in term of

gauge connection, which enters the covariant derivative of ϵA through the compos-

ite connection Q B
A . To cancel the spin connection ωθ̂ϕ̂ with the gauge connection
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in δψϕ̂A, we write the four-dimensions gauge field ansatz as

Am+ = Am
t dt− pmF ′(θ)dϕ

Am− = Ãm
t dt− emF ′(θ)dϕ

(6.3.10)

where pm and em denote magnetic and electric charges of the black holes. If

magnetic and electric charges are present the solution is called dyonic solution,

however, we are interested in only the presence of magnetic charge corresponding

to the absence of em, Am
t , and Ãt. We can also write the gauge fields in term of

gauge generators as

AIJ = (−pmF ′(θ))(Tm)
IJ (6.3.11)

= (−pmF
′

F
e−heϕ̂)(Tm)

IJ . (6.3.12)

In this work, we focus on only solutions with SO(2) × SO(2) × SO(2) and

a truncated SO(2) of SO(2)× SO(2)× SO(2) twists. We first consider SO(2)×

SO(2)× SO(2) with the following gauge field ansatz

A12 = −p1F ′(θ)dϕ, A34 = −p2F ′(θ)dϕ, A56 = −p3F ′(θ)dϕ . (6.3.13)

where pi, i = 1, 2, 3, are magnetic charges with the corresponding field strengths

given by

F 12 = κp1F (θ)dθ ∧ dϕ, F 34 = κp2F (θ)dθ ∧ dϕ, F 56 = κp3F (θ)dθ ∧ dϕ .

(6.3.14)

We define a parameter κ with κ = 1,−1 for Σ2 being S2 or H2, respectively.

Note thatF ′′(θ) = −κF (θ).

For N = 6, with SO(6) gauging, we have

Q CD
IJAB = −4i

(
fAB

JKh
CD

IK + hABIKf
JKCD

)
(6.3.15)

and

QIJA
B =

1

4
QIJAC

BC − δB
A

40
QIJCD

DC (6.3.16)
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for SO(2) × SO(2) × SO(2) subgroup of gauge group of SO(6), the composite

connection are given by

Qϕ̂A
B = = −gA Λ

µ Q B
ΛA

= −1

2
gA IJ

µ Q B
IJA

= 2giσ2 ⊗


A12

ϕ̂

A34
ϕ̂

A56
ϕ̂

 .

(6.3.17)

We find that the spin connection ωθ̂ϕ̂ can be cancelled by the following topological

twist

0 =
1

2

F ′

F
e−hγθ̂ϕ̂ϵA +

1

2
Q B

ϕ̂A
ϵB. (6.3.18)

As a result, we find the following projector

γθ̂ϕ̂ϵA = (iσ2 ⊗ I3)ABϵB (6.3.19)

with the twist condition

2gp1 = 2gp2 = 2gp3 = 1 . (6.3.20)

We have p1 = p2 = p3. The twist can be obtained from the diagonal sub-

group SO(2)diag ⊂ SO(2) × SO(2) × SO(2) similar to pure N = 4 and N = 5

gauged supergravities investigated in [58] and [31], respectively. Moreover, it

appears that in the case of SO(2) × SO(2) × SO(2), we need to turn on the

SO(2) ∼ U(1) gauge field of U(6) ∼ SU(6) × U(1) to find the consistent BPS

equation. Similarly, we define the ansatz of the U(1) gauge field as

A0 = −p0F (θ)dϕ and F 0 = +κp0dθ ∧ ϕ . (6.3.21)

We note that both A0 and AIJ appear in the BPS equation because of the off-

diagonal element of the scalar coset representative. In particular, we can write

the relations

F̂+
AB = hΛABF

+Λ = h0ABF
+0 +

1

2
hIJ,ABF

+IJ , (6.3.22)

F̂+ = hΛ0F
+Λ = h00F

+0 +
1

2
hIJ0F

+IJ . (6.3.23)
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We now consider the relation among F IJ , F+IJ and F̂+IJ by considering the field

strengths

F IJ = κpF (θ)dθ ∧ dϕ

= κpF (θ)

(
eθ̂

eh
∧ eϕ̂

F (θ)eh

)
= κpe−2heθ̂ ∧ eϕ̂

(6.3.24)

so, the components read

F 12
θ̂ϕ̂

= F 34
θ̂ϕ̂

= F 56
θ̂ϕ̂

= κpe−2h. (6.3.25)

By using the definition of the complex self-dual and anti-self-dual gauge field

strengths

F±Λ
µν =

1

2

(
FΛ
µν ±

i

2
ϵµνρσF

Λρσ

)
(6.3.26)

we find that there are two non-vanishing tangent spacetime components of

F+IJ

θ̂ϕ̂
=

1

2

(
F+IJ

θ̂ϕ̂
+
i

2
ϵθ̂ϕ̂ρ̂σ̂F

+IJρσ

)
=

1

2
F+IJ

θ̂ϕ̂

=
1

2
κpe−2h

(6.3.27)

and

F+IJ
t̂r̂

=
1

2

(
F+IJ
t̂r̂

+
i

2
ϵt̂r̂θ̂ϕ̂F

+IJθϕ

)
=
i

4

(
F+IJθϕ − F+IJϕθ

)
=
i

2
κpe−2h

(6.3.28)

so, we obtain

F+12

θ̂ϕ̂
= F+34

θ̂ϕ̂
= F+56

θ̂ϕ̂
=

1

2
κpe−2h,

F+12
t̂r̂

= F+34
t̂r̂

= F+56
t̂r̂

=
i

2
κpe−2h.

(6.3.29)
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Return to the BPS equation resulting from δψϕ̂A = 0, we now have

δψϕ̂A =
1

2

F ′

F
e−hγθ̂ϕ̂ +

1

2
h′γϕ̂r̂ϵA +

1

2
Q B

ϕ̂A
ϵB −

1

2
Wγϕ̂ϵ

A − 1

4
√
2
F̂+
ρσABγ

ρσγϕ̂ϵ
Bγϕ̂ϵ

A

=
1

2
h′γϕ̂γr̂ϵA −

1

2
Wγϕ̂ϵ

A − 1

4
√
2
F̂+
ρσABγ

ρσγϕ̂ϵ
B

=
1

2
h′γϕ̂γr̂ϵA −

1

2
Wγϕ̂ϵ

A − 1

2
√
2

(
F̂+
t̂r̂AB

γ t̂r̂γϕ̂ + F̂+

θ̂ϕ̂AB
γ θ̂ϕ̂γϕ̂

)
ϵB

=
1

2
h′γϕ̂γr̂ϵA −

1

2
Wγϕ̂ϵ

A +
1

2
√
2
γϕ̂

(
F̂+

θ̂ϕ̂AC
− iF̂+

t̂r̂AC

)
(iσ2 ⊗ I3)CBϵ

B

=
1

2
h′γϕ̂γr̂ϵA −

1

2
Wγϕ̂ϵ

A − 1

2
Zγϕ̂ϵA

= h′γr̂ϵA −WϵA − ZϵA

=
(
h′eiΛ −W− Z

)
ϵA.

(6.3.30)

We also note that we have the definition of ϵ0̂r̂θ̂ϕ̂ = 1 and γ5ϵA = −ϵA and

the projection conditions, defined in(6.1.6), and the twist condition implying

γ 0̂r̂ϵA = −iγ θ̂ϕ̂ϵA = (σ2 ⊗ I3)ABϵB . (6.3.31)

We also define the “central charge” matrix as

ZAB = − 1√
2
(F̂+

θ̂ϕ̂AC
− iF̂+

0̂r̂AC
)(iσ2 ⊗ I3)CB . (6.3.32)

In the present case, the central charge ZAB is proportional to the identity matrix

as

ZAB = ZδAB. (6.3.33)

We find a BPS equation resulting from δψθ̂A as

h′eiΛ −W− Z = 0 (6.3.34)

which gives

h′ = ±|W+ Z| and eiΛ = ± W+ Z

|W+ Z|
. (6.3.35)

Then, we consider δψθ̂A = 0

δψθ̂A =
1

4
ωθ̂

µνγµνγθ̂ϵA −
1

2
WϵA − 1

2
Zγθ̂ϵ

A

= (h′eiΛ − Z−W)ϵA
(6.3.36)
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which gives the same BPS equation as δψϕ̂A. Moreover, we can also look at

δψt̂A = 0 as follows

δψt̂A =
1

2
f ′γt̂r̂ +

1

2
Qt̂A

BϵB −
1

2
γt̂ϵ

A − 1

2
√
2
γt̂

(
F̂+

θ̂ϕ̂AC
− iF̂+

t̂r̂AC

)
(iσ2 ⊗ I3)CBϵ

B

=
(
f ′eiΛ + 2igA1e

iΛ −W+ Z
)
ϵB

(6.3.37)

With the previous BPS equations, we obtain

f ′ = Re[e−iΛ(W− Z)] and 2gA1 = Im[e−iΛ(W− Z)]. (6.3.38)

The latter fixes the time component of the gauge fields. Finally, we can look at

δψr̂A = 0 given as

δψr̂A = ∂rϵA −
1

2
We−iΛϵA +

1

2
Ze−iΛϵA

= ∂rϵA −
1

2

(
f ′eiΛ

)
e−iΛϵA

= ∂rϵA −
1

2
f ′ϵA

(6.3.39)

We then get r-dependence of the Killing spinors

ϵA = e
f
2 ϵA(0) (6.3.40)

which is similar to the case of domain walls and Janus solutions. To complete the

consistent set of the BPS equations, we will consider δχABC = 0 and δχA = 0

δχABC = −PµABCDγ
µϵD +ND

ABCϵD −
3

2
√
2
γµνF̂+

µν[ABϵC]

= −Pr̂ABCDγ
r̂ϵD +ND

ABCϵD −
3√
2
(−iF̂+

t̂r̂
+ F̂+

θ̂ϕ̂
)[AB(iσ2 ⊗ I3)C]

DϵD

=

(
−Pr̂ABCDe

iΛ +ND
ABC −

3√
2
(−iF̂+

t̂r̂
+ F̂+

θ̂ϕ̂
)[AB(iσ2 ⊗ I3)C]

D

)
ϵD

(6.3.41)

and

δχA = − 1

4!
ϵABCDEFP

BCDE
µ γµϵF +NF

AϵF −
1

2
√
2
F̂+
µνγ

µνϵA

= − 1

4!
ϵABCDEFP

BCDE
r̂ γ r̂ϵF +NF

AϵF −
1√
2
(−iF̂+

t̂r̂
+ F̂+

θ̂ϕ̂
)(iσ2 ⊗ I3)AF ϵF

=

(
− 1

4!
ϵABCDEFP

BCDE
r̂ eiΛ +NF

A −
1√
2
(−iF̂+

t̂r̂
+ F̂+

θ̂ϕ̂
)(iσ2 ⊗ I3)AF

)
ϵF .

(6.3.42)

With these equations, we can find the BPS equations of scalar fields.
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6.3.1 Solutions with SO(2)× SO(2)× SO(2) twist

We start the supersymmetric black hole solution with the case of non-vanishing

pi. In this case, the topological twists allow the full N = 6 supersymmetry corre-

sponding to non-vanishing of ϵA, A = 1, 2, . . . , 6. Similar to the RG flow analysis,

the consistency of the BPS equations coming from δψµ̂A = 0 and δχA, δχABC

require

ζ1 = ζ2 = ζ3 = 0 (6.3.43)

p0 = κp1 (6.3.44)

respectively, and the former result in real W and Z giving eiΛ = ±1.

We note that, in this scenario, the condition of p0 = 0 will break all super-

symmetry. This indicates that the SO(2) × SO(2) × SO(2) twist goes together

with the U(1) gauge field A0
µ.
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With all of these, we find the set of consistent BPS equations written as

φ′
1 = −∂|W+ Z|

∂φ1

,

=
1

2
e−φ1−φ2−φ3

[
2g(1 + e2(φ2+φ3) − e2(φ1+φ2) − e2(φ1+φ3))

−p1κe−2h+2φ1+2φ2+φ3
]
, (6.3.45)

φ′
2 = −∂|W+ Z|

∂φ2

,

=
1

2
e−φ1−φ2−φ3

[
2g(1− e2(φ2+φ3) − e2(φ1+φ2) + e2(φ1+φ3))

−p1κe−2h+2φ1+2φ2+φ3
]
, (6.3.46)

φ′
3 = −∂|W+ Z|

∂φ3

,

=
1

2
e−φ1−φ2−φ3

[
2g(1− e2(φ2+φ3) + e2(φ1+φ2) − e2(φ1+φ3))

−p1κe−2h+2φ1+2φ2+φ3
]
, (6.3.47)

h′ = |W+ Z|

=
1

2
e−φ1−φ2−φ3

[
2g(1 + e2(φ2+φ3) + e2(φ1+φ2) + e2(φ1+φ3))

+p1κe
−2h+2φ1+2φ2+φ3

]
, (6.3.48)

f ′ = |W− Z|

=
1

2
e−φ1−φ2−φ3

[
2g(1 + e2(φ2+φ3) + e2(φ1+φ2) + e2(φ1+φ3))

−p1κe−2h+2φ1+2φ2+φ3
]
. (6.3.49)

For the existence of an AdS2×Σ2 fixed point, we need φ′
1 = φ′

2 = φ′
3 = h′ = 0 and

f ′ ∼ 1
LAdS2

as r → −∞. However, the BPS equations given above do not admit

anyAdS2 × Σ2 fixed points.

Despite of the lack of supersymmetric AdS2 × Σ2 fixed point, we still can

find the analytic solutions to these BPS equations which may be useful for some

holographic studies. By the change of the variable of ρ using dρ
dr

= eφ3 , we find

the linear combinations

d

dρ
(φ1 − φ2) = 2g(eφ2−φ1 − eφ1−φ2) (6.3.50)

and d

dρ
(φ2 − φ3) = 2g(eφ1−φ2 − eφ1+φ2−2φ3). (6.3.51)
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The former equation can be solved analytically with the solution given by

φ1 = ln
[
eφ2(e4gρ + e4gρ0)

e4gρ − e4gρ0

]
(6.3.52)

with ρ0 being constant. By using this solution in the latter, we find

φ2 = ln
[
eφ3−2gρ(e4gρ − e4gρ0)√
e4gρ + e8gρ0 + 8gC

]
(6.3.53)

with again C being constant.

Assume that f and h are the function of φ3, we find the solutions for f and

h as

f = −1

2
ln
[
e4gρ0

(
256g3CC̃ − 16gC̃e8gρ0 + κp1 ln

[
1 + e8g(ρ−ρ0) + 8gCe4gρ−8gρ0

e8g(ρ−ρ0) − 1

])
−8gCκp1 tanh−1 e4g(ρ−ρ0)

]
+ h, (6.3.54)

h =
1

2
ln
[
e4gρ0

(
16gC̃(e8gρ0 − 16g2C2)− κp1 ln

[
1 + e8g(ρ−ρ0) + 8gCe4gρ−8gρ0

e8g(ρ−ρ0) − 1

])
+ 8gCκp1 tanh−1 e4g(ρ−ρ0)

]
+

1

2
ln
[
e12gρ0(1− e8g(ρ−ρ0))2

8g(e8gρ0 − 16g2C2)

]
+ φ3 − 4gρ .(6.3.55)

Finally, the solution of φ3(ρ) can be written as

4C0e
4gρ(e8gρ0 + e8gρ + 8gCe4gρ) = β0 + β1 ln

[
e4g(ρ0−ρ) + 1

e4g(ρ0−ρ) − 1

]
(6.3.56)

+β2 ln
[

e8g(ρ−ρ0) − 1

1 + e8g(ρ−ρ0) + 8gCe4gρ

]
with C0 being a constant, and the coefficients β0, β1 and β2 are defined in term of

φ3(ρ) by

β0 = −16gC̃e4ρ0(16Cg2 − e8gρ0)
[
2e4φ3+8g(ρ+ρ0) + 8gCe4gρ(e8gρ + e8gρ0)

+(e16gρ0 + e16gρ)(1− e4φ3) + 2e8g(ρ+ρ0)
]
, (6.3.57)

β1 =

[
κp1

2(e4gρ + e4g(3ρ−2ρ0) + 8Cge8g(ρ−ρ0))

] [
e12gρ + e4g(ρ+2ρ0) + 4Cge8gρ(3 + e4φ3)

+16g2C2e4gρ(1 + e8g(ρ−ρ0))− 2Cg(e4φ3 − 1)(e8gρ0 + e8g(2ρ−ρ0))
]
, (6.3.58)

β2 =
κp1[(e

8gρ0 + e8gρ + 8Cge4gρ)2 − e4φ3(e8gρ0 − e8gρ)2]
4e4g(ρ−ρ0)(e8gρ0 + e8gρ + 8Cge4gρ)

. (6.3.59)

Because the solution does not permit any AdS2 × Σ2 fixed point in the IR, the

solution describes a flow from the locally supersymmetric AdS4 vacuum to a curved
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domain wall with world-volume R×Σ2. Thanks to the AdS/CFT correspondence,

the solution is thought to govern an RG flow from the N = 6 SCFT in three

dimensions to a supersymmetric quantum mechanics in the IR resulting from a

twisted compactification on Σ2.

6.3.2 Solutions with SO(2) twist

We now look at a possible truncation of the previous result so that we can have

a AdS2 × Σ2 fixed point. The strategy is to set p2 = p3 = 0 and φ2 = φ3 = 0.

Therefore, we obtain a solution preserving SO(2)×SO(4) symmetry with the twist

performed along the SO(2) factor, and the supersymmetry is unbroken with only

ϵ1,2. With the condition given above, and ϵ3,4,5,6 = 0, we find the BPS equations

φ′ =
1

4
e−2h−φ[8ge2h − p0 + κp1 − e2φ(8ge2h + p0 + κp1)], (6.3.60)

h′ =
1

4
e−2h−φ[8ge2h − p0 + κp1 + e2φ(8ge2h + p0 + κp1)], (6.3.61)

f ′ =
1

4
e−2h−φ[8ge2h + p0 − κp1 + e2φ(8ge2h − p0 − κp1)] (6.3.62)

where φ1 = φ.

We note that with only the SO(2) twist, there is no need to set p0 = κp1.

Nevertheless, to obtain an AdS2 × Σ2 fixed point, we require the vanishing of p0.

The corresponding AdS2 × Σ2 fixed point give

φ = φ0, h =
1

2
ln
[
−κp1

8g

]
, LAdS2 =

1

8g cosh 2φ0

. (6.3.63)

where φ0 is a constant. Moreover, for the possible value of h, it requires that

κ = −1 which means that this fixed point is an AdS2 ×H2 fixed point.

Finally, we give the flow solution by the similar method as in the previous

calculation as

h = φ− ln(1− e2φ) + C, (6.3.64)

f = h− 2φ+ ln[κp1(1 + e4φ) + 2e2φ(4g − κp1)], (6.3.65)

8g(ρ− ρ0) = 2

√
2g

κp1 − 2g
tan−1

[
4g + κp1(e

2φ − 1)

2
√
2g(κp1 − 2g)

]

+ ln
[
κp1(1 + e4φ) + 2e2φ(4g − κp1)

(1− e2φ)2

]
(6.3.66)
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with a new radial coordinate ρ defined bydρ
dr

= eφ. Besides, we omit the integral

constant of f by rescaling time coordinate t to absorb such a constant.

At large distance limit of r ∼ ρ→∞, we find

φ ∼ e−4gr, h ∼ f ∼ 4gr (6.3.67)

being an asymptotically locally AdS4 critical point. Moreover, with near horizon

limit, where φ0 = 1
2

ln
(
1− 2

√
− 2g

κp1

)
and C = −φ0, we find φ → φ0 and the

following result

h ∼ 1

2
ln
[
−κp1

8g

]
and f ∼ 8gr

1−
√
− 2g

κp1√
1− 2

√
− 2g

κp1

(6.3.68)

These solutions reinforce that the solution admits AdS2 ×H2 fixed point.

6.3.3 U(3) symmetric solutions

Finally, we study U(3) symmetric solutions with a twist performed along the

SO(2) ∼ U(1) factor. The gauge generator of the U(1) factor can be written as

X14 +X25 +X36. As a result, we just turn on the following gauge fields

A = A14 = A25 = A36 = A(r)dt− κpF ′(θ)dϕ. (6.3.69)

where the singlet scalar of U(3) given in (6.1.29), we find the composite connection

as

QA
B = 2giA(I3 ⊗ iσ2). (6.3.70)

The twist condition results in

γθ̂ϕ̂ϵA = (iσ2 ⊗ I3)ABϵB and 2gp = 1 (6.3.71)

We note that, similar to the case of SO(2) × SO(2) × SO(2) twist, all of the

Killing spinor ϵA are non-vanishing. Besides, we also need non-vanishing A0 using

the ansatz (6.3.21). In this case, consistency requires p0 = −κp.

Similar to the RG flows, in order to have the consistency between the BPS
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equations and the field equations, we set ζ = 0. As a result, we obtain A(r) = 0,

and the BPS equations given by

φ′ = g(e−φ − e3φ) + 1

2
κpe−2h−3φ, (6.3.72)

h′ = g(3e−φ + e3φ) +
1

2
κpe−2h−3φ, (6.3.73)

φ′ = g(3e−φ + e3φ)− 1

2
κpe−2h−3φ . (6.3.74)

It is obviously that there is no AdS2 × Σ2 fixed point in this case. Moreover, we

also cannot obtain the analytic flow solution.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII

Conclusions and comments

In this thesis, we have studied four-dimensional N = 6 gauged supergravity with

SO(6) gauge group resulting from a consistent truncation of the maximal N = 8

theory with SO(8) gauge group. The N = 6 gauged theory admits a unique N = 6

supersymmetric AdS4 vacuum preserving the full SO(6) gauge symmetry, which

can be explicitly identified with AdS4×CP 3 geometry in type IIA theory dual to a

three-dimensional N = 6 SCFT. We have found several holographic solutions with

various symmetries governing the RG flows from this N = 6 SCFT to possible non-

conformal phases in the IR. In particular, there is the solution with SO(2)×SO(4)

symmetry in which the SO(6) R-symmetry are broken with unbroken N = 6

Poincare supersymmetry. This precisely coincides with the field theory result on

mass deformations of N = 6 SCFTs given in [16]. We also found other solutions,

breaking the SO(6) R-symmetry to U(3), SO(3) and SO(2) × SO(2) × SO(2)

symmetries. While most of the solutions preserve N = 6 supersymmetry, the

solution with SO(3) symmetry possibly beaks N = 6 to N = 2 supersymmetry.

We found all analytic solutions, however, the N = 2 solution gives non-physical

IR singularities by the criterion given in [57].

We have also generalized the flat domain walls to the curved ones, AdS3-

sliced domain walls. We have found a supersymmetric Janus solution, which

describes a two-dimensional conformal defect within the N = 6 SCFT, with

SO(2) × SO(4) symmetry and N = (2, 4) supersymmetry on the defect. The

solution has the similar form as those in N = 8, N = 5 and N = 3 gauged super-

gravities, [32], [31] and [33] respectively. Therefore, we argue that these solutions

can be related to the N = 8 solution by consistent truncations. For Janus solu-
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tions to exist, it is indispensable that there must exist non-vanishing pseudoscalars

pointed out in [32]. As a result, among the remaining cases, only the SO(3) in-

variant sector possibly admits supersymmetric Janus solutions.

Moreover, we have also studied supersymmetric solutions of the form AdS2×

Σ2 together with solutions interpolating between these geometries and the N = 6

AdS4 vacuum. We found one AdS2 × H2 fixed point with SO(2) × SO(4) sym-

metry from SO(2) twist. The solution interpolating between this fixed point and

the AdS4 vacuum preserves two supercharges while the IR fixed point AdS2×H2

has four supercharges. Holographically, this solution describes an RG flow from

the N = 6 SCFT to superconformal quantum mechanics which is useful in the

entropy computation of black hole [47–49].

For SO(2)×SO(2)×SO(2) twist, the BPS equations are more complicated

but admit no AdS2 × Σ2 fixed point. However, we could find the flow solution

between the AdS4 critical point to a curved domain wall with world-volume R×Σ2

in the IR. The solution preserves N = 6 supersymmetry in three dimensions, or

twelve supercharges, and SO(2)×SO(2)×SO(2) symmetry, which should be dual

to a twisted compactification on Σ2 of the UV N = 6 SCFT to a supersymmetric

quantum mechanics in the IR. Besides, we have also considered an SO(2) ∼ U(1)

twist in the case of U(3) symmetric solutions, and the corresponding AdS2 × Σ2

geometries, however there exist no AdS2 × Σ2 fixed points.

We hope that these analytic solutions could be useful in the study of gauge/

gravity holography and other related aspects. Since this is the only first-step in

classifying supersymmetric solutions of N = 6 gauged supergravity, there are some

directions we can further investigate. It would be very interesting to uplift the RG

flow solutions to M-theory via the embedding in N = 8 gauged supergravity which

can be obtained from a consistent truncation of M-theory on S7. This would lead

to a complete holographic description of mass deformations of N = 6 CSM theory

and possible related M-brane configurations.

In this work, we have only considered gauged supergravity with SO(6) gauge

group which is electrically embedded in the global SO∗(12) symmetry. It would be
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interesting to study magnetic and dyonic gaugings involving also magnetic gauge

fields.
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APPENDIX A

Group

Symmetry is a transformation that leaves physical quantities invariant. Symme-

tries play a very crucial role in physics because a certain physical theory is usually

based on a certain set of symmetry called a symmetry group. The symmetry

group is the study of the structure between elements of the symmetry group and

the operation among themselves denoted by (G, ◦). A certain group represents

a particular structure, [101–104]. Symmetry group is a group, so it must satisfy

group axioms.

1. Closure : The operation between group elements are trapped in the group,

so g1 ◦ g2 ∈ G, if g1, g2 ∈ G.

2. Associativity : The order of operation does not matter, so (g1 ◦ g2) ◦ g3 =

g1 ◦ (g2 ◦ g3).

3. Identity : There exists e so that there exist the operation of doing nothing,

so e ◦ gi = gi ◦ e = gi where gi ∈ G.

4. Inverse : No matter where we go, we are always be able to go back to the

same point, so there exists g−1
i such that g−1

i ◦ gi = e.

The number of elements of the group is called the order of the group. H is a

subgroup of G, if H satisfies the group axiom and hi ∈ H are the elements in G.

We can construct a bigger group by a group product. If G and H are a group, the

product can be classified by
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1. Direct product : If G and K are commute, the product can be written by

G×K.

2. Semi-direct product : If G and K are not commute, the product can be

written by G⋉K.

Representation We can represent the elements of groups by a set of num-

bers called a group representation D(G). The representation of the group is said

to be homomorphism if it preserves the group namely

D(gi) ◦D(gj) = D(gi ◦ gj). (A.0.1)

The elements of G become D(e), D(g1), D(g2), ..., D(gn). It does not matter how

to choose to represent the elements. However, one representation may be more

useful than another representation for a certain application. To see the set of

number which represents a elements of a group, we can use a vector space as the

representation of the group where the number of basis vector space corresponds

to the group elements

e = g1 → |e⟩, g2 → |g2⟩, ..., gn → |gn⟩. (A.0.2)

The matrix representation of the group elements gk are n×nmatrices of dimensions

n denoted by

D(gk)ij = ⟨gi|D(gk)|gj⟩ (A.0.3)

where i, j = 1, 2, ..., n. The n × n matrices are called a regular representation.

Moreover, the representation is said to be a faithful representation if D(G) is an

isomorphism. However, one may find representations that are smaller than the

regular representation, and the smallest one is called the fundamental representa-

tion corresponding to the number of Cartan generators. If a regular representation

can be reduced to smaller dimensions, there are subspaces. Let V be n-dimensional

space spanned by n basis vectors. U and W are subspaces of V if for every vector

v such that v = u+ w where v ∈ V , w ∈ W , and u ∈ U . We write

V = U ⊕W. (A.0.4)
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Let X be an operator in an n-dimensional space of V which is composed of two

subspaces U and W with corresponding operators Am and Bk, respectively. X is

a block diagonal matrix of Am and Bk written as

Xn×n =

Am 0

0 Bk

 (A.0.5)

with m+ k = n. This means that there exists a similarity transformation of D(g)

with an invertible matrix Sn×n such that

D
′
(g) = SD(g)S−1 =



An1(g)

Bn2(g)

Cn3(g)
. . .

Dnn(g)


(A.0.6)

Each subspace, An1 , Bn2(g), Cn3(g), ..., Dnn(g) is called an invariant subspace.

A.1 Lie Group

Lie group is a continuous group with infinite group elements, however such group

elements can be parameterized by a finite set of continuous variables αi(θ), where

i = 1, 2,…, n. n is called the dimension of Lie group corresponding to the number

of generators of the Lie group itself.

A.1.1 Generators

The elements of the group can be defined by g(αi), and there exists the element

corresponding to the identity as

g(αi)|αi=0 = e (A.1.1)

The corresponding representation can be written as

Dn(g(αI))|αi=0 = In×n (A.1.2)
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Due to the continuous parameterization, we can look at the infinitesimal elements

of Dn around the identity by Taylor’s series

Dn(g(αi)) = 1 + iαaTa (A.1.3)

where i indicates that Ta is a hermitian operator and Dn(g(αi)) is unitary operator.

Ta is called generators written as

Ta = −i
∂g

∂αa
|αa=0. (A.1.4)

There is a generator for each parameter corresponding to the element of the group,

and the entire representation can be completely defined by the generators Ta.

These generators form the basis vector of the parameter space near the identity,

and each point in the parameter space would correspond to a particular element

of the group. So, the number of generators is equal to the dimensions of the Lie

group which turns out to be the number of dimensions on a tangent space on a

manifold. Therefore, one can characterize the manifold as Lie group called a coset

manifold.

A.1.2 Lie Algebra

The element of Lie group is defined by the values of the parameters in the pa-

rameter space spanned by the generators, so the generators themselves form the

algebra called Lie algebra as the consequence of the group axiom composed of Lie

bracket resulting from the closure given by

[Ta, Tb] = if c
ab Tc (A.1.5)

and Jacobi identity resulting from the associativity given by

[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Ta, Tb]] = 0. (A.1.6)

Representation of Lie group

A particular representation of any group element can be written by

Dn(αi) = eiα
aTa . (A.1.7)
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In this representation of a vector space, there exists a set of eigenvectors and the

corresponding eigenvalues denoted by |j : m⟩,on which Lie group act, where j are

the eigenvectors and m, are the eigenvalues. The basis of the vector space is the

set of simultaneously diagonalized generators called Cartan generator which forms

a closed algebra, an algebra being commute among themselves but not outside the

algebra. The number of Cartan generators is called the rank of the group. The

list of eigenvalues is called the weight vector. The remaining generators can be

formed as linear combinations which transform one vector into another and the

resulting vector space is a physical space called root space.

A.2 Lorentz Group

Lorentz group is a symmetry underlying special relativity. We will review some

important features of Lorentz group and Lorentz algebras to discuss representa-

tions of Lorentz group which are objects representing fields of elementary particles

in physics.

Lorentz Algebra

Lorentz group SO(1, 3) is a group which preserves spacetime interval

s2 = −t2 + x⃗2 (A.2.1)

so, an action which is invariant under SO(1, 3) is called Lorentz invariant theory

and all physical theories of our universe should be invariant under this symmetry.

Lie algebra can be written as

[Jµν , Jρλ] = i
(
ηλµJρν − ηνλJρµ − ηρµJλν + ηνρJλµ

)
. (A.2.2)

There are six generators of Lorentz group which consist of three rotations denoted

by [Ji]
µ
ν and three boosts denoted by [Ki]

µ
ν where

J i =
1

2
ϵijkJ jk,

Ki = J0i.

(A.2.3)
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We can write the Lorentz algebra as

[Ji, Jj] = iϵijkJk,

[Ji, Kj] = iϵijkKk,

[Ki, Kj] = −iϵijkJk.

(A.2.4)

We can rewrite such generators as the combination as

N±
i =

1

2
(Ji ± iKi) (A.2.5)

where the commutation relation of new generators lead to

[N+
i , N

+
j ] = iϵijkN

+
k ,

[N−
i , N

−
j ] = iϵijkN

−
k ,

[N+
i , N

−
j ] = 0.

(A.2.6)

Here, we can obviously see that SO(1, 3) Lorentz algebra is made of two pieces of

SU(2) Lie algebra. This is true in four-dimensional spacetime.

A.2.1 Lorentz Representation

The representation of SO(1, 3) can be denoted by doublet (j, j′) of (2j + 1)(2j +

1)× (2j′ + 1)(2j′ + 1) matrices.

(0, 0) Representation This representation is 1×1 matrix or scalar which

is a trivial representation.

(1/2, 0) Representation By setting N−
i = 0, so

N−
i =

1

2
(Ji − iKi) = 0→ Ji = iKi,

N+
i =

1

2
(Ji + iKi)→ iKi =

1

2
σi

(A.2.7)

and we get

R(θ) = eiθ⃗·J⃗ → R(θ) = eiθ⃗·
σ⃗
2 ,

B(ϕ) = eiϕ⃗·J⃗ → B(ϕ) = eiϕ⃗·
σ⃗
2

(A.2.8)

where R(θ) and B(ϕ) correspond to rotation and boost transformation the (1/2, 0)

representation, respectively.
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(0, 1/2) Representation By setting N+
i = 0

N−
i =

1

2
(Ji − iKi)→ −iki =

1

2
σi,

N+
i =

1

2
(Ji + iKi) = 0→ Ji = −iki

(A.2.9)

and we obtain

R(θ) = eiθ⃗·J⃗ → R(θ) = eiθ⃗·
σ⃗
2 ,

B(ϕ) = eiϕ⃗·J⃗ → B(ϕ) = e−iϕ⃗· σ⃗
2

(A.2.10)

where R(θ) and B(ϕ) correspond to rotation and boost transformation the (0, 1/2)

representation, respectively.

Therefore, the two (1/2, 0) and (0, 1/2) are identical under rotation, but

slightly different under boost. Therefore, the (1/2, 0) and (0, 1/2) representation

is called left-handed spinor and right-handed spinor respectively, and they are

conjugate of each other.

(1/2, 1/2) Representation This representation is called the vector repre-

sentation which comprises of two non-overlapping copies of SU(2).

A.3 Clifford Algebra

Clifford algebra is a general idea for looking at the spinor representation in various

n-dimensional spacetime, that corresponds to a set of n matrices of γµ, µ =

0, ..., n− 1 with components (γµ)ab satisfying anti-commutation relation

{γµ, γν} = 2ηµν . (A.3.1)

We can also show that Clifford algebra can be related to Lorentz algebra by defined

Sµν =
i

4
[γµ, γν ]. (A.3.2)

This leads to the algebra given by

[Sµν , Sρλ] = i(ηλµSρν − ηνλSρµ − ηρµSλν + ηνρSλµ) (A.3.3)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

133

which coincides exactly with Lorentz algebra (A.2.2).

Moreover, Clifford algebra can also naturally arise from Dirac’s equation

(iγµ∂µ −m)ψ = 0 (A.3.4)

once, we try to obtain Klein-Gordon equation

(iγµ∂µ −m)(iγν∂µ −m)ψ = (γνγµ∂µ +m2)ψ = 0. (A.3.5)

We then obtain the Clifford algebra (A.3.1). Let’s solve Clifford algebra in four

dimensions by using a trick given by

A⊗B =

Ab11 Ab12

Ab21 Ab22



=



a11 a12

a21 a22

 b11

a11 a12

a21 a22

 b12a11 a12

a21 a22

 b21

a11 a12

a21 a22

 b22



=


a11b11 a12b11 a11b12 a12b12

a21b11 a22b11 a21b12 a22b12

a11b21 a12b21 a11b22 a12b22

a21b21 a22b21 a21b22 a22b22

 (A.3.6)

where A =

a11 a12

a21 a22

 and B =

b11 b12

b21 b22

.

We also note that (A⊗B)(C ⊗D) = (AC ⊗BD). Let us now mention few

crucial solutions to the Clifford algebra.

Chiral representation In this representation, we have

γ0 = (σ0 ⊗ σ1) =

 0 σ0

σ0 0

 =

0 1

1 0

 ,

γi = i(σi ⊗ σ2) = i

 0 −iσi

iσi 0

 =

 0 σi

−σi 0

 .

(A.3.7)

It is also called Weyl representation.
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Dirac representation In this representation, we give

γ0 = (σ0 ⊗ σ3) =

1 0

0 −1

 ,

γi = i(σi ⊗ σ2) =

 0 σi

−σi 0

 .

(A.3.8)

Majorana representation Lastly, Majorana representation can be ob-

tained by giving

γ0 = (σ2 ⊗ σ1) =

0σ2

σ2 0

 ,

γ1 = (σ3 ⊗ σ0) =

iσ3 0

0 iσ3

 ,

γ2 = i(σ2 ⊗ σ2) =

 0 −σ2

σ2 0

 ,

γ3 = i(σ1 ⊗ σ0) =

−iσ1 0

0 −iσ1

 .

(A.3.9)

This results in every non-vanishing components to be imaginary number, so we

have real spinor in Majorana representation. Moreover, we also note that one can

generally identify the chirality of spinor by using projection operators

P± =
1

2
(1± γ5) (A.3.10)

where γ5 = iγ0γ1γ2γ3 being invariant under Lorentz transformation denoted by

[Sµν,γ5
] = 0. This holds in any representation of the Clifford algebra of γµ matrices.

Furthermore, we can also consider a higher rank of gamma matrices as

γµ1µ2...µn ≡ γ[µ1γµ2 · · · γµn] (A.3.11)

Moreover, one can also have the Clifford algebra on local Lorentz coordinate can

be mapped to the manifold on a tangent space as

{γµ, γν} = 2gµν . (A.3.12)
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APPENDIX B

Field Theories

Fields area mathematical objects that eat a spacetime location and split out a

value in the field space, and the type of the value depends on the type fields. In

this appendix, we will review scalar fields, spinor fields, and vector fields describing

particle with spin-0, spin-1/2, and spin-1 ,respectively. We will also discuss the

the global and local symmetry called gauge symmetry of Lagrangian.

B.1 Scalar Fields

Scalar fields Φi(x⃗, t) are used to represent spinless particles such as the Higgs

boson. In Minkowski spacetime, the dynamics of an real scalar field are captured

by the action

S =

∫
d4x(−1

2
∂µΦ(x)∂

µΦ(x)− V (x)) (B.1.1)

where the first term is the kinetic energy of scalar field and the second term is

potential term. Let V (x) = 1
2
m2Φ2, the action becomes

S =

∫
d4x(−1

2
∂µΦ(x)∂

µΦ(x)− 1

2
m2Φ2). (B.1.2)

We can evaluate the equation of motion by doing the variation of the action with

respect to the scalar field itself, δΦS = 0. We get

∂µ∂
µΦ(x)−m2Φ = 0. (B.1.3)

The field’s equation of motion of scalar field is called the ”Klein-Gordon equation”.

Moreover, we can generalize a real scalar field to a complex scalar field of Φ(x⃗, t) =
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(Φ1 + iΦ2)/
√
2 where Φ1, and Φ2 are real scalar fields. The action can be written

as

S =

∫
d4x(−1

2
∂µΦ(x)∂

µΦ(x)† − 1

2
m2ΦΦ†). (B.1.4)

The field’s equations of motion for Φ(x⃗, t) and its complex conjugate Φ† can be

written as

∂µ∂
µΦ(x)−m2Φ = 0,

∂µ∂
µΦ† −m2Φ† = 0.

(B.1.5)

B.2 Vector Fields

Vector fields can be used to described spin-1 particles which play a very crucial

role in elementary particle physics. They represents gauge bosons such as pho-

ton, ZW bosons, and gluon which are the gauge mediators of electromagnetic,

weak, and strong interactions, respectively. Let us consider a massless vector field

Aµ(x⃗, t) = (ϕ(x), A⃗(x)), where ϕ(x) and A⃗(x) are called potential and vector po-

tential, respectively. The dynamics of the vector field can be described by the

action

S =

∫
d4x(−1

4
FµνF

µν + Aµj
µ) (B.2.1)

where Fµν = ∂µAν − ∂νAµ = −Fνµ is electromagnetic field tensor and jµ = (ρ, J⃗)

is four current.

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (B.2.2)

and its Hodge dual tensor defined as Gµν = ∗F αβ = 1
2
ϵµναβF

αβ

Gµν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 (B.2.3)
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One can find the equation of motion of vector field by doing the variation of the

action with respect to Aµ, then one obtain

∂νF
µν = jµ (B.2.4)

with the Bianchi’s identity

∂[µFνρ] = 0. (B.2.5)

These equations form Maxwell’s equations

∇⃗ · B⃗ = 0, (B.2.6)

∂B⃗

∂t
+ ∇⃗ × E⃗ = 0, (B.2.7)

∇⃗ · E⃗ = ρ, (B.2.8)

∂E⃗

∂t
− ∇⃗ × E⃗ = −j⃗. (B.2.9)

B.3 Spinor field

Spinor fields are used to describe half-integer spin particles. They are very im-

portant to describe fermionic particles such as leptons and quarks. Here, we will

review the representation of spin-1/2 field.

B.3.1 Dirac Spinor

A spinor Ψ(x) is used to describe spin half-integer particles. There are three

interesting types of spinors, Dirac spinor, Weyl Spinor, and Majorana spinor. Let

us firstly start reviewing Dirac spinor describing spin 1/2 particle. The dynamics

of Dirac spinor field can be written as

S =

∫
d4x(Ψγµ∂µΨ−mΨΨ). (B.3.1)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

138

By doing the variation of the action with respect to Ψ and Ψ̄.

One obtain the equations of motion as

γµ∂µΨ−mΨ = 0 (B.3.2)

∂µΨγ
µ −mΨ = 0 (B.3.3)

which is the set of first order equation of motion, one can also find the correspond-

ing second order equation of motion as

∂µ∂µΨ−m2Ψ = 0 (B.3.4)

This shows that the Dirac’s equation satisfies the Klein-Gordon equation.

B.3.2 Weyl Spinor

Dirac spinor can written in terms of two Weyl spinor written as

Ψ =

ψ
χ

 (B.3.5)

In Chiral representation, one can write Dirac equation as

σµ∂µψ = mχ (B.3.6)

σµ∂µχ = mψ (B.3.7)

and the action in term of this representation can be written as

S = i

∫
d4x(χ†σµ∂µχ− ψ†σµ∂µψ +mψ†χ−mχ†ψ) (B.3.8)

If m = 0, we can obviously see that Dirac spinor is a reducible representation of

Weyl spinors. However if m ̸= 0, Dirac spinor is irreducible, but Dirac spinor will

be equivalent to two Weyl spinors. The action of massless spinor can be written

as

S = −i
∫
d4xψ†σµ∂µψ (B.3.9)

with the equation of motion as

σµ∂µψ = 0 (B.3.10)
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B.3.3 Majorana Spinor

A real Majorana spinor is a direct result from the Majorana representation of

Clifford algebra with reality condition called Majorana constraint given by

ψ = ψ(c) = Cψ̄T (B.3.11)

where C being charge conjugate. The corresponding Majorana Lagrangian is given

by

LM = iλ†σ̄µ∂µλ−
i

2
m
(
λ∗σ2λ∗ − λTσ2λ

)
(B.3.12)

where we define the Majorana field to be

ψM =

 λ

(iσ2)λ∗

 =

ψL

ψR

 (B.3.13)

where we express the right and left component into each other and λ = ψL = (iσ2
R).

The physical interpretation of charge conjugate can be obvioulsy seen by taking

the complex conjugate of gauge theory of Dirac’s equation given (D.1.10)

((iγµ(∂µ + iqAµ)−m)ψ)∗ = 0,(
iγµ(∂µ − iqAµ)ψ

(c)
)
= 0.

(B.3.14)

We see that if ψ does satisfy the Dirac’s equation for a particle with charge q, ψ(c)

need to also satisfy Dirac’s equation with negative charge −q. As a result, C is

the charge conjugate in the sense that it does swap the charge of the field.
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APPENDIX C

Symmetry

Symmetry is a set of transformation which leaves physical system invariant and

the physical system can be described by the functional action. If the action is

invariant under generic field transformation without imposing field’s equations

and boundary conditions, the symmetry is called “off-shell symmetry”. If the

action is only invariant by imposing field’s equations and boundary conditions,

the symmetry is called “on-shell symmetry”. The mathematical tool which is used

to study symmetry is group theory. According to group theory, symmetry can

be classified in many different ways whether or not the symmetry is discrete or

continuous, spacetime or internal, global or local (gauged), abelian or non-abelian.

Here, we mostly focus on continuous symmetry. One of the most important roles

of symmetry is the applications of understanding interactions between fields or

particles.

C.1 Spacetime and Internal Symmetry

Spacetime symmetry is a symmetry which act on spacetime, so it does transform

spacetime such as Poincare symmetry

xµ → Λµ
νx

ν + aν . (C.1.1)

Moreover, there is also the symmetry which does not act on spacetime, but it acts

on hidden degree of freedom of the field

ϕi(x)→ U i
jϕ

j(x). (C.1.2)
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This is called ”internal symmetry”.

C.2 Global and Gauged Symmetry

Both of the spacetime and internal symmetry can be either global symmetry or

guage symmetry, where the parameter of transformation is independent and de-

pendent of spacetime, respectively. Global symmetry is a symmetry which acts

on the field at all points on spacetime in the same way at once such as for the

spacetime symmetry of Poincare symmetry

xµ → Λµ
ν(x)x

ν + aν (C.2.1)

or the internal symmetry of SU(N) symmetry

ϕi(x)→ U i
jϕ

j(x) (C.2.2)

The gauge symmetry is a symmetry which depends on the point in spacetime.

U i
j = U i

j(x). (C.2.3)

C.3 Symmetry and Noether Current

For a certain continuous symmetry, there exists a corresponding conserved quan-

tity according to Noether’s theorem and the conversed charges correspond with

the Noether currents.

For the action

S[ϕi] =

∫
d4xL(ϕi, ∂ϕi) (C.3.1)

which is invariant under a certain transformation,

ϕ(x)→ ϕ
′
(x

′
) (C.3.2)

namely,

S[ϕi] = S[ϕi′ ]. (C.3.3)
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The variation of the field can be expressed as

δϕi(x) = ϵa∆aϕ
i(x) (C.3.4)

and the variation of the Lagrangian can written as

δL =
[ δL
δϕi
− ∂µ

( δL

∂∂µϕi

)]
δϕi + ∂µ

( δL

∂∂µϕi
δϕi
)
. (C.3.5)

The variation of Lagrangian may not vanish under the transformation, however,

it can be vanished up to the total derivative of the action given by

δL = ϵa∂µK
µ
a. (C.3.6)

We can write

∂µ
(
Kµ

a −
∂L

∂∂µϕi
∆aϕ

i
)
=
( ∂L
∂ϕi
− ∂µ(

∂L

∂∂µϕi

)
)
∆aϕ

i (C.3.7)

where we have assumed that ϵ is spacetime independent. And we impose Euler

equation, we then obtain the Noether current as

jµa = Kµ
a −

∂L

∂∂µϕi
∆aϕ

i (C.3.8)

with the conservation law of

∂µj
µ
a = 0. (C.3.9)
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APPENDIX D

Gauge Theories

To consider the interaction between fields or particles, we need an interaction

term in our Lagrangian Lint. This can be done by coupling Noether current of a

field and then multiply it by the field to which we need to couple together with

a coupling constant. However, this process can be done with a more fundamental

process called ”Gauge Theory”. Gauge theory is a way to include an interaction

by promoting a certain global symmetry group of Lagrangian to gauge symmetry

group and force the Lagrangian to be invariant under the gauge symmetry. This

process forces us to define a covariant derivative which automatically includes

gauge fields with a coupling constant into the theory. As a result, we have an

interaction term in the Lagrangian. Therefore, gauge theory plays a central role

in modern physics especially in the theory of fundamental interaction of elementary

particle physics. Here, we will review some crucial features of gauge theory.

D.1 Abelian Gauge Theories

It is obvious that Maxwell’s equations of the action

S = −1

4

∫
d4xFµνF

µν (D.1.1)

are invariant under gauge transformation of

Aµ → A
′

µ = Aµ + ∂µα(x) (D.1.2)

where α(x) is the infinitesimal gauge parameter which depends on spacetime. As

a result, one can have the action of electromagnetic fields which is invariant under
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local U(1). Moreover, the existence of mass term of gauge field Aµ will violate the

local symmetry U(1).

For the Dirac action which govern the dynamics of spin 1/2 particle

LD = ψ(iγµ∂µ −m)ψ. (D.1.3)

One can promote the global symmetry U(1) of the Dirac Lagrangian

ψ → e−iqαψ (D.1.4)

to a gauge symmetry by setting α = α(x) and under local U(1) transformation

we obtain

LD → ψ(iγµ∂µ −m− γµ∂µα(x))ψ. (D.1.5)

We need to way a way to cancel the extra term. One way is to define a new gauge

field which transforms under U(1) as

Aµ → Aµ −
1

q
∂µα(x) (D.1.6)

so, we have just introduced a covariant derivative written as

∂µ → Dµ = ∂µ + iqAµ. (D.1.7)

The covariant derivative indicate that the field is charged under the gauge sym-

metry, and the Lagrangian can be rewritten as

LD = ψ(iγµDµ −m)ψ (D.1.8)

which is invariant under both global and gauged U(1) symmetry. Here, we have

just added the gauge field into our theory, however there is no dynamics of gauge

field due to the lack of kinematic term of gauge field. One can add the extra term

which contribute the dynamics of the gauge field given by

Lkin,A = −1

4
F µνFµν (D.1.9)

where Fµν = ∂µAν − ∂νAµ due to the abelian property of U(1) gauge symmetry.

Therefore, the interacting theory of spin 1/2 field cam be written as

L = ψ(iγµDµ −m)ψ − 1

4
F µνFµν (D.1.10)

if one quantize this Lagrangian, one would get the theory of quantum electrody-

namics or QED.
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D.2 Non-Abelian Gauge Theories

Now, we will generalize our gauging procedure of arbitrary compact Lie group of

dimensions G, which transforms the field by

ϕi → Uijϕj (D.2.1)

and the structure of the group can be represented by Lie algebra

[T a, T b] = ifabcT
c (D.2.2)

and the corresponding gauge field transformation can be written as

Aµ → U(x)AµU †(x) +
i

g
U(x)∂µU(x)†. (D.2.3)

We can introduce the covariant derivative in the similar way, which indicate the

introduction of gauge fields and the field of theory would be charged by the gauged

fields under the covariant derivative given by

Dµ = IN×N∂µ − igAµ (D.2.4)

where Aµ is the N ×N matrix, and it acts on the fields as

(Dµϕ)j = ∂µϕj(x)− ig[Aµ(x)]jkϕk(x). (D.2.5)

The field strength can be defined as

Fµν =
i

g
[Dµ, Dν ] = ∂µAν(x)− ∂µAµ − ig[Aµ(x), Aν(x)]. (D.2.6)

The invariant form of field strength under gauge group is the trace of field strength

given by

Lkin = −1

2
Tr(FµνF

µν). (D.2.7)

Here, we have just promoted a non-interacting field theory with a global symmetry

to interacting field theory with gauge symmetry gauged by vector fields. For a

certain Lie group, there exist particular gauge fields with a particular interaction.
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