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In this thesis, we study holographic solutions of four-dimensional N =
6 gauged supergravity with SO(6) gauge group. The theory admits a unique
N = 6 supersymmetric AdS,; vacuum dual to a three-dimensional N = 6 SCFT
and gives us a number of supersymmetric domain walls interpolating between
this AdS; vacuum and singular geometries in IR with SO(2) x SO(4), U(3),
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flows from N = 6 SCFT in UV to non-conformal field theories driven by mass
deformations. In particular, the solution with SO(2) x SO(4) symmetry coincides
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CHAPTER 1

Introduction

General Relativity describes the dynamics of gravity by the presence of curvature
spacetime. This revolution leads to several fascinating phenomena and new under-
standings of astrophysics. Black holes are an object surrounded by a horizon from
which even light cannot escape [67,68]. Gravitational waves recently discovered
in [70] is the ripples of spacetime traveling at the speed of light. Gravitational

lensing is a manifest example of how matter disturbs spacetime. Spectacular un-

Figure 1.2: An illustration of

Figure 1.1: The first image of two black holes merging which
back hole at the center of galaxy creates the ripples of space-
M87 (Credits: Event Horizon time called gravitational waves
Telescope collaboration et al.) (credit: LIGO/T. Pyle)

derstandings of Big Bang cosmology also result from general relativity with the
accidental discovery of cosmic microwave background (CMB) in 1940. The ex-
perimental discoveries of these consequences firmly support the idea of Einstein’s
gravity of general relativity. Despite these successes, physicists discovered some
disfavor aspects of general relativity. The presence of matter in general relativity

lacks a microscopic picture of quantum physics. As matters are squashed into a



Figure 1.3: The image of a Figure 1.4: The snapshop of
distant galaxies is distorted by the universe when it was 380,000
nearer galaxies called the gravi- years old is called CMB. (Cred-
tational lensing. (Credit: ALMA its: ESA and the Planck Collab-
(ESO/NRAO/NAOJ).) oration)

tiny region of spacetime, the curvature of spacetime becomes infinity leading to
a catastrophic situation for general relativity. As opposed to other fundamental
interactions, electromagnetic, weak, and strong interactions, gravity is short of
a quantum description, and cannot be quantized to quantum gravity in a usual
way of canonical quantization due to uncontrollable divergences, see some reviews
in [[71,[72]. Therefore, we think that promoting gravity to quantum gravity might

eventually lead to an aspect of the theory of everything.

String theory [74-79] is a quantum theory that contains one-dimensional
vibrating strings and p-dimensional spatial extended objects called p-branes. The
quantization of strings gives rise to different types of fields. It was first expected
to be a theory of quantum gravity, furthermore, it has been demonstrated as a
promising candidate for the theory of everything. There are five different versions
of self-consistent string theories: type I, type IIA, type IIB, Heterotic SO(32), and
Heterotic Fg x Ejg living in ten-dimensional spacetime. Among these strings, M-
theory is an eleven-dimensional non-perturbative theory connecting them via du-
alities shown in figure (@) As a promising candidate of the theory of everything,
string/M-Theory should give effective field theories consistent with quantum field

theories in four-dimensional spacetime. In principles, this can be studied by the



Type IB

Type IIA Type [

E8 x E8
heterotic S0(32)
heterotic

Figure 1.6: This imamge shows a

Figure 1.5: The image shows the closed string together with open
five different string theories liv- strings with its ends being sub-
ing in D = 10 which can be re- ject to p-branes (Credit: This
lated to M-theory living in D = image created by Steuard Jensen
11. and brought to David Tong)

compactification of string theory on the product manifold R x MP~*, where R!3
is four-dimensional Minkowski spacetime and M~ is an internal compact man-
ifold which plays an important role to determine interactions. Moreover, things

get more interesting, when we study String/M-Theory in anti-de Sitter spacetime

(AdS).

According to the AdS/CFT correspondence [m»], string theory in AdS ;1 X
MP=2=1 gpacetime is dual to a superconformal field theory (SCFT) which lives
on its boundary 0AdSy.; corresponding to d-dimensional Minkowski spacetime
RV In this sense, local fields hi(x,r)ﬂ in the bulk spacetime is dual to local
operators O;(x) in the dual SCFT on the boundary. This allows us to calculate

correlation functions describing interactions in the dual SCFT. To treat calcula-

"Where (x,7) is the coordinate of the bulk AdS spacetime, and z is the coordinate on the

boudary of the AdS spacetime.


http://www.damtp.cam.ac.uk/user/tong/string.html

4-dimensional space-time
(hologram)

5-dimensional anti-de Sitter
space-time

Superstrings

Figure 1.7: This image shows that AdS/CFT correspodence is the equivalence be-
tween physics of gravity in the bulk of AdSs; and N=4 supersymmetric Yang-Mills
theory (SYM) on the boundary of AdSs. (Credit: https://www.quantum-bits.
org/7p=1134)

tions more traceable, we apply the low energy limit and the large-N limit [I]. In
this limit, the AdS/CFT duality suggests that strongly-coupled SCFTs is dual to
gauged supergravities. This duality is also called strong/weak duality which is one
of the most important results of string /M-Theory. We can generalize the duality by
studying string/M-Theory inf AAdS 1 x MP~41 dual to non-conformal field the-
ories, quantum field theories. It is very important to have such a duality because
if string/M-Theory is truly a theory of everything, it must satisfy all theoretical
aspects in physics. One of the most famous example of the AdS/CFT correspon-
dence is that of type IIB string theory in AdSs x S° dual to four-dimensional
N = 4 supersymmetric Yang-Mills field theory as shown in figure () This
shows that type IIB string theory having its low-energy action as type IIB super-
gravity in AdSs x S® containing some properties that are dynamically equivalent
to four-dimensional N = 4 supersymmetric Yang-Mills field theory with gauge
group SU(N) and a coupling constant gy,;. Therefore, the free parameters of
supersymmetric Yang-Mills theory are mapped to the free parameters obtained

from type IIB supergravity which is weakly curved in AdSs x S® spacetime.

On the other hand, supergravity is an extension theory of general relativity,

2AAdS is an asymptotic anti-de Sitter space.


https://www.quantum-bits.org/?p=1134
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which is invariant under local supersymmetries. Supersymmetry gives the rela-
tion between the internal and spacetime symmetry. It introduces spinor generators
called supercharges along with graded Lie algebra. The commutation relations of
supercharges with internal and spacetime generators form Lie superalgebra. As a
result, for an elementary particle, there exists the corresponding particle called su-
perpartner forming a supermultiplet. For example, the superpartner of a massless
spin-2 graviton is a massless spin-3/2 gravitino. The introduction of supersymme-
try to general relativity also results in a better divergence behavior. Supergravity
is a gauge theory of supersymmetry living in various dimensions ranging from two
to eleven dimensions. We can also construct supergravity by coupling the grav-
ity multiplet to matter multiplets, a chiral multiplet, or a vector multiplet. On
the other hand, we can also increase the number of supersymmetry. The former
theory is called matter-coupled supergravities. The latter is called extended super-
gravities. Those theories are called ungauged supergravity since the gravitini are
not charged. We can further promote ungauged supergravities to more interest-
ing theories called gauged supergravities where gravitini are charged under gauge
fields of the theory by promoting a suitable subgroup of global symmetry group
to a gauge group. Studying supersymmetric solutions of gauged supergravities in
various dimensions also plays an important role in understanding string/M-theory.
In the AdS/CFT correspondence, these solutions provide the holographic tool to
investigate strongly-coupled systems of quantum field theories, conformal defects,
and condensed matter systems AdS/CMT [73]. In many cases, solutions of lower-
dimensional gauged supergravities can be uplifted to to higher-dimensional origins
via consistent truncations resulting in a complete description of AdS/CFT dual-

ities.

In this thesis, we study supersymmetric solutions from four-dimensional
N = 6 gauged supergravity with SO(6) gauge group. The theory has previously
been constructed in [4] by using embedding tensor formalism which is obtained

from a consistent truncation of the maximal N = 8 gauged supergravity [b], see



also [6-8]. The N=6 gauged supergravity admits a unique N = 6 supersymmet-
ric AdS, vacuum preserving SO(6) symmetry dual to three-dimensional N = 6
SCFT. A recent result on supersymmetric AdS vacua [9] also confirms the unique-
ness of N = 6 supersymmetric AdS, vacua. The reserach paper [4] has also pointed
out that this AdS, vacuum describes a consistent truncation of type ITA theory
on C'P3, so the AdSy vacuum can be uplifted to type IIA theory in the form of
AdS, x C'P? space. This has been shown in [10] and more recent studies in [[11-14].
The dual N = 6 SCFT of type ITA theory has been studied in [[15]. In general,
three-dimensional superconformal field theories (SCFTs) have the form of Chern-
Simons-Matter (CSM) theories because the usual gauge theories with Yang-Mills
gauge kinetic terms are not conformal. These SCF'Ts result from would-volume
theories of M2-branes on various transverse spaces and they play an important role
in understanding the dynamics of M2-branes. Studying supersymmetric solutions
of gauged supergravities may be useful for the use of their holographic descriptions

at least in the large-N limit.

Many supersymmetric solutions of gauged supergravities have been stud-
ied and interpreted in terms of their dual field theories. In this thesis, we will be
studying these solutions from four-dimensional N = 6 gauged supergravities. We
firstly look at supersymmetric domain wall solutions interpolating between the
N = 6 supersymmetric AdS, vacuum and singular geometries. These solutions
describe RG flows from the dual N = 6 SCFT in UV to non-conformal phases
in IR resulting from mass deformations. There are a number of similar solutions
having intensively studied in N = 8 and N = 2 gauged supergravities, [17-25],
along with a recent studies of N = 3,4,5 gauged supergravities, [26-31]. We
hopefully expect that this work would fill up the complete solutions of gauged
supergravities in four dimensions. We will also study supersymmetric Janus so-
lutions in which the spacetime takes the form of AdSs3-sliced domain walls inter-
polating between asymptotic AdS; spaces. Holographically, these solutions are

dual to two-dimensional conformal defects within the N = 6 SCFT and break the



superconformal symmetry in the three-dimensional bulk to a smaller one on the
two-dimensional surfaces. There is also this kind of solution in four-dimensional
gauged supergravities which has previously been studied, [28,29,31-35]. Finally,
we will look for supersymmetric solutions that take the form of AdS; x X2 geome-
tries with X2 being a Riemann surface, and interpolate between these AdS, x 2
geometries and the supersymmetric AdS; vacuum. These solutions describe su-
persymmetric black holes in asymptotically AdS, space, and there is a number of
these solutions which has already been investigated in other gauged supergravi-

ties, [31,36-16].

N = 6 gauged supergravity in four dimensions has the global symmetry
SO*(12) with the compact maximal subgroup of U(6) ~ SU(6) x U(1) together
with thirty real scalars encoded in a coset manifold of My = SO*(12)/U(6).
The gauge group SO(6) of the N = 6 gauged supergravity can be obtained
from a consistent truncation of the SO(8) gauge group of the maximal N = 8
gauged supergravity. The N = 8 gauged theory appears as a consistent trun-
cation of eleven-dimensional supergravity on S” [50-55]. The four-dimensional
N = 6 gauged supergravity with SO(6) gauge group can be uplifted via consis-
tent truncations to eleven dimensions. On the other hand, the N=6 theory is also
a consistent truncation of type IIA theory on CP3. As a result, all solutions of
the N = 6 theory which will be given here have higher-dimensional origins and
can be embedded in ten- or eleven-dimensional supergravities. Besides, the scalar
potential of the four-dimensional N = 6 gauged supergravity has already consid-
ered in [p6] along with a recent version in a more general form of the embedding
tensor formalism in [4] where the fermion-shift matrices and the scalar potential

have been identified by consistent truncation of the N = 8 theory.

We will organize the thesis as follows. We will firstly review the impor-
tant ingredient of supergravity in the first few chapters. In the introduction, we

review all the relevant ideas of studying four-dimensional N = 6 gauged super-



gravity with SO(6) gauge group. In chapter 2, we will review some properties of
a manifold for studying general relativity. Then, we apply such tools to describe
gravity in chapter 3. After that, we will recall some crucial properties of supersym-
metry and supergravity in chapter 4. In chapter 5, we will discuss the structure of
N = 6 gauged supergravity in four dimensions with SO(6) gauge group. Finally,
we will look at the holographic solutions of the N = 6 gauged theory in chapter

6. Then, we end this thesis with the conclusion and comments.



CHAPTER II

Differential Geometry

Differential geometry is the study of curved space. In physics, it is very important
to define a locally flat space at every point on a curved space, so the curved space
is called a manifold. To study physics on a curved manifold, we need additional
structures such as a metric tensor and connections. A manifold equipped with the
metric tensor is said to be (pseudo-)Riemannian manifold denoted by (M, g), see

also [79-8§].

2.1 Manifolds and Tensor Fields

A d-dimensional manifold is a locally flat topological space M with the differ-
entiable structure of class C*.The manifold M, for every point on the manifold
Po € M, has neighborhood homeomorphism from an open set u, which can be
mapped to a coordinate function R? by ¥, as shown in figure (El]) v, is the
coordinate function represented by d variables {z*(p)} = {z'(p), 2%(p), ..., z%(p)}

E]. The pair of (uq, ¥4 ) is called a coordinate chart.
U, @ uy € M — RY (2.1.1)

The collection of coordinate charts is called atlas “A”.
It is also possible to have more than one coordinate representation, so we

define the coordinate transformation z#(p) = y”(p) as shown in figure (@) by

Voo Wz R — R (2.1.2)

'If a d-dimensional manifold takes the form of M4~ the local space becomes Lorentzian

space of RL¢~1,
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(U, 0 \1/51) is a composite map between coordinate charts, if u, Nug # @.

Figure 2.1: The map between overlapping coordinate charts

The definition of the differentiable structure of class C*(1 < k < c0) of a
d-dimensional manifold M is a collection of coordinate charts {(uq, ®.) | @ € A}

satisfying

. Jua=M

acA

2. (Wao0Wy')is C* o, € A

If £ — oo, the manifold is said to be smooth manifold.

Let f: M — N be a map between an m-dimensional and an n-dimensional
manifold as shown in figure () together with ®(p) = {z*}, V(f(p)) = {y*},
and y = U o ®~! we can write a coordinate representation in terms of another

coordinate representation as
g = f(a) (2.1.3)

where f is C* times differentiable with respect to # around a point p € M or
O(p) = {a}. If k — oo, f is said to be smooth. f is called a diffeomorphism if
o foU~!is invertible and both y = ® o f~1¥~(z) and x = U o f o ®~(y) are
smooth namely, C°. The manifold M and N are diffeomorphic regarded as the
same manifold denoted by M = N, and dim M=dim N.
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R™ W () Pofoyp-l R™, ¥(p)

Figure 2.2: The map between manifolds
2.1.1 Product Manifold

If both M and N are an m- and n-dimensional manifold, a product manifold B
M x M is an (m + n)-dimensional manifold. For example, the product manifold

of two one-sphere manifolds is a torus, 7% = S* x S' as shown in figure (@)

Figure 2.3: The product manifold of M x N = St x S! = T2,

2.1.2 Curves and Scalars

A curve ¢(t) on a manifold shown in figure (@) which does not intersect with
itself can be parameterized by a parameter ¢ where t € (a,b) and (a,b) can be

extended to (—o00,00). ¢(t) can be written in the coordinate representaion as
z(t)=Toc:R— R? (2.1.4)

where we can write {2#(t)} = {z'(t), 2%(t), ..., 2(¢)}.

2A (1,d)-dimensional spacetime in supergravities can be studied by the compactification of

D-dimensional string/M-theory on a (D-d-1)-dimensional compact manifold via the product
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]Rd
\‘
a
b
0

c

e b

M

Figure 2.4: This figure shows the map between a curve on a manifold, coordinate

chart, and real numbers

A scalar function f on a manifold M is a smooth map from the manifold M

to real numbers R as shown in figure (@)
fM—-R (2.1.5)

where f can be parameterized by a coordinate chart of d variables written as
foWl:RI 3R

f(z) = fo¥ () (2.1.6)
which defines a real-valued function on M in terms of coordinate representation.

A set of smooth scalar functions on the manifold M is denoted by F(M).

2.1.3 Vectors and Dual Vectors

A vector on the manifold M can be defined as a tangent vector of a parametric
curve ¢(t) as shown in figure (@) The tangent vector at a point p = ¢(t = 0) is

determined by a directional derivative of a scalar function along the parametric

: : : 1,d D—d—1
manifold of a non-compact manifold and the compact manifold of R™“ x M " .
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d
R4, x#

fowt
\ R
f

l y
‘ f@)=fo¥(x")

M

Figure 2.5: The map between a curve on manifold ¢(t), coordinate chart ¥, and

real number R

curve f(c(t)) given by

df (c(t)) _Of dat(t)
G e = e o (2.1.7)
S (2.1.8)

where we have used the chain rule by writting ¢(¢) in terms of a coordinate repre-

dat (c(t))

) "
sentation and V# = ey’ AT

We can define a tangent vector operator V' on a manifold M at a point
p=c(t=0)as
V =V*#9, (2.1.9)

where V*# is called a vector component of a basis vectors e, = d,.

The action of the tangent vector operator V on a scalar f can written as

VIf] = df((jt(t)) |t:0

—VHO, f (2.1.10)

which coincides with the equation (R.1.7).
However, there usually exists more than one parametric curve at a point
p which gives the same tangent vector, so we can define the equivalent class of

parametric curves on a manifold if the curves satisfy

Loat=0)=ct=0)=p

9. dm“(cl(t))‘ _dxH(ca(t))

dt t=0 dt }tzo'
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RY, x#
f o1 f ocC a
vy
c 0
) b
R
f®)
M

Figure 2.6: This figure shows the map between a curve on manifold, coordinate

charts, and real number to define the general coordinate transformation

The curves ¢ (t) and co(t) resulting in the same tangent vector V' at a point p are
in the same equivalence class, manely c¢;(t) ~ ¢(t). All of the equivalence classes
of curves at a certain point p € M characterize all of the tangent vectors forming
a tangent vector space T, M. The collection of tangent vectors spaces |J T, M
having the structure of a differentiable manifold is called the tangent burﬁl]\g TM.

We can also define the transformation rule of the vector between different

coordinate representations as
V=V"9,=V"8y (2.1.11)

since the vector itself is a geometric object and is independent of coordinate rep-
resentations, we can define the transformation of the vector component

!
’ 81’“
oxH

Ve

v (2.1.12)

and the transformation of the basis vector as

oxt
(9“/ - W@M (2113)
In general, 383;'; and g;:, are not constant, so the transformation of the vector

VH(z) — V# (2') is called general coordinate transformation (GCT). The new ba-

sis e, of T,M is now the linear combination of the original one e,,.
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A dual vector (one-form) is a linear function mapping a vector to real num-

bers satisfying the linear properties

w:R" — R, (2.1.14)
wlav + fu) = aw(v) + Pw(u) (2.1.15)
where v, w € R". The dual vector space is a vector space (R")* dual to the vector

space R". Therefore, the dual tangent vector space at a point p € M of T,M is
called cotangent space Ty M. If w, € T M,

wy : T,M — R. (2.1.16)
Regarding dz* as a dual basis vector of Ty M, we write a dual vector as
w = w,dz’. (2.1.17)

The action between a dual basis vector of T;M and a basis vector of 7,,M can be

defined as
0

oz,
We can define the inner product as ( , ) : TyM x T,M — R which maps a

(dz",

) = . (2.1.18)

v

vector and a dual vector to real numbers

V) = Vet

) = w, V. (2.1.19)

v

Similar to the vector transformation (), we can also define the dual vector

transformation under the change of coordinate 1"epresentationE given by
w = wydr” = wydt. (2.1.20)

The transformation of the dual vector component can be written as

ox#
~ oz W

(2.1.21)

w#/

3This is true for an arbitrary tensor because a tensor is a geometrical object which is invariant
under the change of coordinate representation. However, the component of a tensor does change
due to the change of coordinate which we choose to represent. Then, whenever we write tensor

transformation, we mean the tensor component.
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and the transformation of dual basis vector reads

Ozt

oz

dzt = dz. (2.1.22)

2.1.4 Tensors

A tensor is a multilinear map of r elements of tangent vector space T,M and g

elements of cotangent space Ty M to real numbers R
" e (IT(M)® .. T (M) ® (Th(M) ® ... @ T,(M)) =T (M) (2.1.23)

where T2 (M) is an extended vector space at point p € M. T%" is called a tensor
of rank (q,r). We can express the rank 79" tensor in terms of dual basis vectors
and basis vectors as following

0 9 ®...®i®d1’”l®dx”2®...®dx”T). (2.1.24)

Tk — TH1-Hg
(833#1 ¥ o2 Oxta

Vi...Ur

Similar to the (dual)-vector transformation (b.l.lﬂ), (b.l.Q]J), a tensor transforms

according to the vector and the dual vector component with the upper and lower

indices, respectively

e, = (QELOTR 0T Orh OTE 0Ty e (21.25)
1k Oxtt Ozt QxHr’ Ox¥1 Oxv2 Oz *

If a vector is smoothly distributed at a point p € M, the vector is said to be
a vector field. Similarly, a tensor field of type (r, k) is a smooth distribution of
element of T} (M) on each a point p € M. The set of the vector fields and tensor
fields on the manifold M can be represented by x (M) and 74(M), respectively.

2.1.5 Lagrangian on Manifolds

Let M be a differentiable manifold with its tangent bundle T'M, Lagrangian is a

map from the tangent bundle to real numbers

L:TM —R. (2.1.26)
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Lagrangian B is a function of position and velocity corresponding to a point on
manifold M and a tangent vector at that point, respectively. A map v: M — M
is a curve of the trajectory of the Lagrangian on a manifold M if v extremizes the
functional action given by
to
Stil= [ Lo (2127
t1

where ¥ € T'M, ;). The evolution of coordiante z* of a point in motion satisfies

aon o
dt OVer  Qxr’

(2.1.28)

This is called Euler-Lagrange’s equation where +(t) = dg—t“au = Vte,.

2.2 Differential Forms

2.2.1 p-form tensors

A p-form tensor or p-form is a totally anti-symmetric rank (0, p) tensor defined as

1
wh = ﬁwm,”uyd:ﬂ’“ Adzt? A N datr (2.2.1)
where the wedge product is antisymmetric namely, dz* A dx¥ = —dx” A dx*, and

the space of p-forms is characterized by AP(M).

2.2.2 Wedge Product

The wedge product of p-form and g-form on AP(M) and AY(M) respectively, can

be written as

1
(ANB)prqg = ﬁAm...upBul...quMm A o ANdxPP AN dxt N LN datP
bq

|
_phg) q)‘A[ul...upBul...uq]dxm A ANdztr Ndat A LA dae (22.2)

plq!
= (AN B)yy.pprrg ™ AN ATt N da N LA dat

40ne of the most compact ways to encode the information of a physical system such as the

field’s equations, symmetries, etc.
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So, the component of the wedge product reads

(p+9)!
(A A B)Ml---Mle---Vq - WA[#I--#pBVlqu]‘ (223)

2.2.3 Exterior derivative

The exterior derivative d allows us to differentiate a p-form to get a (p + 1)-form,

or d is a map from A? — APT! given by

1
dwy = d( =Wy g, AT N dz™® NN dz?)
P!
1

= —'apwmmmﬂpdxp Adxt*t AdzHt A dzH N N dat?
P (2.2.4)

1)!
(p ; ) 01pWpi pigopip)dT” N dz™™ A dx?t N dx* A LN datr

= (dw) pp gy d? Ndx?* A dz™t A dxh AN datr.

So, we can read the component of the exterior derivative as

(dw)pNIMQ---Mp ~ (p + 1)8[pwulu2...up]- (225)

2.2.4 Hodge Duality

The hodge duality * is a map * : AP — A™7P given by

1
*Wp = SWhipspp ¥ (dz™t N dxh* AN dat)
o 1 (2.2.6)
_ —wm“2m“peylV2myn_p#1lt2...updxu1 Adr”2 N ... N\ dxPrr.

pl(n —p)!
So, one can read the component of the hodge duality as

1

_ M2
(*wp)V1V2~~~Vn—p = p|€u1u2...un,p T (2.2.7)
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2.3 Riemannian Manifolds

A Riemannian manifold is a manifold equipped with a metric tensor. In this
section, we will review important quantities related to the metric tensor to study
physics on a manifold. One of the most important aspects of the metric tensor is

that it encodes the dynamics of gravity.

2.3.1 The Metric tensor and Vielbein

A metric tensor g,, is an additional structure on a manifold M so that we can

define an infinitesimal distance between two neighboring points
ds® = g, (x)dxtdz” (2.3.1)

where g, is a symmetric tensor, and it is a diagonalizable matrix under general

coordinate transformation (GCT)

oxP 0x°
giw(m/) = %%gpa(:ﬁ)- (2.3.2)
The type of Riemannian B manifold can be classified by the signature of the
eigenvalues of the diagonalized metric tensor namely, +1,0, —1

(
diag(—1,...,1,...,0), If there exists a zero eigenvalue,

g is degenerate, g"” does not exist.

diag(1,1,...,1), If all eigenvalues are positive,
Juv = the manifold is the Riemannian manifold, or Euclidean space.
diag(—1,1,..., 1), If there exists one negative and non-zero eigenvalue,

the manifold is the pseudo-Riemannian manifold

, or Lorentzian space.
\

5The Euclidean manifold plays important role in the internal manifold of supergravities on
which string/M-theory are compactified, and Lorentzian manifold is the property of spacetime

in which we live especially four-dimensional spacetime.
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On other hand, in theories such as supergravities where fermions coupled
to gravity, we need to use a frame where the fermions belong called local Lorentz
tangent space. The diagonal metric tensor is quadratically related to this frame

in terms of a vielbein, e}, with the flat Minkowski metric 7y, = diag(—1,1,1,1).

G () = € (x)navey, (). (2.3.3)

The indices [a, b, c..] and [p, v, .., A] are called tangent and spacetime indices,

~

respectively. Sometimes,; we also use [fi, 7, .., A] to refer the tangent indices. More-

over, we can use the vielbien to map a vector of spacetime indices to tangent

indices
Ve = Vel VE=elVe (2.3.4)
Ve Vit Vu— eZVa. (2.3.5)

The vielbien transforms as dual vector of the local Lorentz tangent space

e(x) = A1 (x)eb (). (2.3.6)

jz w

The transformation is called local Lorentz transformation because A(z) depends
on spacetime location x. Moreover, The vielbien also transforms under diffeomor-
phism as

_ o

er(z') = s ep(x) (2.3.7)
Therefore, This indicates that the vielbien can also be seen as vectors forming an
orthonormal set in tangent space at each point

€n9unCh = Nab (2.3.8)

with e being the inverse vielbien.
The vielbien can be also considered as the local Lorentz vector defining the

local Lorentz basis 1-form

e = e (z)da" (2.3.9)
which is dual to its inverse vielbien in the dual basis

eq = eh(x)0,. (2.3.10)
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2.3.2 Covariant Derivatives

Tensors are geometrical objects on a manifold, so the differentiation of tensor
should result in a tensor satisfying the tensor transformation () To make
the consideration more traceable, we consider the derivative of a vector as a ten-
sor of rank (1,1) and express the tensor transformation under general coordinate
transformation as

ozt 9 0z _

0V = 0V = (27 =) (5 V")
? z aa/: axg O o (2.3.11)
O, drtdxt
= a0 IV 5 g OV

The first term causes the transformation not to be the tensor transformation unless
@L(gi—j) = 0. This implies the linear transformation on a flat manifold, which is
not always the case.

Therefore, we will introduce a connection, which compensates the curvature

effect and preserves the transformation rule. As a result, the ordinary derivative

is now replaced by the covariant derivative given by

+ T8, (g)V? (2.3.12)

where I'*,,,(g) is Christoffel symbol.

Moreover, we could also define the covariant derivative of dual vector i as
vl/wu i al/wu T« Fpl/,u(g)wp' (2313)

In the absence of fermions, we have the torsion free condition I'*,,, = I'?,,, and the
metric compatibilityH V,9u = 0, so we can define the Christoffel symbol in terms

of the metric tensor as

1
T70u(9) = 59" (0vg + Oulor — OrGu)- (2.3.14)

As a result, Christoffel symbol is not a free field but written in terms of the

metric tensor. In particular, Christoffel symbol is not gauge field of gravitational

6We use the fact that V,,(w,v") = 8, (w,v")
7A manifold admits locally flat space, so at a certain point Guv — M and V,n,, = 0. This

is a tensor equation which holds true in any coordinate.
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interaction but the metric tensor, which is governed by Einstein’s field equation.
In the presence of a torsion, Christoffel symbol is not symmetric and cannot
be completely determined by the metric tensor. Then, we need an extra variable

to describe spacetime instead of the metric tensor alone. We therefore define

T, =2I"

i =r°,  —T° (2.3.15)

[nv] wv vp
where 7%, = —T*,  is called torsion tensor. Then, the Christoffel symbol I**,,,(g)

is replaced by a connection I'” ,, given by
1
D = T0g) + (T, + 1,0+ T7,) (2.3.16)

where the first term is defined in() the last term is called the contorsion

tensor written as

1
Ky =5 (0,5 + 1,5+ T7,). (2.3.17)
The connection is said to be Levi-civita connection or Christoffel symbol in the

absence of the torsion tensor.

1
Fp,uu - Fp,ul/(Q) == égpk(aug)\u s a,ugll)\ - a)xgu,u) (2318)

On the other hand, when we consider a two-form in the local Lorentz frame
from the one-form ()
a 1 a a v
de® = 5(8#61, = d,e,)dz" A dx (2.3.19)
which leads to the local Lorentz transformation as
d(A1%e) = A1 de® + dA e (2.3.20)

Similar to the vector transformation under GCT, to compensate the extra second
term in the transformation, we introduce the anti-symmetric two-form connection

called the spin connection given in the first Cartan structure equation
T = de® + wy A€ (2.3.21)

where T is the torsion 2-form.
We can define the covariant derivative for the local Lorentz frame called the

Lorentz covariant derivative

DV =0,V +w, %V L and  DVu=0Va-w, W (2322)

woa
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The affine connection of Christoffel symbol is not an independent field but
is written in terms of the metric tensor field as in () by imposing the metric
compatible and torsionless condition.

Similarly, we assume that the spin connection is completely determined by

the vielbien if we impose the torsionless condition.

D,e*, — Dye*, = 0,e”, — Oue”, + w#“beby — wyabeb# =0 (2.3.23)
The unique solution of () is
Waal€] = §(ea”wwb — €, "Wwa — €,7€,7€, “Wpoe) (2.3.24)

where wyq = Opere — Opeyq.

The presence of the torsion in supergravity results from the existence of
fermions not spacetime itself, and we can rewrite the torsion free spin connection
with the torsion contribution from fermions to the torsion free spin connection via
the contorsion tensor as

wuab = wu“b[e] ¥ Ka#b (2.3.25)

where K " is called the contorsion ()

In calculations, we always assume spacetime to be torsion free since we
physically think that the intrinsic properties of spacetime can be completely char-
acterized by the spacetime interval through the metric tensor defined in ()
However, in the presence of fermions, we can think of the presence of torsion as
a direct result of the fermions’ properties, which equivalently turns out to be the

presence of the higher order of fermions entering the torsion free spin connection

via the contorsion tensor mentioned in ()

2.3.3 Curvature Tensors

In the absence of fermions, the intrinsic curvature of the geometry can be defined

by the commutation of covariant derivative given by

[V, Vo Vi =R, V. (2.3.26)
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Moreover, we can express Riemann tensor in terms of the metric tensor as
A A
R'uupa = 8PFMVU - aal—wyp + F'ul,)\r voe Fug)\r vp (2327)

Riemann tensor is the only tensor that can be constructed from the metric tensor

with the properties

Ry = 0,
Rpopy = Rpvpos
Rooyw = —Rpoup, (2.3.28)
Rpopy = —Ropuv,
ViR poyuw = 0.

The fourth equation is called Bianchi’s identity. For an n-dimensional manifold,
Riemann tensor has n?(n? — 1)/12 independent components.
We can contract Riemann tensor with the metric tesnor, so we obtain Ricci

tensor R,

Ry =R, =900 R o (2.3.29)

Finally, we can do the contraction of Ricci tensor with the metric tensor,

and we get Ricci scalar

R=g"R, (2.3.30)

which is invariant under GCT.
The curvature tensor can also be evaluated by a two-form curvature written

in the second Cartan’s structure equation given by
RY = dw™ + w" A we, (2.3.31)
where the components in spacetime read
R — LR dvt A do? 2.3.32
= SR wdz A dx (2.3.32)
which can be written in terms of the spin connection

a __ a a a Cc a Cc
R, %= 0w, — 0w,y +w, " w,% —w, " w, (2.3.33)



25

Ricei identities are the commutation relations of Lorentz covariant derivative

on various fields given by

1
[D;u DI/]¢ = §RuuabMab¢a

[D,,, DV*=R,,“ V', (2.3.34)

uv

1
[D,, D¢ = ZRMW%

with M ~%® ¢ and 1 being Lorentz generators, gamma matrices, scalar field,
and fermion field respectively. These equations give rise to a generalization of

spacetime covariant identity () as

[V, VVP =R, V°—T, D,V". (2.3.35)

wy o

2.3.4 Parallel Transport and Geodesics

In a curved manifold, there is no well-defined way to say whether or not two
vectors at different points are parallel because we can only compare vectors at the
same point.

In a flat manifold, the transport of a vector along a curve z#()\) preserves
the direction of the vector since there is no effect from the curvature as shown in
figure (@) This statement can be extended to an arbitrary tensor, so we can

write the equation of parallel transport in a flat manifold as

d oo o dz" s
0= B aipapn = O 1 (2:3.36)

In curved manifold, the vector is manifestly influenced by the curvature
effect as shown in figure (@), so we will replace the ordinary derivative with the

covariant derivative
dzt

0="x

V“Ta1a2"'am5152m5n. (2337)

To obtain a path in which a free particle travels in spacetime called geodesics,

we need to generalize a straight line on a flat manifold to a curved manifold. The
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7

Figure 2.7: This figure shows the parallel transport on flat plane, so the vector

along the curve will not be affected by the curvature.

Figure 2.8: This figure shows that the vector transported along the closed loop is
affected by the curvature of the sphere.

geodesic path is a curve z#(\) that parallel transports its tangent vector. We can
write the geodesic equation as

daxt dx¥
S ety

Xl (2.3.38)
o deds
dX\? Hodh dX\

0

If we have the initial conditions of position z*(\g) and the direction 25|, , we can
compute a unique geodesic path. The direction condition can be also considered
as an inertial velocity if we choose A = 7 where 7 is a proper time of the moving

particle.

2.3.5 Integration on Manifold
The invariant volume element denoted by €2, is given by

Oy =/ —gdx' Nda? A ... Ada™ = eds Adx® A ... A da" (2.3.39)

where ¢ is the determinant of the metric tensor and e is the determinant of the

vielbein. Then, we can define the integration of scalar functions f € F(M) over
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the manifold as

/ Oy = / V—gdx' Ndz* A ... A dx™, (2.3.40)
M M

Moreover, We can also express the invariant volume element in terms of hodge

star as

I dz" A dat A .. A datm = /—gda' Ada? A A de™ (2.3.41)

ml Cpapg...pim

where €,,,,,. ., is called Levi-Civita symbol,

(

+1, if (gyp2...py) is an even permutation of 012...m

€urpaepm = § —1, if (ipto...jtr) is an odd permutation of 012...m

0, otherwise.
\

The Levi-Civita symbol can be related to the Levi-Civita tensor given by

6”1#2~-~,U«m =V _ggll«lll«Q-uMm' (2342)

On the other hand, we can write

LI ! gHR2-fm (2.3.43)

V=
We can also write the volume form of spacetime indices in terms of tangent indices
as

€ppn ATt A - Ndah = €q, g, dT™ N - A dx™ (2.3.44)

where €,,. 4, coincides with the Levi-Civita symbol €, ., ,denoted by €3153 = 1.

We can also define an interval distance from the infinitesimal length

- / N (2.3.45)

which leads to the geodesic equation parameterized by a parameter A

. 1 -
ah + 59“*(8,)% + Dy gpr — Orgpo )TPL7 = 0. (2.3.46)
This equation coincides with the geodesic equation obtained in (R.3.3§) where

'_dm_”"_de

T = ax T = Wgy and Fupa(g) = %gu)\<8pg)\o + aagp)\ - a)\gpa)-
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2.4 Symmetry On Manifold

Symmetry on a manifold is a set of map which leaves geometry invariant or maps

the manifold to itself. We first review a map between manifolds. We define a

R
fod

xH ye
Figure 2.9: ® is a map between a manifold M and N

pullback of f on N to M by ® as shown in (@) given by
O'f=fod :-M—>R. (2.4.1)

The pullback ®* is a composite map of ® and f. We define the pushforward of a
vector as

(@ V)(f) = V(D f). (2.4.2)

This gives a generalization of the vector transformation under the general coordi-
nate transformation because M and N are not necessarily the same manifold, and

the component reads
oy~

O V)0, =VH . 2.4.3
(®.V) o (243)
Then, we can also define pullback of one-form as

(Q*w)(V) = w(P,V) (2.4.4)

with the component
" 9y~
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Therefore, we can pushforward any arbitrary tensor fields of rank (k,0) as

arar _ YT Oy
((I)*T) L = Gy ...MTMI"'MN (246)
and pullback any arbitrary tensor fields of rank (0,[) as

ayoq ayoq
H1.pN T axm“'m a1...0q

(*3) (2.4.7)

but not for any arbitrary tensor fields of rank (k, ).

However, if ® is invertible, or ®~! exists, the manifold M and N are then
diffeomorphic or they are the same manifold. As a result, we can define both
pushforward and pullback on an arbitrary vectors and an arbitrary one-form at
the same time. In general, ® and ®~! allow us to move any tensor fields of rank

(k,1) by pullback or pushforward as

(®,7)(wW,...,w® VO yEy = p(@ru® | d*w® [0, VD [e1,Vv0).

(2.4.8)
The component of the tensor reads
oyt Jy*r dx*r  Jx™
ai...op - Qq...0p
(@)™ s = D G i G e (2.4.9)
where ®* = [®~!],. Pullback is the inverse of pushforward. This gives us the

advantage that we can use the diffeomorphism map of ® to move tensor fields
from one point to another point on the manifold. This can be also considered as
active coordinate transformations.

Then, we are able to compare tensor fields at different points on the manifold.

Therefore, we can define Lie derivative as

Loy TH 1

vi...v]

t—0

where

VtTmmuk V1.1 (p) = (I): [T,ulka (q)t(p))} — T vi.vpt

V...V

Lie derivative indicates the rate of change of tensor field along the tangent vector

V*# of ®, a curve parametrized by ¢t and it does not change the rank of the tensor.
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The component of Lie derivative on an arbitrary tensor field of rank (k,1)

can be defined as

Ly THLR2e b = VO THiH2 4

Viv2...1] Viv2...1]

Ap2- [k
T ViV2..Y)

UAGR — (2.4.11)

Viv2...V)

W12 [
T Avs...Y;

|
— —~ S Yy
<
> >
<
=
S~— SN— \_lj S~

H1H2.-- Pk
T V1A +

Now, we can define the symmetry on manifold that the map ®;, diffeomorphism,
is a symmetry of any tensor fields if the tensors are invariant under pullback under

®, along the integral curve of V#, which can be written as
;T =T (2.4.12)
and the symmetry of metric tensor is called isometry defined as
Lyvguw =2VuK)y=V,K,+V,K,=0. (2.4.13)

This equation is called Killing equation, and ®; and K" are called isometry and
Killing vector, respectively.

The maximally symmetric space admits the maximal number of Killing vec-
tors. It is homogeneous and isotropic space with n(n + 1)/2 Killing vectors and a
constant scalar curvature. In Euclidean space, these spaces are R™, S™, and H"
corresponding to a flat, spherical, and hyperbolic space respectively. In Lorentzian

space, these spaces are Minkowski, de Sitter(dS), and anti-de Sitter(AdS) space.

2.5 Anti-de Sitter space

An d-dimensional anti-de Sitter Space (AdSy) is the maximally symmetric space

with d translations and (g) = @ rotations with a constant negative scalar cur-

vature. Due to the symmetries, the Riemann curvature of a maximally symmetric

space is invariant under both translations and rotations.
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As a result, we can write the Riemann curvature tensor of a maximally
symmetric space in terms of the metric tensor as

K
R;u/pa = ﬁ(guagup - gupgua) (251)

where k defines the type of space as

p
+1, de-Sitter Space of positive scalar curvature.
kK=< _1

, anti-de Sitter space of negative scalar curvature.

0, Euclidean or Minkowski space.
(

L is called AdS radius which appears in the embedding space where it is more con-

venient to study AdSy; by embedding it in R>? with a metric nap = diag(—, +, +, ...

The coordinate for the embedding space is given by Y4, A =0,1,2,....d,d+
1. Therefore, any points on AdS can be defined by

AdSgsr = {z € R*| = (V)2 + > (V') — (V) = - L}, (2.5.2)

i=1

We can also determine Ricci tensor as

R, = %dgw (2.5.3)
and Ricci scalar as
R= %(d +1)d. (2.5.4)
Moreover, we can also use the Poincare coordinate by firstly defining Y4 —
(20, 2%, u),
Y0 = Lua®,
Y' = Lua’,
i _ %[u2(L2 1) (2.5.5)
yd+l — %[uz(LQ +a?) + 1]

where i = 1,2,...,d — 1, 2% = nupr®s? with o, 8 = 0,1,2,...,d — 1, and 7n,p is
d-dimensiomal Minkowski metric. Therefore, we can write the metric as

2 2 du? 2 ag. B
ds* =1L [F + U Napdr®dz”). (2.5.6)



Figure 2.10: The image shows
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Figure 2.11: The image shows de
Sitter space of constant positive

scalar curvature.

Figure 2.12: The image shows Minkowski

space of zero scalar curvature.

We can rewrite the metric in the Poincare coordinate (2, z) as

L2
ds® = ;[naﬁdxaﬂ + d2?] (2.5.7)

where © = %

Finally, we use a coordinate which we will use to study holographic solutions

by defining

=l

(2.5.8)
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Therefore, we get the AdS metric of the form
ds? = e%naﬁdmadxﬁ + dr®. (2.5.9)

Not only is AdS the maximally symmetric space, but also it preverses all su-
persymmetries of theory. However, when we consider the asymptotically anti-de
Sitter (AAdS) space which becomes AdS at some certain points called AdS fixed

points. We can rewrite the metric in general form as
ds? = Ay, gdrda® + dr?. (2.5.10)

This spacetime is called “Domain wall” and the AdS fixed point is a point that
A(r) becomes r/L.



CHAPTER 111

General Relativity

General relativity is a theory of gravity that describes the dynamics of gravity
in terms of spacetime curvature. This results from Einstein’s brilliant thought
experiment so-called the principle of equivalence. The principle of equivalence
states that in a sufficiently small region of spacetime we can remove the effect of
gravitation so that physics obeys special relativity. This interpretation coincides
with the mathematical idea of the manifold where the geometry is locally flat. In
this case, the spacetime is represented by a pseudo-Riemannian manifold. Due to
redundancy of coordinate representations on a manifold, the symmetry underlying
general relativity is a general coordinate transformation (GCT), see also for an

incomplete list of review on general relativity, [79,82-84,87,88,105].

3.1 Minkowski Spacetime

We have already mentioned that General Relativity is a generalization of Special
Relativity, so we first review some crucial features about special relativity or a
flat Minkowski spacetime. Special relativity is a theory that proposes the relation
between space and time giving rise to a description of spacetime. Special relativity
is a theory which invariant under Poincare group 1S0(d, 1) called “the maximal
isometry group of d + 1-dimensional Minkowski spacetime”. Poincare group can

be written as a semi-direct product of translation group and Lorentz group of

1S0(d,1) = (RaR?) x O(d, 1) (3.1.1)
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respectively. The Lorentz group O(d, 1) contains a subgroup of SO(d, 1) with
positive determinant forming a proper Lorentz group of boosts and rotations and
the other elements with negative determinant corresponding to parity and time
reversal transformation.

Physically, special relativity is based on two postulates

1. The laws of physics take the same form in all inertial frames.

2. The speed of light is the same for all observers in all inertial frames.

These postulates lead to an important result called “simultaneity”. It states that
events that occur at the same time in an inertial frame do not necessarily occur
at the same time in another inertial frame moving relative to the first one.

To characterize an event, we need both space and time. These postulates

y Y'

X An event
X [ J

vt

Figure 3.1: The relation between two obervsers in inertial frames

break down the idea of absolute space and time in Newtonian mechanics and

Galilean transformation as shown in figure (Ell)

=t
¥ =x — vt

(3.1.2)
y =y,
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The generalization of Galilean transformation which obeys special relativity is

called “Lorentz transformation” given by

t'=~y(t — av),
' =~z — vt),
/ (3.1.3)
Yy =19,
7=z

where v = 4/ —2—2.

It is more useful at this point to introduce the idea of Minkowski spacetime,
which was proposed by Hermann Minkowski by generalizing Euclidean space to

Minkowski spacetime. The invariant distance between two points in Euclidean

Figure 3.3: The image shows

Figure 3.2: The image shows the
the distance in Minkowski space-

distance in Euclidean space. '
time.

space obeying Pythagoras’ theorem is also generalized to spacetime interval given
by
ds® = dz® + dy* — ds* = —dt* + da”. (3.1.4)

In spacetime, the more you move in space, the less you move in time. In

four-dimensional spacetime, we can conveniently write the spacetime interval as

ds® = ny,dzdz” (3.1.5)
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where 7,,, is Minkowski metric

-1 0 0 0
0 1 00
Nuy = (316)
0 010
0 0 01

Not only does the spacetime diagram help us to unify space and time, but
also introduces the idea of the light cone diagram as shown in (@) The light
cone is a physical structure of spacetime, unlike the coordinate which is just a
convenient choice of frame. The light cone divide spacetime into three regions of
spacetime as follows

;

< 0, timelike.
ds® { > 0, spacelike.

=0, lightlike.

\

A timelike path is a path on which massive particles move such as electrons, pro-
tons, neutrinos, etc. A lightlike interval is a track for massless particles such
as photons, gravitons, etc. To move along a spacelike trajectory, particles must
exceed the speed of light which violates special relativity. Therefore, points con-
nected by spacelike paths cannot influence each other. In spacetime diagram, the
Lorentz transformation can be shown in figure (@)

It is manifestly obvious that the speed of light is constant in both frames as
shown in (@) because the light cone appears the same. Let us further review the
mechanics satisfying special relativity or the machanics in Minkowski spacetime
so-called “Relativistic Mechanics”. Let a# = x#(7) = (t,Z) be a path in spacetime
of a particle, we can define four-velocity u* of the particle as

dx?
Wt = % = (1, 7) (3.1.7)

where 7 is time elapsed in a frame moving with particle, ¢ is a time coordinate,
and ¥ is a velocity through space.

We can further define a four-momentum p* as

P! = mut = ~(m, m7) (3.1.8)
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Causal future t' .
t An event
..................... o

“L/"An event

Causal past
Figure 3.5: The image shows the
Figure 3.4: The image shows tra- relation between two obervsers
jectory of massive particles must in spacetime diagram via Lorentz
be in the light cone. transformation.

where ym is the energy of the particle and p'= ymu is the momentum in space of
the particle.

Then, we can write the famous mass-energy relation from the invariant
product of p*p, = p“’pul. Once we choose p* = (m,0) for the rest frame, and

p* = (E,p) for an abitrary frame, we obtain the mass-energy relation
E? =p® +m?. (3.1.9)

Now, we can move to a curved spacetime which is dynamical and responding to
matters and energies. Such a curved spacetime can be interpreted as the existence

of gravity.

3.2 General Relativity

The dynamical variable of gravity can be represented by either the metric tensor

g or vielbien ef. In the presence of only bosonic fields, there is no difference

@,
between the two. To find Einstein’s field equation which governs the dynamics of
gravity, we will use the principle of least action where the action of gravity has to
be invariant under GCT. The Lagrangian must be also invariant under GCT and

written in terms of either the metric tensor or vielbien.
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Therefore, we write Lagrangian being a scalar function of Ricci scalar tensor,
f(R) as
Syl = 55 [ d'ev=af (R 3:2.1)

where k is a constant. The action is called f(R) gravity action where R is Ricci
scalar tensor, and g = detg,,.
Einstein’s field equation can be obtained by varying the action () with

respect to the inverse of metric tensor g"”

1
SRl = 5.5 | dw(0v/=9)/(R) + V=95 f(R)
1 a1 o Of(R)
=52 Md (=5 9wV —909" f(R) + =5 5—0R)
1 4 _1 — nv 8f( ) uv Nz
=53 Md 2(= 59wV =909 f(B) + =5 5= (Ruwdg™ + g™ Ryw))
(3.2.2)
where we use the following properties
1
5\/—_9 = _5\/__99111/59}“/
(3.2.3)

g""oR,, = g,00¢" —V,V, 09"

with O = ¢""V,V,. By the vanishing of the surface integration after doing the

integration by part, the variation of the action becomes

3,50l = 5z [ o3 (FR)R = 3o (B) + (900 - VuV)F(R)) 69

(3.2.4)
where F(R) = %(RR).

Let f(R) = R in which the action is called the Einstien-Hilbert action and
8gSt(r)[R] = 0 for VogH”, we can finally obtain Einstein’s field equations in vacuum
as

1

Gw/ = R,uu - §guuR =0 (325)

where G, is called Einstein tensor.
To couple gravity or spacetime with matter fields, we require the action of
matter fields to be invariant under GCT. This can be done by introducing the

minimal coupling to the action of matter fields where the ordinary derivative and
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volume element are replaced by the covariant derivative and the invariant volume

element.

0 — V (3.2.6)
/d% - /\/—_gd4x (3.2.7)
M M

respectively. This is also known as the principle of general covariance.

The action of matter-coupled gravity can be written as
S = SEH + Smatter
1
= / d4l’\/ —g (—2(R — 2A) + 2Lmatter)
M 2K

where we also add a cosmological constant A into the Einstein-Hilbert action.

(3.2.8)

Einstein field’s equation with matter fields can be found by varying the
Einstein-Hilbert action and a matter-field term with respect to the inverse of the

metric tensor gh.

(5SE'H 5Smatter
0,8 = 0" + ————0g"". 3.2.9
g 5‘9/“, g 59“” g ( )
If we define the stress-energy tensor as
=2 5 matter
T, = 2 O5man (3.2.10)

———.. LV

we can write the variation of the matter field explitly as

é‘Lma er v
695matter = / d'z (5(v _Q)Lmatter = V—gog" )
M

6L 1
o 4 — L v
= /Md x (\/ g(ég“” 2LMgW)5g“ ) (3.2.11)

= [ dav=5 (T3

After the variation, §,5 can be written as

1 4
595 Ok 2/ d4$\, ( - gMVR+AguV_ 2T;w)5g“. (3212)

The constant k = /8¢

”G which can be computed by using Newtonian limit of
non-relativistic regime and weakly static gravitational field. We finally obtain the

Einstein’s field equations with the stress-energy tensor

Gy + Mgy, = 8TGT, (3.2.13)
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where G is the universal gravitational constant. We also notice that Einstein’s

field equation is a generalization to Passion’s equation
V20 = 4rGp (3.2.14)

where the gravitational field ® is replaced by the metric tensor g, and the matter
density p is generalized to the stress-energy tensor 7),,. We will consider T},, for

a few examples of matter fields.

3.2.1 Scalar Fields
We first consider a matter field in terms of a real scalar field ¢(z) given by

Sscalar = / V —gd4$€(—%gwau¢au¢ - %m2¢2). (3215)
M

In order to find stress-tensor energy for scalar fields, we need to do the variation

with respect to the metric tensor field g

1
5Sscalar = _5 / d4x(\/ _ga,u(bau(bdguy + <8p¢ap¢ - m2¢2)5 \% _g)
| o . (3.2.16)
=5 | AV 0,000 = S0uu(0,60° —mid)og”
So, we get the stress-energy tensor of the scalar field
1
Tov = 040000 = 59(0,60° — m*¢?). (3.2.17)

3.2.2 Vector Fields

We now consider the situation where a vector field couples to the gravitational
field. This can be done simply by considering the Maxwell field describing elec-

tromagnetic fields in a four-dimensional curved spacetime

1
Svector = _Z/ d4x\/ _gFHl/F“V (3218)
M
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where F,, = 0,A, — 0,A,. The variation is given by

1
5gsvcctor = _16/ d4x\/ —QFWF‘“’
M

- / 02 (\/=G8(E,u ) + 65/ =g, )
M

b 4 o (3.2.19)
Y R
3 et~ ree i
Then, we have the stress-energy tensor on the curved spacetime
Ty = FinF?, — ingpan"- (3.2.20)
One of the most useful features is that the trace of T*” is zero
9T =0. (3.2.21)

This is true only in four-dimensional spacetime.

3.3 First and Second-Order of Gravity Theory

We have used the metric tensor as a dynamical variable to describe gravity and

the action is given by

St = | d'oy=g(55F(0) + Lmaie) (3.3.1)

where the matter fields in £,,,1ter are bosonic matter fields.

However, in order to construct an interacting theory of fermion fields and
gravity, we must have expressed the metric tensor in terms of the vielbein e} to
which the fermion fields couple. Therefore, we can use the relation between the
metric tensor g, and the vielbein e, given in (), so that we can write the

equivalent form of Einstein-Hilbert action

2K2

Slw(e)] = /M dze(—— R(e) + Lomniter) (3.3.2)

with only the presence of the boson fields, the field’s equations are second-order

in g, or e, since Christoffel symbol I'¥,, and the spin connection w®, can be
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fully determined by the metric tensor and the vielbein, respectively. This is called
second-order formalism.
However, we can also construct the alternative theory of gravity under the

non-torsion free condition called “Palatini action” given by

1
Sple,w] = /Md‘lzve(ﬁe“ae”aR“b (W, €)) + Lnatter) - (3.3.3)

R

In vacuum, L atter = 0. The field’s equation for the Palatini action can be ex-
pressed in terms of two sets of the first-order field’s equations of motion of the
vielbein and the spin connection, respectively.

The former results from doing the variation of the action with respect to the
vielbein 0Sp/de”. The latter results from doing the variation of the action with
respect to the spin connection §Spd/w,qp. This formalism is called first-order

formalism. Then, we have the variation of the Palatini action as follows

1 a 1 a 3 a
dSple,w] = —5e <R w7 e #R) oet , — §e(DHe Vel

a

e’ e’ 40w, . (3.34)

However, the spacetime in physics appears torsion-free, so the second-order and
the first-order result in the same physics. As a result, the Palatini formulation
is exactly equivalent to the second-order formalism of the Einstein-Hilbert action
because of the vanishing of the second term in the variation of the Palatini action.

However, if £ .:ter contains fermion fields, the two theories will not be the
same, rather differ by the presence of ¥/* terms resulting from the torsion of fermion
fields. For example, the action of interacting fields between massless Dirac field 1

and gravity in the second-order formalism is given by

1 1— 1—
S = P Md4xe [R(w(e)) — K2§¢7uvw + H%wgﬂw] (3.3.5)

where ¥ = ¥7i7? is the Dirac adjoint, and V=D, =T, Y, In this case
the spinor has no coordinate indices, so V. — D. Then, we can write V,, =
Oy + Z—iwuab%b and % = gﬂ — iwuabwab.

We can add the term of 1* by considering the first-order formalism. the
first-order formalism, we can find the field equation of the spin connection and

find the torsion from 6,5k + 0, SDirac = 0. We can relate the torsion and the
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contorsion terms to each other.

Now, we can substitute the contorsion consisting of * via w = w(e) +
K through the Ricci scalar tensor R(w) and covariant derivative D(w) in the
first-order formalism. Therefore, we obtain the second-order formalism with the

existence of ¢! in the action given by

1 — — 1 — _
S=— [ dze [R(w(e)) — ﬁmﬂvm + %Qlﬁ%;ﬂwf + HA‘E(@/WWM?)(@/WW%J)}-

C2K2 Jy
(3.3.6)
As a result, the physical effects of the existence of fermion fields with and without
torsion will differ by the presence of ¥*. However, the existence of the terms of
Y* plays no rule in general relativity of gravity, but plays a very important rule
to prove the invariance of supersymmetry in supergravity.

Therefore, the first-order formalism would be easier to prove the local su-
persymmetric property of supergravity by the existence of quartic terms in the
fermionic fields especially when we replace the massless Dirac field with the grav-
itino. We will discuss this process more carefully in the next chapter, once we
construct gravity theory which is invariant under N = 1 local supersymmetry.
On the other hand, the second formalism is very convenient for many applications

in an ordinary theory of gravity where fermions are neglected.

3.4 Black Holes

Black holes are an object that even light cannot escape from a certain distance
called the “event horizon”. They naturally arise in the solution of general relativity,
and black holes have been named after their solutions. Here, we will recall some
important solutions and discuss some crucial properties of the corresponding black

hole, see also [67-69)].
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3.4.1 Schwarzschild Balck hole

The Schwarzschild solution is the first analytic solution of Einstein’s equation
solved by Karl Schwarzschild and the corresponding spacetime is also called Schwarzschild
spacetime. Schwarzschild spacetime is an exterior solution of a spherically static
massive object. There are four Killing vectors for Schwarzschild spacetime. Three

of them generate an isometry group of SO(3) on the space-like hypersurface ¥;.

The other is a stationary Killing vector K* = (9;)* implying the time-independent
metric tensor elements namely, % 9w = 0.

Schwarzschild spacetime can be written as
ds? = —e*Wdt? + 2O dr? 1+ r2(dh? + sin® Gdp?). (3.4.1)

The exterior vacuum condition implies that 7, = 0, so Einstein’s equation be-

comes
1
Rt ERQ’W = 0. (3.4.2)
After the calculation for an asymptotically flat spacetime, we find § = —« and
2a(r) __ %
e =1+ -. (3.4.3)
r

The constant ¢ can be found by using Newtonian limit and the asymptotically flat
Schwarzschild spacetime, manely g, — 7,..
We can finally write the Schwarzschild metric as

26 M
ds? = —(1— GT)dtZ T mdﬁ +r2(d6? + sin? 0d¢?) (3.4.4)

r

where the metric tensor can be written as

—(1 — 2MG) 0 0 0

r

0 — 0 0

G = (=25 (3.4.5)
0 0 r? 0
0 0 0 r2sinf

At the boundary r = 2MG is called "event horizon” and r = 0 is called
singularity. We can consider the metric in the Eddington-Finkelstein coordinate

2M
ds* = —(1 — ==)dv* + (dvdr + drdv) + r*dQ? (3.4.6)

r
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where v =t + 7%, u =t —r*, r* = r + 2M log(55; — 1). Eddington-Finkelstein
coordinate states that there is no problem at Schwarzschild radius, it is just a
point that the light cones tilt over from time-like becoming space-like and all
future-directed paths point in the direction of decreasing r. Moreover, we can
make a maximal extension of the Schwarzschild spacetime to describe the whole
manifold by Kruskal-Szekeres diagram as shown in figure (@) or condense it into

a finite region constructing its conformal diagram called Penrose diagram as shown

in figure (@)

s ngulnnty.\__:‘_,.ﬂ" £

\;/il\ﬁ:;‘}illl
MM

«*"Irr
Figure 3.6: This images shows Figure 3.7: This image shows
the Schwarzschild mretic in the the Penrose diagram of ex-
Kruskal-Szekeres coordinate. tended Schwarzschild spacetime.
Ask a Mathematician/Physicist. jila.colorado.edu.

3.4.2 Reissner-Nordstrom Black holes

The Reissner-Nordstrom spacetime is an extension of Schwarzschild spacetime
where the spherically non-rotating object has the electric charge ¢ and the mag-
netic charge p. Even though in astrophysics, the Reissner-Nordstrom Black hole
rarely exists because the evolution of a black hole would be quickly neutralized
by inverse beta decay. Therefore, most of the matter would be neutral. However,

Reissner-Nordstrom black hole represents several important features.


https://www.askamathematician.com/2009/11/q-if-black-holes-are-rips-in-the-fabric-of-our-universe-does-it-mean-they-lead-to-other-universes-if-so-then-did-time-begin-in-that-universe-at-the-inception-of-the-black-hole-could-we-be-in/u-v/
https://jila.colorado.edu/~ajsh/insidebh/penrose.html
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The action of the Reissner-Nordstrom spacetime can be written as

1 1
A 2K 4

This is called Einstein-Maxwell theory and the field equations are also called

Einstein-Maxwell’s equation.

1
R, — 59,“,]% = 87GT (3.4.8)
where T, = F))\F, T igu,,Fng P is the stress-energy tensor of electromagnetic

fields.
The Maxwell’s equations results in the electromagnetic stress tensor in spher-

ical coordinate given by

0 qr2 0 0
gr7%// 0 0 0
F, = . (3.4.9)
0 0 0 psin 6

0 0 —psind 0

Then, the Reissner-Nordstrom metric written in terms of spherical coordinate is

given by

ds* = —A(r)dt® + B(r)dr?® + r*dQ? (3.4.10)

where d2? = r2d6? 4 r?sin6%df?. By solving Einstein’s field equations, we can
obtain
2 2 2
A(r) = (1__m+M>

r 72

(3.4.11)
= B(r)™!

where we set G = 1. Therefore, the Reissner-Nordstrom metric is given by

_ (1 _m oy (qQ;p2)> 0 0 0
2 2 -1

0 (1-2+22) " 0 o

0 0 r? 0

0 0 0 r?sin#?
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The Ricci scalar is

12(mr — (¢ +p)* | 2(¢* +p?)?
6 + 8 :
T T

R:

(3.4.13)

As we have discussed in Schwarzschild black hole, there is only one real curva-
ture singularity at r = 0. The difference between Schwarzschild black hole and
Reissner—Nordstrom Black hole is that Reissner-Nordstrom Black hole has more

than one possible event horizon where

2m | (g +p2)) 0

Alry)=0=(1-=—+ 5 (3.4.14)
T+ rL
We obtain
re =m4\/m?— (¢% + p?) (3.4.15)

with the following possibilities.

1. m* < (¢* + p*) There is a naked singularity, just like the M < 0 in
Schwarzschild spacetime. A(r) is always positive. Timelike coordinate be-

comes space-like coordinate only at » = 0. This solution is unphysical.

2. m? > (¢*> + p®) This solution is realistic gravitational collapse and A(r) is
negative between r, and r_. In region 1 outside r,, a particle moves along
a time-like coordinate until r reaches r,, at which the time-like coordinate
becomes a space-like coordinate. In region 2 between r, and r_, the particle
inevitably moves toward r_ where the space-like coordinate becomes a time-
like coordinate. In region 3, the particle can choose either to move to the
singularity or move in the direction of increasing r until the particle reaches
r_ where again the time-like coordinate becomes a space-like coordinate. At

this stage, the particle is forced to move out of the event horizon at r.

3. m? = (¢*> + p*) This solution is called extremal Reissner-Nordstrom solution

which is very important in supersymmetric theories.

Let us consider the extremal Reissner-Nordstrom black hole. The extremal Reissner-

Nordstrom black hole is a special case of the Reissner-Nordstrom black hole in
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which the mass of a black is equal to the charge of the black hole m = ¢ without
the monopole.

The metric of the extreme Reissner-Nordstrom black hole can be written as

Lm om

ds? = —( )2dt? + (1

) 2dr? 4 r2dQ2. (3.4.16)
T r

By defining the radial coordinate transformation
r=r—m, (3.4.17)

we find that there is an isotropic form of the metric.

ds? = —(1 — )24 + (1 — Z)2(dr® + 72d0?). (3.4.18)
T T
We can rewrite it as
ds® = —H}(r)dt* + H3 (7)[dF* + 7°dQ?). (3.4.19)

where H; = (1 — %)*1 and Hy, = H; L.

We can look at the near-horizon limit of such a background, as 7 — 0

05 = 2T g2 2 4 ()22 (3.4.20)
=) = 5 4.
Then, we define a new coordinate v = (:12)2, and we rewrite the near-horizon
solution again
5 (m)? 2 2 2 102
ds® ~ s (=dt® +dv”) + (m)~dS2;. (3.4.21)

We can see that the metric turns asymptotically into two two-dimensional spaces,
which are characterized (¢,r) and (6,¢). The (6, ¢)-space is a two-sphere with
radius m, and (¢,r)-spacetime is the two-dimensional anti de-Sitter spacetime
AdSs, with radius m. They both are a maximally symmetric space and can be

written as coset manifolds given by

SO(3 SO(2,1
G2 — Wgzi cand  AdS, = ﬁ (3.4.22)

AdS? x S? is the horizon geometry of AdS supersymmetric black hole solution
that would be useful to study the AdS/CFT correspondence. It is also known as
the Bertotti-Robinson solutions, which are the solution of the Einstein-Maxwell

equation.
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3.5 The Black Hole Mechanics

We look at the first realization of the holographic principle resulting from the
information paradox of the black hole. The question arises from whether or not
information of the falling object disappears. The study has shown that the area
of the black hole is always increasing, namely d A > 0, which is equivalent to the
fact that the changing of entropy of a system should also be greater than zero,
namely 05 > 0.

However, this leads to a problem because if the black hole has entropy, it
must have a non-zero temperature. This means that the black hole must radiate.
According to classical general relativity, nothing can escape from the black hole,
so the temperature of the black hole must be zero. Nevertheless, Stephen Hawking
shown that the black hole has radiation called "Hawking radiation”.

Holographically, this indicates that the information somehow does not disap-
pear, but it is encoded in the area of the event horizon. Therefore, the information
of bulk spacetime can be related to the physics of the boundary of the bulk space-
time, which is called the holographic principle, in particular with the AdS/CFT

correspondence being a particular example.

3.5.1 Killing horizons and Surface gravity

A Killing horizon is a null hypersurface ¥ where Killing vector fields x* become
null and normal to the Killing horizon. This is also the regime that the timelike
vector becomes spacelike at this boundary. Therefore, Stephen Hawking in 1972
shown that the killing horizon ¥, in stationary asymptotically flat spacetime, is
not necessarily the Killing horizon of the stationary Killing vector K* = (9;)*
rather some Killing vector fields of x*.

For a trivial example, if the spacetime geometry is static (The Schwarzschild
geometry), the corresponding Killing vector field y* coincides with the stationary
Killing vector K* = (0;)" which represents time translations. However, if the

spacetime is stationary but not static (The Kerr geometry), the Killing vector
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field will be the linear combination between the stationary Killing vector K* and
the rotational axisymmetric Killing vector field R* = (0y)* as x* = K* + Qg RH
for a constant (g describing the angular velocity of the black hole.

One of the most important features of the Killing vector is the association
with the surface gravity £. Since the event horizon is a null hypersurface namely,
X*Xu = 0 everywhere on the horizon, the gradient is normal to null hypersurface

Y. In particular, it is parallel to itself
Vi (X*Xu) = —2FX0- (3.5.1)
Regarding the LHS as the Killing’s equation. We obtain
X'Vux" = —kx” (3.5.2)

where & is the surface gravity which is some function of the coordinates and will

be constant over the horizon. Finally, the surface gravity is given by
/ 1 )
RP = —5 (VX (Vixo). (3.5.3)

In static black holes, the surface gravity can be interpreted as the acceleration
of a static observer near the horizon or the exerted force to keep a test-particle
stationary on the horizon observed by a static observer at infinity. The surface

gravity of the Schwarzschild spacetime is

1
P S . 4
RsH Ty (3 5 )

The surface gravity of the Schwarzschild solution decreases as the mass of the
black hole increases. It means that the surface gravity of a supermassive black

hole is smaller than a small black hole.

3.5.2 Thermodynamics and black holes

We have focused on surface gravity because it plays an important role in the con-
nection between other physical quantities and physical properties of black holes.

The first one is that the existence of the entropy of the black hole

$=7 (3.5.5)
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where A is an area of the black hole horizon. The second one is the temperature
of the black hole called “Hawking temperature”
Kh
Ty = — 3.5.6
= (3.55)

where £ is a surface gravity.

The zeroth law of the black hole Mechanics. If the stress tensor 7},
obeys the dominant energy condition, the surface gravity of a stationary black
hole is constant over the horizon. This is analogous to the zeroth law of thermo-
dynamics which states that the temperature is constant over a body in thermal

equilibrium. Therefore, surface gravity is analogous to temperature.

The first law of the black hole Mechanics. The change of stationary
black holes with (m, J, ¢) to another black holes with (m+dm, J+03J, g+ dq) with
(R, Qg, Py) is given by

dm = gdA 4 QudJ + ®ydg (3.5.7)

where (m, J, ¢) are mass, angular momentum, and charge, respectively.(k, Qp, Pp)
are surface gravity of the event horizon, angular velocity, and electric surface
potential, respectively. Analogously, the first law of thermodynamics states the

conservation of energy of the system.

The second law of the black hole Mechanics. The second law corre-
sponds to Hawking and Bekenstein’s area theorem that the change of the area of
a black hole horizon is always greater than or equal to zero. This is analogous to
the second law of thermodynamics stating that the change of the entropy in an

isolated system is always greater than or equal zero.
dA
— >0 3.5.8
i (3.5.8)

Provided that T, satisfies weak energy condition and the cosmic censorship hy-

pothesis. It is a strong statement of a link between entropy and the area of a black

hole horizon.
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The third law of the black hole. It is impossible to make an extreme
black hole from a normal one by setting () = M and J = M in order to have the

vanishing surface gravity and the temperature of the black hole.

A certain black hole obeys “the no-hair theorem”. It states that no mat-
ter what the initial condition of a star used to have, at the end it is just described
by three parameters which are mass, charge, and angular momentum.

We can use the same idea in thermodynamics of black hole that the en-
tropy of the system has to be calculated by the microscopic degree of freedom via
Boltzmann’s equation

Sy =In N(M,Q, J). (3.5.9)

It must agree with the macroscopic parameters in classical gravity which is char-
acterized by M, (), and J as in equation () To account for the microstate of
the black holes, we need a quantum theory of gravity. This is also the quest for
studying black holes in string theory [112]. Moreover, the computation of AdS
black hole entropy can be also holographically calculated by studying the holo-
graphic supersymmetric AdS black hole solution of gauged supergravity in various

dimensions.



CHAPTER 1V

Supergravity

4.1 Supersymmetry

Supersymmetry is a theoretical conjecture of the relation between bosons and
fermions. They lead to a multiplet called supermultiplet. In this chapter, we will

review some crucial points about supersymmetry, see also [89-93,108,[111].

4.1.1 Superalgebra

The No-go theorem proposed in 1967 by Coleman-Mandula which states that the
most general symmetries of the S-matrix based on conventional Lie algebra are

the direct sum of the Poincare group with an internal symmetry group
Ponicare ® Internal. (4.1.1)

So, there is no mix between Poincare Lie algebra and internal Lie algebra. In op-
posed to the No-go theorem, supersymmetry algebra is an extension of Poincare
algebra where we can add fermion generators because we replace Lie algebra by
the so-called graded Lie algebra. A similar idea was also applied to add fermions
into string theory to develop superstring theory by Schwarz, Gervais, and Sakita.
In 1974, Haag, Lopouszanski, and Sohnuis showed that fermion operators of su-

0) and (0,%) called supercharges

persymmetry are spinors of representation (1 )5

2
given by
Q, (4.1.2)
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respectively where 7, 7,=1,..., N and a,a = 1, 2. These operators obey the graded
Lie algebra of the form

(04, Op} = 0,0 — (=1)"™ 0,0, = f,;, “T. (4.1.3)
and Super-Jacobi identity
(=1)""[[0a, Op}, Oc}+(=1)"" ([0, Oc}, Oa}+(=1)""[[Oc, Oa}, O} = 0 (4.1.4)
where 7, defines the type of generators as

1, if O, 1is bosonic generators.
" 0, if O, is fermionic generators.
These are called Lie superalgebra. Moreover, we can find the commutation rela-
tions of superalgebra given by
(PP, 0] = (P~ O P),
[P*, P"] =0,

[JHV | JPo] = —i(JHInP — JVIpe 4 JVPphe — JHepT).

[P, Qui] = [P",Q}]
(Qaiy J"] = i(0")," Qi (4.1.5)
Q"i, ) = i(@™*)*,Q",

{Qui, Quj} = —lﬁabZz'j?
{Qah@]:} - 5]0-,uaa )
{Qanb} - __6 Zij

D) ab
where P* is translation generators, J* is Lorentz generators, and Z%¥ is an anti-

symmetric matrix providing the abelian subalgebra of internal symmetries which

commutes with the other generators
[Z9 P = (29, 0" = [ZY,QF) = (2", Z) = [Z9,T4] = 0 (4.1.6)
where T4 are internal generators of supersymmetry with the algebra
(T4, Tp] = fABCTCa
[Qas Tal = (54);7 Quy, (4.1.7)
(@5 Ta] = —(5™)" Q)
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where (S4); 7 is generators T4 in representation of supercharges and f g s the
structure constant. Moreover, supersymmetry is also equipped with its own inter-

nal symmetry called R-symmetry denoted by Hpg.

4.1.2 Supermultiplet

Supermultiplet is a set of fermions and bosons that transform into each other under
supersymmetry. In supergravity, we are interested in gravity multiplet comprising
graviton and gravitino. The number of gravitino corresponds to the number of
supersymmetry N which is constrained by the number supercharges 4N. In four-
dimensional spacetime, the number of gravitinos can vary from 0 < N < 8. If
N = 0, we get general relativity and if N = 8, the theory is called maximal
supergravity. In supermultiplet, the number of boson (np) is equal to the number
of fermion (np)

This valids in any supermultiplet.

Massless Multiplet

Massless representation is very crucial in order to construct the theory of elemen-
tary particle physics. The category of massless gravity multiplet in four dimensions
can be shown as in the table (@) Moreover, for N < 4, we can also couple gravity
multiplet to other matter multiplets. For N = 1,2, we can couple chiral, vector,
and scalar multiples to gravity multiplet. For 3 < N < 4, we can only couple vec-
tor multiplet to gravity multiplet. The massless representation of supersymmetry

of N =1 supermultiplet comprises of only two states given by

1

e ) and[p (V) (1.19)

with A and A+ % being the helicity of a particle and the corresponding superpart-
ner. To account for the discrete CPT symmetry, we usually start with the negative

helicity of the particle and add the CPT conjecture helicity of the supermulitplet.
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supermultiplet of gravity A = —2
The number of | s=2 s=3/2 s=1 s=1/2 s=0
Supersymmetry
N=1 1 1
N=2 1 2 1
N=3 1 3 3 1
N=4 1 4 6 4 1+1
N=5 1 5 10 1041 9+5H
N=6 1 6 15+1 2046 15+15
N=7 1 7 21+7 35+21 35+35
N=8 1 8 28 56 70

Table 4.1: The table shows the field contents in supermultiplet of gravity.

We can write possible N = 1 supermultiplets as follows.

Chiral multiplet

We will set A = —%, we therefore obtain

1
1Dy A =0) , and 1Dy A = i§> (4.1.10)

These states represent a pair of partcles of spin 0 and 1/2, respectively.

Gauge or Vector multiplet

We will set A = —1, we therefore obtain
1
1Dy A = i§> , and D, A = £1). (4.1.11)

This representation shows a pair of particles of spin 1/2 and 1, respectively.

Gravity multiplet

Finally, if we set A = —2, we eventually get

=42 and  [p A= i%). (4.1.12)
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This representation shows the massless spin-2 particle with its massless superpart-
ner gravitino of spin 3/2.

To find an extended supermultiplet, we can simply apply the same method
of () for each of the resulting states until we reach the desired number of
supersymmetry. In four dimensions, the maximum number of supersymmetry is

N = 8, we then get the previous table of massless gravity multiplet A = —2.

Rarita-Schwinger field

The action of massive the Rarita-Schwinger in D-dimensional flat Minkowski

spacetime is given by

Sps = — / P2, (178, — my"), (4.1.13)

where 447 = LAltyrarl,

To write the action of gravitino which is the massless spin-3/2 field, we can
generalize the action of massive the Rarita-Schwinger in D-dimensional flat to
the action of massless the Rarita-Schwinger in a D-dimensional curved spacetime
given by

Sgs = B2 d°zp, v*?D 3, (4.1.14)

2k2

where e =det ¢,%, 7" = e,/ and D, = Oy + ;iwwb’y“b. The term ﬁ is added

to be consistent when we consider supergravity.

4.1.3 Manifolds in Supergravity

Supergravity is an extension of general relativity, so the geometry of manifold
still plays an important role. From a geometrical physics point of view, there
is the idea of isometry which means the equality of measure under a group of
transformations called the isometry group G,s. The elements of the isometry
group are diffeomorphism. Besides, in order to complete the idea of isometry, we
need to define a variable associated with the measurable quantities, such as area,

volume, length, angle, etc. The variable is the metric tensor g(z). As a result,
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we can characterize the geometry of spacetime based on the isometry group of
transformations equipped with the metric tensor. The geometry is either called

Riemannian or pseudo-Riemannian manifold denoted by (M, g(x)). [81,095]

Coset Manifold

To relate Lie group G with the isometry of a group G, we need to impose an
additional constraint to the property of the isometry group called the transitive
action on (s, which means that any two points can be related to each other
by the isometry group. Moreover, the manifold is said to be homogeneous. This
means that the isometry group can be described by a given Lie group G, G5, — G.

Therefore, the homogenous manifold can be represented by the coset manifold M.

G
H/

(G is a transitive action group on a generic point on M and act on bosonic fields,

M:

(4.1.15)

graviton e}, vector fields Aﬁ, and scalar fields ¢!. H' is a holonomy group that
leaves a generic point on M invariant. As a result, the elements which describes
the manifold M are the set of ¢ ~ ¢ if g = ¢'h where ¢’ € G and h € H' meaning
that ¢ Xo = X and hXy = X, then ¢Xg = ¢h = ¢ X; = X. Therefore, the
dimension of coset manifold is dim(G)-dim(H"), which corresponds to the number
of coordinate characterizing the coset manifold. Moreover, the manifold is said to
be homogenous symmetric space meaning that a holonomy group H becomes the

holonomy group H of the compact maximal subgroup of non-compact group G,

and G becomes a semi-simple group. The coset manifold can be written as

M= —. 4.1.16
¥ (4.1.16)

H = Hgi x H,, is holonomy group acting on fermionic fields, gravitinos 1, and
chiral fields x; of spin 1/2, where Hp is the R-symmetry, automorphism group
of supersymmetry, and H,, is a compact subgroup acting on matter fields. For
N > 5, H = Hpg because there is no matter multiplets. In four dimensional

spacetime with 1 < N <8 if N <8, Hp =U(N) and if N =8, Hg = SU(8).
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4.2 Supergravity

The law of physics is usually based on symmetries, spacetime symmetries, and in-
ternal symmetries. Besides, there exists the biggest symmetry relating spacetime
symmetries and internal symmetries together so-called supersymmetry. Field the-
ories being invariant under supersymmetry is called supersymmetric field theory.
Like other symmetries, supersymmetry has both global (rigid) and local (gauge)
versions. The generalization of local supersymmetric field theory is called super-
gravity which allows us to have the interacting field theory between graviton with
other spin-s particles. We will focus on supergravities in four-dimensional space-
time, and there are many excellent reviews on supergravity, see [79,87,89,096,97,
105-111]. In this section, we will discuss the general properties of supergravity

and we will work on N = 6 supergravity in detail in the next chapter.

4.2.1 Minimal N =1 Supergravity in four dimensions

We start with the “minimal N = 1 pure supergravity” where we will implement
the idea of second and first-order formalism. The latter is used to conveniently
include the higher order terms in gravitino t,. In second-order formalism, the
action of minimal N = 1 pure supergravity can be written as the combination of
the usual Einstien-Hilbert action of massless spin-2 graviton and Rarita-Schwinger

action of massless spin-3/2 gravitino given by
1 4 n v
S=— [ d'ze(R(w) — /""" D,1,) (4.2.1)
2%2 M

where the supersymmetry variations are given by

a 1— a
de, = 5€7 Yy, (4.2.2)
1
5, = Due= 06+ ~wuapy™ (4.2.3)

4

with useful formulas resulting from the above ones

1

de = ée(évpzﬂp) (4.2.4)
1 1

dcf = —5@"Ya  and  de' = —oeyyt. (4.2.5)
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We now consider the supersymmetry variation between graviton and gravitino.

We first consider the action of gravity Sy expressed in terms of frame fields

1
Sy = d*zeR
2= 21‘4‘;2 M e ( )
1 4 nz
=52 Md xegh”g
1 14
=53 g d*zee e’ R o (w)

PAetel Ryas(w) (4.2.6)

and its supersymmetry variation given by
1
05y = 22 / d*x ((66)6““6”1’Rwab + 2e(5e")e”’ Ryap + ee“"e”b(éRwab))
M
1

ez [ e (G, + 26— 310 Byn())
. 2 2

T k2
1 4 1_ p — PohAa Vo b
52 Mcl we | 5€Y Y R(w) — ey’es g’ ey Ryvap(w) (4.2.7)
1 1 |
=53 s d*ze <§efyp¢pR(w) - Efypw’\Ru,\(w)>

1 — v
=352 /Md%e (RW A §gWR> (—evFy”).

The last term of the first line vanishes due to the surface terms.

We next look at S3/, given by

1 " v
Syp==g [ A2eBA D0, (1.25)

and, consider the supersymmetry variation of the gravitino action S/,

0539 = d4xe (61#“7’“”)@,,1#,) + PP D, &pp)

ULA
1
=-—= d4xe (5@0“7“””@“@%)

_ 4. = uvp
=—— | d'zeeD "Dy,
K= Jm

== Md ze (€D, "D, + ey"?D, D) (4.2.9)
1
=3 Md‘*:reev“””@ D,

1
5 [ dwey""[Dy, Do,
M

T k2

1 vp, a
= 8%2 Md4ZL‘€€7M p,y bRuuabwp
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where the factor of 2 from the second line results from the identical contribution of
the variation of ¢ and 1), we use the integration by part on third line and neglect
the surface term, the vanishing of first term of fourth line due to v**#Dvy, =
PN 1, and Vv, = 0, and the existence of Riemann tensor of the last line
results from [D,, D, ]y = %Rwab'y“bw.

To continue, we use
APy = AP —1—6”}/[‘“/ FYd ]—1—67[“5” 591 (4.2.10)

Then, we have

,yw,o,),ab Ryvap = /u/pab Ryuyay +6 RW[ plb 67[“ R, pv)
VOB o + 2Ry + AR,
+ 4y Ry + 29 R, (4.2.11)
= 49" R,,* + 24" R,
= 4R, +29"(-R)
where the rank fifth gamma matrix 7###% vanishes in four dimensions, the second
term of the second line vanishes due to R, ,, = 0, and the third term of the second

line vanishes by the contraction of symmetric R,; and anti-symmetric matrix ~**°.

We finally obtain

1 - B
83/95 = o7 /M d'ze (4ey"p, R, — 26v°1,R)

1
2/@

_ 1 4 1 gV
_2/12/Md xe (R/w 2gWR) (eyHyY) .

Therefore, the action is manifestly invariant §5,4-955/, = 0 under local supersym-

1
o d4xe (67"@/} R, — Eevuw”gm,R> (4.2.12)

metry to the first order in 1, which also holds for any D-dimensional spacetime.
To complete the local supersymmetry of the theory, we need to add w;‘; terms to

the theory by using the first order formalism. In particular, we use w = w(e) + K.
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K can be obtained by the field equation for the spin connection given by

0,59 = 5.3 d4xee““e”b5RWab
M
1 4 pa vb o) S
=53 d*zeete”” (V 0wy — V,0wpap)
) M (4.2.13)
4 a _vb ab
=53 Md xeete (2V dw, ™ + T}, 0w," )
1
2/4.;2 M d'e (Tpapez — Ti'e, + Tw") 5(")”ab

where we use 0R,yap = V,0Wap — V,0w,qp in the first line, 2V 1), = 2D, —
11,1, and omitting the surface term.

We get
1 _
5w53/2 = —%%/ d4$€¢u7wp®u¢p

1
e Md4fve (D™ Yash,) S, (4.2.14)

1
= d4xe (£ (67" e” e ) )

where we use D, = 9, + 3w L “b'yab in the first line, and v*P~v,, = ’y””pab+67[“e”[bep]a}
with again the fifth rank gamma matrix v**, = 0 in four dimensions for the
second line.
By 0,52 + 6,S3/2 = 0, we obtain
v v v [ v 7 v 7 v
Tpapeb - prpea + Tab — i(dja/y ¢b 4= @Z)p’ypd)aeb - ¢p7p¢b€a) (42]‘5)
and
1 X
Tt = Ewafy“wb. (4.2.16)
We then obtain the contorsion K given by
1 - _ _
K,uup = _Z(¢u7pwu - wu%% + %%%)- (4-2-17)

Finally, we can substitute the contorsion in w = w(e) + K entering via Riemann
tensor R(w), and D(w) in the first order formalism action. Then, we obtain the
equivalent second-order formalism of the minimal N = 1 supergravity action with

the extra term of ¥* written as
1 - 1 - _
— o [ AR G+ LB 6
1 - - _
—1—6(1@%%”)(%%% + 21/Jp/71/77b,u)}‘ (4.2.18)
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This action is completely invariant under local supersymmetry to all order in .

4.2.2 Extended Supergravity

Scalar Sector In supergravity, scalar fields ¢*,7 = 1,2, ..., n, describe the
coordinate of a manifold, so such a manifold is said to be the Riemannian scalar
manifold M with the definition of the metric tensor G (¢). The behavior of
scalar fields can be described by non-linear sigma model coupling to graviton

written as
1
L, = —598t(¢)8u¢58”¢t. (4.2.19)

To couple scalar fields to vector and fermion fields for a certain N extended
supersymmetry, we need extra constraints and additional structures on the scalar
manifold M. The first extra structure is a flat symplectic bundle on Mg, and
the symplectic electric-magnetic duality. The second structure results from the
fact that fermion fields transform under the local Lorentz group which displays
the properties of spacetime and they also transform in the representation of the
holonomy group H of the scalar manifold which would correspond to the holonomy
of the Levi-Civita connection. Therefore, these would determine the interaction
between scalar fields and vector fields, and fermion fields respectively.

The coset gh, g € G where G is the global symmetry group and h € H
of manifold M., can be characterized by the set of coordinates of dimensions
dim(G)-dim(H). Therefore, the representation of scalar coset manifold can be

written in terms of scalar fields as
L(¢*(x)) = —= (4.2.20)

such that the action of h on L(¢*(z)) is fixed to be local right action h — h(x)
on L(¢*(x)) while the action of g on L(¢*(x)) is said to be globally left action on

L(¢*(x)).
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Vector sector In supergravity, there exist Ai}, A = 1,2,3..,n, which
define the electric field strength F lﬁ\y given by
A A A
F., =04, —0,A, (4.2.21)

and the magnetic dual tensor Gy, defined as

0L
GAuV = _EHVPUW = RAEFHEV — Izy * FEJ (4222)
puv
where
1 loa
«Fl\, = §EW,FM (4.2.23)

This relation shows the duality between the electric field and the magnetic field.

We can also express F* and G as a 2n, dimensional vector as

FA\ datdar”
= 2

G = (EGdeﬂde) —

=0 (4.2.24)

we have
FA
2 QL \ (4.2.25)
G

G would describe the electric field and the magnetic dual tensor where the index

M = (%), so the field equations and Bianchi’s identities can be written as
dg™ =0 (4.2.26)

And the duality properties can be written as

%G = —CM(¢)S (4.2.27)
where C is a symplectic matrix
0 I,
C=(CMN) = (4.2.28)
-I,, 0

with M(¢) also a symplectic matrix
M(¢)CM(¢) = C. (4.2.29)

M (¢) would contain the matrix I, and Ryyx which characterize the non-minimal

couplings of the scalars to the vector fields.
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Global symmetry group For supergravity N > 1, G is the symmetry
group of scalar action, now we need to promote G to be global symmetry group
of the bosonic action, both vector field and scalar field.

The action of g € GG on scalar and vector fields are non-linear and linear

action written as

Q"= gx Q" , non-linear
= Ry 9] , linear
Ga G

where in general the symplectic representation of g can be written as

Rvlg] = : (4.2.31)

Both symplectic representation of Ry [g] and M[¢] form a flat symplectic struc-
ture on scalar manifold M. To preserve the field’s equations, Bianchi’s identity,
and Lagrangian, so we need B[g]*®=0. The corresponding group is the electric

subgroup of the isometry group, G € G.

A[Q]AE 0
Ry [g)y = N (4.2.32)
Clglas  Dlgla
In N = 6 supergravity, My, = S?]*(%Q), where SO*(12) is a special non-compact

form of SO(12) with maximal compact subgroup of U(6) ~ SU(6) x U(1) and the

symplectic representation of Ry [g] = 32..

Fermion sector The fermionic fields transform under the holonomy group
of local H while the bosonic fields transform under the global symmetry group of
G. The fermionic sector comprises gravitinos of spin-3/2 denoted by v,4 and spin-
% particle denoted by xapc, Ara, and A, with the corresponding charge conjugate

spinors wf, xABY A4, and A\ respectively. The fermionic fields can be represented
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by the Weyl spinors with positive chirality

¢MA \IJMA
5 | XABC [ _ | XABC (4.2.33)
ArA ArA
Aa Aa
while the chirality of the charge conjugate is negative
qu JrA
ABC ABC
7t L= * ., (4.2.34)
A A7
A A

To couple bosonic fields and fermionic fields, we need quantities that transform
in both H and G. The coset representative L(¢) is such a quantity. Therefore,
the scalar sector is the link of the interaction between bosonic fields and fermionic
fields. Moreover, the transformation under G and the local group H is similar to
general coordinate transformation (GCT) and local Lorentz transformation (LLT)
in spacetime respectively.

Since, bosonic fields or tensors transform under GCT and fermionic fields or
spinors transform under LLT, the Lagrangian density which is invariant under H
must have the form of covariant derivative having () as the composite connection

since H is a gauge symmetry

Db =V, )+ Q0. (4.2.35)

D,, can be written in terms of spin connection w and Christoeffel connection I

4.2.3 Gaugings

In this section, we will promote a suitable subgroup G, of the electric subgroup
G belonging to the isometry group G to a gauge group gauged by vector fields
of the theory with the non-Abelian structure of vector fields. This procedure is

to obtain gauged supergravity from the ungauged one with the same number of
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supersymmetry by using embedding tensor formalism.
The theory is gauged by the vector fields AA belonging to the adjoint rep-

resentation of Gy of the theory so we have the condition

dimGy < n,. (4.2.36)
We introduce the minimal coupling with the gauge connection defined by

O = gANX, (4.2.37)

where ¢ is a gauged coupling constant, and X is gauge generators of the gauge
group of G.
The gauge generators can be written in terms of symplectic representation
of R,[X;] as
(Xa)™o =RfX; % = N 0 (4.2.38)
—Xisr Xig'
We are interested in the case that Xjsp = 0 with the quadratic constraint on

gauge generators written as
(X4, Xs] = — X3 Xz (4.2.39)
We also have the linear constraint
Xisp) = 0. (4.2.40)

Under the infinitesimal gauge transformation of g(z) € Gy, and g(z) = 1 +

geM @)X i, we define the covariant derivative as
VN = 9,6N + g X A ASer (4.2.41)

which is the total covariant derivative of general coordinate transformation and
local Lorentz transformation including 4 and G,. We will also redefine the cur-

vature 2-form as
FA, = 20, AN + gX o M AT A (4.2.42)

and define Sfu = ]5“ + Q“ as

0, =L'V,L=L"Y8, - gArXx,)L (4.2.43)



69

where

P, =P, — AMP;
S (4.2.44)

Qu=Qu— ADQy
Pj; and Q4 represent projection of L™ X} L onto subspace of coset space ¢t and h
respectively, written as
Py = L7 XLl (4.2.45)
Qi =L X;Lly
where ¢ is Lie algebra of G and g = h & k with t € k and h € h being generators

of the coset space and Lie algebra of H, respectively.

Embedding Tensor The embedding tensor @% is the projection operator
from Lie algebra of global symmetry group of G onto to Lie algebra of gauge group
Gg as

X =0O5ts (4.2.46)

@% is in the representation of n, x adj(G.), A=1,.. nyand X =1,.., dim(Gg).
Moreover, the embedding tensor is independent of symplectic frame. We can write

the locality constraint as

cMVe4,05% =0 (4.2.47)

which implies that dim(G,) = rank(©%) < n, and the embedding tensor is invari-
ant under a gauge transformation.

these deformations with the introduction of minimal coupling, the Lagrangian
of ungauged supergravity will not be invariant under supersymmetry transforma-
tions, and the extra terms are needed. Such a term can be written in terms of a

tensor under the holonomy group H called T-tensor as
Ty = LN L' Xy L. (4.2.48)

Then, we can write this in the complex basis as

Tun' = L L X, P (L) 50 (4.2.49)



70

We can also write the local, linear, quadratic constraint of T-tensor as
MN b __
C"' TS =0
Tiarnp) =0

[T57, Tx) + T]\TNﬁ Is =

(4.2.50)

To preserve the supersymmetry of the original theory after applying minimal cou-
pling, we need to add the extra terms of the order of g to the deformed action.

Such a term is called “Yukawa term” written as
—A — —
et Lvurawa = g(—2¢y Y B S g + AIVH¢AMNI 44 /\I)\JMU) +cc.  (4.2.51)

where Sap,N; 4 M;j; are called fermion-shift matrices. Moreover, the supersym-

metric variations will also be deformed with the extra term at order g given by

SVau = Vs — gSapVue” + ... (4.2.52)
SAr =P yes+ gNp Aea + ... (4.2.53)

Besides, if we do the variation of Yukawa term with respect to 14, and A;, there
exist the term of order ¢g* because 614, and 6); contain g. Such an extra term of
order g2 can be canceled by adding the quadratic term of the fermion-shift matrices
Sap and N, 4 into the action. Such an extra term is called "scalar potential” and

can be written as

65V = *(N' N, B —125,05°%). (4.2.54)

In summary, to promote ungauged to gauged supergravity, we can deform
the original ungauged supergravity by introducing minimal coupling and the mod-

ified tensor field strength with the non-Abelian gauge field. We obtain the super-
(0)

gravity L. ..q Which is invariant under gauge group Gy, but it is not invariant
under supersymmetry.
To preserve supersymmetry of the original supergravity, we need to add

the “Yukawa term” and “scalar potential term” into the theory and the extra
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terms into the supersymmetry transformation of fermion fields. The complete

Largrangian is given by

e ' Loanged = € Lungangea(0 = V,dA — dA+ANA) + Lyurawa +¢.c. =V (4.2.55)



CHAPTER V

N=6 gauged supergravity with
SO(6) gauge group

N=6 gauged supergravity with SO(6) gauge group gets more attention due to the
compactification from the type ITA supergravity on ten-dimensional AdS; x C'Pj
[10-14] and eleven-dimensional supergravity on AdSy x S7 [b0-55]. In this section,
we will review the structure of N=6 gauged supergravity with SO(6) gauge group
in the embedding tensor formalism as described in [4]. We also discuss the relation
between the fermion-shift matrices and, T-tensor, coset representative, and gauge

group generators.

5.1 Supermultiuplet of N = 6 supergravity

In N=6 supergravity, there exists only the gravity supermultiplet without mat-
ter multiplets due to the constraints of supersymmetry. Field contents of four-

dimensional N=6 supergravity are

(eﬁaw,uA7AﬁBaA27XA307XA7¢AB>- (511)
The bosonic sector consists of the single graviton efj, sixteen vectors AﬁB = —AEA
and and Ag, fifteen complex scalars ¢4 = —¢pa. Real and imaginary parts of

¢ap are usually called scalars and pseudo-scalars, respectively. The manifold of
the N = 6 supergravity is the scalar manifold of the form

G 50%(12)
Msa = H- U®©) (5.1.2)
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with isometry symmetries forming the global symmetry group of G = SO*(12)
with only R-symmetry sitting in the maximal compact subgroup H = Hg = U(6)
of G = SO*(12). The fermion sectors comprise six gravitini 1,4, , twenty-six
spin—% fields xaBc = X[aBc] and xa.

In order to study N=6 gauged supergravity, we follow most of the con-
vention of N=6 gauged supergravity truncated from maximal N=8 gauged su-
pergravity [4] with the gauging procedure following [96]. In this thesis, we will
follow the spacetime and tangent space indices denoted by u, v,...=0,1,2,3 and
v, ... =0,1,2 3, respectively. Moreover, we also use the indices of A, B,... =
1,2,...,6 as the fundamental representation of SU(6) being the subgroup of the
R-symmetry U(6) ~ SU(6) x U(1). The 15 complex scalar denoted by ¢p are
the set of coordinates spanning the scalar manifold SO*(12)/U(6) written by the

coset representative in representation 32 of SO*(12) of the form
Vi = Ate¥ (5.1.3)

with the Claley matrix

1 I !
A (5.1.4)
V2 Iig  —ilyg
and

0 01><15 0 ¢CD
v _ O15%1 01,5X15 dap  seapcperd”  ocp (5.1.5)

0 ¢CD 0 O1><15

&AB %GABCDEFfﬁEF O15x1 O15x15

where ¢*% = (pap)*.
In following analysis, it is more useful to define 16 x 16 submatrices of VA
by the use of this identification

YVt = e (5.1.6)
o A
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where we can define f, h, f and h such that they satisfy the relations

(£ T = ff, (hh")” = hh,  fh' — fh” = il
f'h — hif = —il, f'h —h'f=0. (5.1.7)

We can write the inverse of V2L in terms of f and h as

—iffy  ihaa

VM = .
ifM byt

(5.1.8)

The sixteen electric gauge fields A4% and A° can be combined into a single A* =

(A%, A4B) along with its magnetic dual A, written as
AM = (A% Ap) (5.1.9)

where, the gauge fields transform as 32 representation of SO*(12)

5.2 Gaugings

Gaugings can be efficiently described by the embedding tensor formalism in which
we define the linear combination of the generators of global symmetry as gauge
generators

Xy =0u"t, (5.2.1)
where t" is the global SO*(12) generators and 6, is called the embedding tensor.

Therefore, we can define the covariant derivative introducing the minimal coupling

of various fields written as 6.
Dy =V, — gAY Xy . (5.2.2)

V,, is the usual spacetime covariant derivative including the local U(6) composite
connection if exist. g is the gauge coupling constant which we can absorb into the
definition of 8,,™.

In 32 representation and SO*(12) generators (£,,)a" , the embedding tensor

can be described by the generalized structure constants

Xunt = 0" (t)n" (5.2.3)
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To preserve all of the original supersymmetry of the ungauged theory under a
proper gauging procedure, the embedding tensor must satisfy linear and quadratic

constraints written respectively as
X(MNLQP)L =0 and GMmQN”fmnp + XMNPHPP =0 (524)

where f,,,? is the SO*(12) structure constants. The former implies that the em-
bedding tensor #,,™ belongs to the representation 351 of SO*(12) and the latter
results in

[(Xar, Xn]) = —Xun" Xp. (5.2.5)

As a result, the gauge generators form a closed sub-algebra and X,,;n" act as the
corresponding structure constants.

In gauging an ungauged supergravity theory, the invariant of supersymme-
try requires some deformations of the ungauged theory and also supersymmetric
transformations. Such deformations are of first and second order in the gauge

coupling constant g, and can be encoded in terms of the T-tensor written as
Tyun® = Var " V" VpEX " . (5.2.6)

In general, both of the electric and magnetic fields can play a role in the gaugings
which leads to various possible gauge groups. Nevertheless, in this work, we focus
only on SO(6) gauge group embedded electrically in U(6) C SO*(12). Therefore,
the gauging only associates with electric gauge fields A4? where we have the gauge

generators written as
I- J-
‘XthJsz]SJ3 = 495[[1f512][f26J;]] and X11J1[3J31'2J2 = _X11J1712J213J3 (527)

with all remaining components of gauge generators vanishing. In particular, the

components of X% MN which couples to the magnetic gauge fields vanish.

5.2.1 T-Tensor and Fermion-Shift Matrices

In order to find the expression of T-tensor and fermion-shift matrices, we follow

the truncation of N=8 gauged supergravity to N=6. The T-tensor of the N=8



76

theory can be written as

T = _75[[£Nq \/_5 Sl][z (5.2.8)

where there are only Sap, N AB,N AB, N ABCD fermion-shift matrices survived in
truncated N=6 theory along with the splitting of indices A, 3, ... as (0, [AB]).
Therefore, we can write the various component of T-tensor associated with

the fermion-shift matrices as

R B
AB = lo@pe

NAB - 2\/§To¢,8 BCAC>

(5.2.9)
N _8\/_ CE
AB= T lCABE
1
Négep = _2\/§T[CD,B]EAE > 5663NCD]~

These upper and lower indices of the fermion-shift matrices are related to each
other by the complex conjugate, for example, Ssp is a symmetric matrix, and
Sup = ( SAB)*.

Moreover, the Sap tensor will play a crucial role in the association of su-
perpotential. This implies how many the supersymmetry of a certain holographic
solution will be preserved corresponding to the number of non-vanishing Killing

Spinors.

5.2.2 T-Tensor and Gauge Structure Constant

The non-vanishing structure constant of gauge group of SO(6) can be written as

X0
(Xa)sh = [ (5.2.10)
0 XAEF

where the indices split A, ¥, and I" to (0, [11/1]), (0, [I2J2]), and (0, [I3J3]) respec-
tively under SO(6) [I,J] =1,2,...,6.

Xl = 49613 611,07

I1J112J2 [ 113 J2] (5‘2‘11)

I3J3 _ 13J3
XflJl IsJs — X11J1[2J2
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We can write down the expression of T-tensor with the structure constant

of gauge group as

TM7N£ = [L7' % X}M’EB
= (LYY S L Xy (5.2.12)

M
= (L) (L7 (L)r X"+ (L7 (L) ar L X T

Plugging in the above condition with the splitting of indices A, >, ... = (0, [1J])
and the definition (), we find the component of T-tensor associated with the

coset, representative as

cp 9 .,.nJ Jh T CD 7JJ1CD
TEF,AB - _§f EF( ABhI1J1 + hI1J1ABf )7

Taﬁ,AB P = _gchab’( JJlABBIlchD S hIIJlABijjch)
(5.2.13)

g A —
= = Ry P+ hygap 7OP).

It is straightforward to obtain all the fermion-shift matrices and the scalar poten-

tial, once we define the explicit parametrizations of scalar fields.

5.2.3 Scalar Potential

By considering N=8 Ward identity

1

SV (¢) = ¢ (—125;‘@ e

N, Fm N klm) : (5.2.14)

the truncated scalar potential of the N=6 theory can be expressed in the fermion-
shift matrices as

1 1
V() = <_2SABSAB + 36 APPNep + 6 ABNAB) : (5.2.15)

This scalar potential can be used to consider supersymmetric AdSy critical points
if the critical point of the scalar potential coincides with the superpotential,. This

plays an important role in considering holographic solutions.
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5.3 Lagrangian and Supersymmetry transforma-
tion

To write down the field’s equations of the N = 6 gauged supergravity, we first
write down the bosonic Lagrangian as

1

1
¢ Sy

i N - —Xuv
MABCDPMABCD o Z (NAEF:;AF-FZ/U/ . NAZF#VAF >y ) V.

(5.3.1)

The first term is the Einstein-Hilbert action of general relativity while the second
and the third term are scalar and gauge kinetic terms, respectively. The scalar
kinetic terms can be written in term of the vielbein Plf‘BCD = (P.aBcp)* on the

scalar coset manifold of SO*(12)/U(6) as

ABCD _ ABM CD
PABCD =" pABM D Yy

= i (fMPD,hP — AP D, AP (5.3.2)

and the scalar matrix N appearing in the gauge kinetic terms of the Lagrangian

is also given by

Nas=—h > (f "Vax (5.3.3)

where Ny is the complex conjugate of Npy. Besides, the complex self-dual and

anti-self-dual gauge field strengths can be defined as

1 i "
R G (53.4)
with F lj\y written as
Fﬁu = 0,4} — 8,,/42 + XFEAAEAE : (5.3.5)

Moreover, the deformed supersymmetry transformations of the N = 6 gauged

supergravity, with all fermionic fields vanishing, are given by

1 -
0ua = Dyuea— Sapyue” — 4_\/§F,;AB’7PU%€Ba (5.3.6)
1 1 -
oxa = _ZEABCDEFP/?CDE'VHGF + NP ep — —2\/§FL7W€A7 (5.3.7)

3 -
oxapc = —Puasopy'e” + NP apcep — FF;,[ABGC] . (5.3.8)
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Despite, the vanishing of all fermionic fields, the variations of fermionic fields are
not necessarily zero. Furthermore, we also note the chiralities of the fermionic

fields

Vo ua = —Pua, V5XABC = —XABC, PsXA = —XA (5.3.9)

A AB
» X

L © and y4. We can also write tensors

with the opposite chiralities for

F:VAB = (FJVAB)* as

E AP =vy PG M (5.3.10)
where
FA
Gl = o (5.3.11)
GA[,LV

and Gpu = ieu,,pgaaTﬁA. We can also write
po
- 0, ~—M\x*
F,j;, =(Vu G°)" (5.3.12)
In addition, we define the covariant derivative of €4 as

1 1
Dyea = Opea+ L—Lwﬂa”%bm + 562“/4363 (5.3.13)

with the composite connection @, 47 given by

21

Q,uAB = 3

where Qu4” can be obtained from
Quas”” =Vap" Xup " Vn" (5.3.15)

with the relation Qua°Y = 455@ MB] Dl This will play an important role in find-
ing the supersymmetric AdSy black holes in which we preserve the supersymmetry

by performing topological twists which we will discuss later.



CHAPTER VI

Holographic solutions of N=6,
D=4 Gauged Supergravity

In this chapter, we will be working out various types of supersymmetric solutions
to the N = 6 gauged supergravity with SO(6) gauge group. The N = 6 theory has
been studied in [4] and the theory admits supersymmetric N = 6 AdS, vacuum
with the cosmological constant V; = —48¢? and vanishing scalar fields. Thanks to
the AdS/CFT correspondence, this is dual to a three-dimensional N = 6 SCFT.
We will find asymptotically AdSy geometric solutions which can be interpreted as

various types of deformation of the dual N =6 SCFT [113].

6.1 Holographic RG flows

In low energy limit and large-N limit of the AdS/CFT correspodence, gauged su-
pergravities theories in AdS, 1 spacetime dual to strongly-coupled superconformal
field theories (SCFTs) at the d-dimensional boundary of anti-de Sitter spacetime.
We can consider the flow in the radial coordinate r of the AdS spacetime as the en-
ergy scale of the operators in SCFTs, so the correspondence relates the IR regime
of the SCFTs at the deep interior of AdS and the UV regime of SCFTs at the
boundary. On the other hand, when gauged supergravities are only in asympoti-
cally anti-de Sitter space AAdS,, 11, the dual theories that appear at the boundary
are just approximated SCFTs and they are superconformal field theory at only the
conformal fixed points. As a result, the flow from the UV regime of the dual SCF'T
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at the boundary to the IR regime of quantum theory at the deep interior could
break conformal symmetry, or supersymmetry and the corresponding quantum
theory could become non-conformal field theories. This is called “Renormaliza-
tion group flow” or “holographic RG flow” or "RG flow”. Different types of IR
geometries horizon describe different types of RG flows, see also [98-100].

Therefore, the holographic RG flow is the study of supersymmetric solutions
of gauged supergravity which characterizes the flows from SCFTs at the conformal
fixed point in (UV) to other conformal fixed points or non-conformal phases of
the deformed dual SCFTs at (IR). This means that we can study the behavior of
superconformal field theory in UV related to conformal field theory or quantum
field theory in IR. This helps us to understand the dynamics of strongly-coupled
quantum field theory providing a non-perturbative technique of quantum mechan-
ical system.

To preserve the Poincare symmetry on AAdS, of RG flows, supersymmetric

solutions of gauged supergravities must take the form of the domain wall spacetime

ds* = 2 dat dzn,, + dr’. (6.1.1)

Then, we can calculate the corresponding spin connection by using Cartan’s equa-
tion

def-=gi A P} (6.1.2)
where

el = eA(r)dx“,
(6.1.3)

e" =dr.
with ’ denoting r derivative, and the non-vanishing component of spin connection

[
wh= Wi

, ) (6.1.4)
= A (r)e".
In supersymmetric domain wall solutions, the scalar fields and Killing spinors will

only depend on the coordinate  denoted by ®(r) and e4(r), respectively. We also
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switch off one-form and two-forms in our theory.
The supersymmetry variations for fermions must vanish. For the u =0, 1,2,
the partial derivative of Killing spinors €4 vanishes. The components of gravitino

supersymmetry transformation of N = 6 gauged supergravity take the form

0Vau = Vyea — Sapyuen

1
= Zwuab%bﬁB — SaBVu€B

1. N "

- §A Vyprrea — Sapyiype” €” (6.1.5)
1 . ~

= (514 5ABBZA — SAB)EB

=0.

To solve all the BPS conditions, we have used the projection condition
Arey = el (6.1.6)

for A being a real function of r. In this thesis, we will use the Majorana repre-
sentation for which the gamma matrices are real, but vs5 is purely imaginary. The
projection condition relates the two chiralities of Killing spinors of the domain
walls, €4, and €. As a result, the flow solutions preserve only half of the original
supersymmetry or 1/2-BPS solutions or 12 supercharges in this case.

Since Sp is a symmetric matrix, one can diagonalize S5 with its eigenval-

ues leading to the “superpotential” as

1
Sy rpre §W5AB. (6.1.7)
Then, we get
Aeh —W=0 (6.1.8)
and obtain the equation
A =+|W,
6.1.9
oW o)
W

In the following, we define W = |W| and choose the upper sign to make the

supersymmetric AdSy critical point locate at » — oco. Then, we can also look at
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the r component of the gravitino variation

5¢A7~ = V/LEA - SABf)/,uEB
1

= Or€a — —WWEA
2
1 (6.1.10)
= 6,@, — §A €A
=0.
This gives the solution of Killing spinors as
A
€a(r) =e2éy (6.1.11)

where €4 is constant spinor satisfying the projection condition.
To find the full set of BPS equation, we also need to consider dx apc = 0,
oxa =0
Sxapc = —Puapopy"e” + NPy poen
= —Prapcpy €’ + NPypeep (6.1.12)
= (=Prapcpe™ ™ + NP po)ep
and

BCDE_ u F | n\F
oxA = _ZGABCDEFPM Ve + N7 ep

1 R
= _EGABCDEFPf BODETEE + NF jep (6.1.13)
1

— (_ZEABCDEFPf BCDEe—iA + NFA)

€p.
Once the last two variations are satisfied, we get the BPS equations of four-
dimensional gauged supergravity. However, it is very complicated to do the cal-
culation of thirty scalar fields, so we will be working on some of the thirty scalar
fields non-vansihing. In order for the solution of non-vanishing scalar fields to
satisfy the field’s equations of thirty scalar fields, we will choose a set of singlet

scalar fields under a subgroup of gauge group of SO(6).

6.1.1 Solutions with SO(2) x SO(4) symmetry

We first consider solutions with SO(2) x SO(4) symmetry. The embedding of

SO(6) implies that the scalar ¢ 4 transform as an adjoint representation of SO(6).
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The singlet of SO(2) x SO(4) C SO(6) can be explicitly written by
Gap = G045 — Opd%). (6.1.14)

We can write ¢ as

b = e’ (6.1.15)

where the r dependent ¢ and ( are a real scalars.
By a straightforward computation using the equations given in the previous

section, we find the scalar potential
V = -8 (1+4e* +¢*) ¢g? (6.1.16)
and the fermion-shift matrix of Sap
1
Sap = §W5AB. (6.1.17)
The real superpotential is given by
W = 4¢ cosh ¢. (6.1.18)

As we mention in the previous section, S45 implies that the solution of the singlet
scalar SO(2) x SO(4) would either preserve the full N = 6 supersymmetry with
all components Killing spinors €4 non-vanishing or no supersymmetry at all if all
the Killing spinors vanish. Moreover, in order that the critical point of the scalar
potential to be a supersymmetric N = 6 AdSs vacuum, the scalar potential critical
point must coincide with the superpotential’s critical point, which is the case at
p=0.

From the 014, we have
A =4gcoshy and e =1, (6.1.19)
The variations of dx4pc and dx 4 result in the following BPS equations
¢ = —4gsinh ¢ , and ¢'=0. (6.1.20)

As a result, we finally obtain the set of BPS equations solving all the supersym-

metry conditions. These equations also imply the second-order equations from the
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Lagrangian

1
e 1L = 1—6674‘P (—(=1+4€")(” — 16e*¢”) + 8 (1 +4e* +€*) g>.  (6.1.21)

Therefore, we can analytically solve these BPS equations with the solutions

given by

dgr = In(l+e®) —In(1l —e¥), (6.1.22)
A = o —In(1—e*). (6.1.23)

where we have neglected the integration constants in these equations by shifting

1,2

the radial coordinate and scaling the z%%? coordinates, respectively. As r — oo

corresponding to AdS critical point, we find that
o~ e e T and A~ dgr ~ % (6.1.24)

with L being the AdS, radius related to the cosmological constant by

SN
[E0n— = 6.1.25
i (6.1.25)

For the choice of convenience, we have defined g > 0.
According to
m?L? = A(A —d) (6.1.26)

with d = 3, and m?L? = —1, we can see that the behavior of ¢ is dual to a relevant
operator of dimensions A = 1,2 in the dual SCFT. Besides, there also exists the

singularity at » — 0 with
o ~ £ 1n(4gr) and A ~ In(4gr). (6.1.27)
We find that near the singularityy — 00, the scalar potential
V ~ =8¢t - —. (6.1.28)

By the criterion given in [57], we find that the singularity of the solution with
SO(2) x SO(4) symmetry is physical. Therefore, we have the solution that de-
scribes the RG flows from the UV N = 6 SCF'T to a non-conformal phase in the
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IR. Such a flow is governed by an operator of dimensions A = 1,2 correspond-
ing to scalar or fermion mass terms in three dimensions. Moreover, the flow will
break superconformal symmetry but preserves all of the N = 6 Poincare super-
symmetry. The R-symmetry SO(6) is broken to SO(2) x SO(4) subgroup. This
precisely agrees with the field theory result given in [16]. Therefore, the solution

would describe mass deformations of N = 6 SCFT in three dimensions.

6.1.2 Solutions with U(3) symmetry

We continue with solutions of a residual symmetry U(3) ~ SU(3)xU(1) C SO(6).

The U(3) generators can be written in SO(6) fundamental representation as

i
X= N (6.1.29)

—S3x3  Asxs
where the Asy3 and S3,3 matrices are anti-symmetric and symmetric, respectively.
The matrices Asx3 generate an SO(3) C SU(3) resulting in a diagonal subgroup of
SO(3) x SO(3) € SO(6). Moreover, the U(1) factor corresponds to the matrices

of S3.3 = II3. Therefore, we have only one singlet scalar given by

O3x3 I3
¢ap = = ¢Jap - (6.1.30)
—¢l3 O3x3
where the matrix Jsp is identified with the Kahler form of C'P? on which the
ten-dimensional type ITA theory compactifies [4].

By the definition of ¢ = e, we find the scalar potential
V = —24g%e (1 + ¢*%) (6.1.31)

which coincides with the potential given in [4] which admits AdSy critical point at

@ =0 dual toan N = 6 SCFT in three dimensions. We also find the fermion-shift

matrix Sap
1
Sap = §W5AB (6.1.32)
along with the complex superpotential
1 : , )
W = —e 37 [(e% + 3e*) (1 + ) + (1 + ) (e — 1)]. (6.1.33)

2
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Besides, the supersymmetry variations of dx4 and dxapc result in
e ™M (29 £isinh(20)¢) = —ge (e — 1)1 — € + ¥ (1 +€)]  (6.1.34)
implying ¢’ = 0. In addition, the field’s equations obtained from Lagrangian

3
e L = _Ee—‘l@ (=14 €e*)(? +16e" %) + 24¢°e (1 + €'%) (6.1.35)

also requires ¢’ = 0 resulting in {( = (, which are compatible with all the BPS
equations. In the following task, we set (, = 0, so the BPS equations can be

written as
¢ = —eP(e*” —1) and A’ = ge ?(3 4 ). (6.1.36)
The analytic solutions can also found as

A = 3p—=In(l—e*), (6.1.37)

4gr = 2tan tef —In(1 —e?) + In(1 + e?). (6.1.38)

Similar to the SO(2) x SO(4) case, the solution is asymptotic to the su-
persymmetric AdS; with ¢ dual to an operator of dimensions A = 1,2. At the

singularity r = 0, the solutions become

¢ ~ In(gr) and A~ 3p ~ 3ln(gr) (6.1.39)
and
@ ~ —In(gr) and A~ —p~In(gr). (6.1.40)
Both of these give
V ~ =247 — —o00, (6.1.41)

so, both singularities are physical which results in the interpretation of a holo-
graphic dual of RG flows from the N = 6 SCF'T to non-conformal phases in the
IR. The flow solution will preserve N = 6 Poincare supersymmetry in three di-
mensions similar to the SO(2) x SO(4) case. However, the flow breaks the SO(6)
R-symmetry to U(3) by the mass deformation of the dual N = 6 SCFT similar to
the SO(2) x SO(4) case.
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6.1.3 Solutions with SO(2) x SO(2) x SO(2) symmetry

We move to a more interesting solution by considering a smaller symmetry of
SO(2) x SO(2) x SO(2) C SO(6) symmetry. The parameterization of the singlet

complex scalars can be explicitly given by

¢rioa Oaxa Oy
paB = | Oax2  P2i0y  Oaxo : (6.1.42)

0252 0252 ¢3i02

with the complex scalars defined similarly as in the previous solutions
Bo = Qo™ a=1,23. (6.1.43)
We find the scalar potential
V = —16¢*[cosh(2¢1) + cosh(2ps) + cosh(2¢3)]. (6.1.44)

It is obvious that the potential admits the critical point at @1 = @2 = @3 =0

which is the supersymmetric N = 6 AdS; vacuum along with the fermion-shift

matrix Sup
Willy  O2x2  O2x2
Sap = % O2x2 Waly  0gyo (6.1.45)
Oaxa  O2x2 Wil
where
W, = %ge—w—s@z—s@s [ei(<1—<2—43)(e2s01 i 1)(e2wz _ 1)(62“"3 _ 1)
— (14 €*)(1 4 €*2)(1 + *9)] . (6.1.46)

W, and W3 are similar to W; with only the phase e*(¢1=¢=¢) replaced by e*(¢2=¢1=¢3)
and e(—0—%) regpectively.

To be able to write these eigenvalues W, as the superpotential in term of
which the scalar potential () can be written, we need the condition that
(1 = (3 = (3 = 0. This is also implied by the consistency of the field’s equations
given from the Lagrangian

e L = %6—4(991-&-902-&-903)(_6—4(902-&-%03)(_1 + 64<P1)2G2 _ 64@1(64993(—1 + 64902)2%2—1—

' ((—1+ €%%)°CF + 16" (O + o + ¢5))))  (6.1.47)
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In the following, we set ¢; = ¢, = (3 = 0, which results in ¢** = £1, and the set

of BPS equations can be written as

<P/1 = —ge viTweTes [62(<p1+302) + e2(p1tes) _ 2(pates) 1]7 (6.1.48)
90/2 = —ge LTz [62(<m+502) + e2(pates) _ 2(p1tes) 1]7 (6.1.49)
@y, = —ge PP [62(<P1+<P3) + e2pates) _ p2erter) 1], (6.1.50)
A = gemwrTermes[lerten) o 2ertes) o 2eates) 4 (6.1.51)

Nevertheless, we find the analytic solutions by writing the linear combination of

these equations as
90/1 + 90/2 = —Qge P17V (62(901+s02) —1). (6.1.52)

we further transform to a new radial coordinate p given by

2 o Seas
7 6.1.53
dr € ( )
and obtain a first solution as
1
P2 =20p— 1~ 5 In(e*9” + Cs) (6.1.54)

with C5 being a constant for ¢y solution.
We follow the same strategy to find other solutions by substituting the (o

solution, in the combination ¢/ + ¢5. We get
1
w3 =2g9p — p1 — 5 In(e9” + Cs). (6.1.55)

After that, the ¢ solution can be obtain by inserting ;1 and s in (6.1.48)

1 €4gp(e4gp + Cl)
=-1 . 6.1.56
1 4“(&u{@@w+@ﬂ (6.1.56)
Finally, we are able to evaluate the solution for A given by
1 4 1 4 1 4
A=gp+ 1 In(e™” 4+ Cy) + 1 In(e™” + Cy) + 1 In(e™” + C3). (6.1.57)

We therefore are able to consider the behavior of the solutions as ¢, ~ 0

resulting in p ~ r and

1 1
o1~ 1(01—02—03)6_4‘(”77 P2,3 ~ —1(01—03,2)6_4gp, A ~4gp. (6.1.58)
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This is the kind of what we expect because the solutions are asymptotic to the
supersymmetric AdS; vacuum. Similar to the previous cases, the singularity of
the solutions occurs as 4gp — In(—C,) which can be categorized as the follows.

For C} # Cy # Cj3, there are three possibilities:

« For C} > Cy 3, the singularity occurs as 4gp — In(—C}) with
1 . .
Y1 ~ Z_l ln(4gp — Cl)a Cl = ln(—Cl),

P23~ —p1, A~ (6.1.59)

e For CQ > 0173 or Cg > Cl’g, we find that

1 ~ ~
1 ~ —4—1 ln(4gp - 0273), C’2,3 = 1n<_02,3>7

P2,3 ~ P1, Ar~—pr. (6.1.60)

In the first scenario, we find ¢; = —o00 and ¢33 — oo while in the second scenario,
the solution gives ¢y 23 — co. All of these behaviors lead to V' — —oo. Therefore,
the singularities are physically acceptable, so the set of fully preserved N = 6
Poincare supersymmetric solution describes different types of mass deformations
within the dual N = 6 SCFT to non-conformal phases with SO(2) x SO(2) x SO(2)

symmetry.

6.1.4 Solutions with SO(3) symmetry

As a final RG flow solution, we consider solutions with a residual symmetry of
SO(3) C SO(3) x SO(3) C SO(6) generated by the Asy3 antisymmetric matrices
in the upper-left block of () There are three singlet scalar written as

Oz¢3 O
bap=| ° (6.1.61)
Osx3  Asxs
with
0 ¢1 ¢2
A=| -4 0o & | (6.1.62)

¢ —¢3 0
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For convenience, we set the three singlet scalars ¢, = ©Pu€e to the form
o1 = dcosb, o = P sinf cos v, w3 = Psinfsin (6.1.63)

and
1 =¢, G =(+mn, G=(0+¢. (6.1.64)

We find the scalar potential

V = —g*[16cos' 6(2 4 cosh 2®) + 16 cosh* § sin® §(2 + cosh 2)
+16sin* @ sin* (2 + cosh 2®) — cos? § sin? § cos® ¥ x
(cosh4® — 8 cos 2nsinh? ® — 36 cosh 2® — 61) + sin® fsin® 9 x
8 sinh* ®(cos® f cos 2€ + cos® ¥ sin® 0 cos[2(n — £)])

+(61 + 36 cosh 2@ — cosh 4®)(cos” f + cos® ¥ sin® §)]] . (6.1.65)

In the present case, the scalar potential explicitly depends on the phases of
the complex scalars, so the analysis would be more complicated. In order that
the calculation is more practical, we will truncate away a singlet scalar <53 =0
which is equivalent to setting ¥ = 0 and € = —(. We find the eigenvalues of the
diagonalized fermion-shift matrix Sxp
5928 — diag(—2g cosh @4, %W+, %W) (6.1.66)

where we write W4 for

P
Wi = 2g(cos2n+ 2sinn)sinh? . (cos 40 sinn + i sin 20)

1
_19(3 + 12 cosh @ + cosh 2®) (6.1.67)

and the corresponding eigenvectors are

1
€L = — 5 sec 20 <2 cosn sin 26 F \/3 + cos 2 + 2 cos 46 sin? 77) : (6.1.68)
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To further do the calculation, we write the Lagrangian of scalar kinetic term

as
S = —5Cagt™ 9"
= —@? —sinh? ®Y? — i sinh? 29¢"? — % sin? @ sinh? 28¢"n’
—i sin® § sinh? (3 + cosh 2& — 2 cos 26 sinh? @), (6.1.69)

with ¢* = (0,0, (,n). It is very useful to state the inverse of G,z

1 0 0 0
1 0 csch?® 0 0
G == . (6.1.70)
2( o 0 —sech?® + csch?® sec?  —csch?® sec? 0
0 0 —csch®® sec? 4csc?26csch®

The scalar potential can be obtained from the real superpotential W = |[W, | =

(W_| as

ow ow
V = —2G¥_— "/ 3W?
0 0P
= ¢° [cos2 0 sin® g (cosh 4® — 8 cos 2nsinh* ® — 36 cosh 20 — 61)
—4(3 4 cos40)(2 + cosh 29)] . (6.1.71)
By setting e?3* = 0 along with the projection conditions
. : W
yrey = eFhet with LEE— Wi’ (6.1.72)

we find the BPS equation as follows

P = ﬁgg 8 sinh® ® cosh ®(cos 21 + 2 cos 40 sin® ) — 30sin 2¢ — sinh 49]
(6.1.73)
0 = —%92 sin® 7 sin 40 sinh® ®, (6.1.74)
¢ = %92 sin 27 sin® # sinh? @, (6.1.75)
n = —%92 sin 2n sinh? ®, (6.1.76)

A = W, (6.1.77)
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These equations can be written in a more compact form as

oW
al afs
6 =265 (6.1.78)

It is straightforward to show that the BPS equations satisfy the second-order
equations resulting from the Lagrangian given above. We can see from these equa-
tions that there exists only one supersymmetric critical point, at ' = ¢ = (' =
n' =0, with ¢* = 0.

We also mention that even though the superpotential and the scalar poten-
tial do not depend on (, ¢’ does not vanish anyway because of the existence of
the mixed terms between ¢ and 7 in the matrix G,3. Furthermore, we can further
truncate away some scalars. For example, once we set 1 = 0 or § = 0, we find the
BPS equations in the case of N = 6 supersymmetry with all the six eigenvalues
of Sap leading to

W =4gcosh®. (6.1.79)

This is similar to the case of N = 5 gauged supergravity [31] in which the exis-
tence of the differences in the phases of the scalars play an important role in the
supersymmetry breaking to lower supersymmetry.
We now look at the BPS solutions to the equations by combining 7" and ',
so we get
df

1
s Zsin49tann (6.1.80)

The corresponding solution is given by
cot 20 = C cosn. (6.1.81)

By doing similar strategy, combining ¢’ and 7/, we get

d
d—g = —sin?6. (6.1.82)

Along with the previous solution of €, we find the solution for ( as

\/C? + sec? n cosn tan? ___V2Cising__

24+C%(14-cos 2n)
V4 + 202(1 + cos 2n)

n

C=(— 2 + (6.1.83)
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where (j is constant.
We then combine & and 7’ equations by using all the previous solutions

with the change of variable

® =sinh ® (6.1.84)
and find . .
dd ~ ® tan’n 2
— =cs2n(1+ ) [ —m— + = |. 6.1.85
dn ese2n(l+ ) (C’f+sec277+ cI)> ( )

The solution is written as

P2 1+ C?cos® n — Cyy/(1 4 cos 2n)(2 + C3(1 + cos 2n)) (6.1.86)

4 34 4C% cos2 ) + cos 2 — 4Cs+/(1 + cos 2n)(2 + C(1 + cos 27))

By taking into an account all the previous results in 7/, we eventually find

the solution for n(r) written implicitly as

—
= 1
=

8gr = sinh! [2C
gro= s 2\/(1+012>[2+(Cf—40§)(1+z)]
1+C2—4C2)(1+=
—tanh—l\/( B | :_012)( +=) (6.1.87)
where we write
= =cos2n. (6.1.88)

The final solution of A(Z) can be found as

2+1
205 | —————
2\/2+O§(1+E)

1
-3 [4CT(1+E)*+ (B+E)* —4(1 + E)[8C; + CT(4C5(1 + E) — 3 — Z)]]

1 1
A = Z(tanh_l oy —tanh™ta_) — 5 tanh ™!

% In[2 + (14 Z)(C? — 4C2)] (6.1.89)

where a4 given by

2 =
R 2+G(1+2) (6.1.90)

(1+2) [1 + O — ACH (20, + £4/ACE — CF — 1)} '
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The solution preserves N = 2 supersymmetry and breaks SO(6) R-symmetry
to SO(3). The singularity of the solution occurs when

1
cos’n = — (6.1.91)
14 20% —8C2 +4Cy\/4C% — C? — 1
This results in ® — +00 or & — +o00 leading to
V — ¢%e*® cos? 0 sin® nsin? 6 . (6.1.92)

It is obvious that the scalar potential is unbounded as by V' — 400, so the IR
singularities of the N = 2 solutions are unphysical. However, if § = 0 or n = 0,

the solution becomes the N = 6 solution as mentioned above and are physical.

6.2 Supersymmetric Janus solutions

Supersymmetric Janus solution is another form of the solution of gauged super-

gravity where the metric takes the form of AdSs-sliced domain wall
ds® = A7 (—df + da?) + de?} + dr”. (6.2.1)

We can use the supersymmetric Janus solution to explain the defect in conformal
field theory which allows us to study the structure and the dynamics of conformal
field theory. In the limit { — 400, we would get the original domain wall spacetime

of the form

ds? = A0 (—dt? + da® + dE?) + dr?

(6.2.2)
= eQA(T)an:c“d:c” + dr?.
The vielbeins read
eft = eA(r)Jr%dx“,
ef = e de, (6.2.3)

e’ =dr
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with the non-vanishing spin connection

’

W™ = A'(r)eh,

Wi = le_Ae’l (6.2.4)

wt = A'ef,
We can consider the variation of the gravitino 614, = 0 along the direction of

nw=0,1

6ua = Dyea — Sapy.e”

1
= 8M€A + Z—lwuab"ya’}/bGA — SAB’}/MEB (625)
1/ . s
=3 (wﬂ“ Ve + wﬂ“%@ — Sapyee”
where we use {va,7;} = 0, for a # b. We obtain
1
Alyzea + ZG_A%”GA —Wet = 0. (6.2.6)
This equation leads to
1
A%y 6—26*“ = W? (6.2.7)

where W = |W)| is the absolute value of eigenvalue of fermion-shift matrix Sap.

Moreover, we also impose an additional projection condition as
Yeea = inee? (6.2.8)

where we have xk? = 1 implying x = 41 which defines the chirality of the Killing
spinors on the two-dimensional defects. Therefore, the two projection conditions

in supersymmetric Janus solutions read

A _A
V€A = e'e )

Yeea = ine e,

These projection conditions also lead to the phase factor

, A ke
i\
==+ ——". 6.2.9
wrTwW (6.29)
If the eigenvalue of W is real, then
, W
e (6.2.10)

A+ %‘e—""
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We can also consider the variation of gravitino along the direction of £ which reads

1 PE
0ey = Ogea + o%e 6%75 - SAB’YgGB

1
= e 0cen + 3 <A/’77:’7§:€A — W756A>

] (6.2.11)
= e_AageA — ﬂe_AeA
= 0.
We then obtain the Killing spinors as
ex = ediey(r) (6.2.12)

where €4 depends only on r. In the supersymmetric Janus case, we can finally

look at the variation of the gravitino in the radial direction
04, =0
=V,€a — SaVu€B
N on %WWA (6.2.13)
= 20,64 — AI’}/f«GA
=P AT~ i;e_AsA
where we have used (m), (m), and the projection conditions. Then, we

obtain the solution of Killing spinors in case of supersymmetric Janus solution as
es = e2tartizeld (6.2.14)

where e(f)

is constant Killing spinor satisfying the projection conditions and we
can see that e4 is in different representations can have different phase factor e?.
If we take £ — oo, we would obtain the domain wall scenario. Finally, one can
also look at dx 4, and dxapc, and it turns out that they are the same as the case
of the supersymmetric domain wall. As a result, one could obtain the same form
of Killing spinors equations and, we can proceed by a similar analysis with the

redefinition of phase factor in ()

It turns out that in the previous singlet scalars there are only SO(2) X
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SO(4) and SO(3) case which can possess supersymmetric Janus solutions because
of the non-vanishing pseudoscalars. For SO(3) case, the analysis is extremely
complicated as we have already seen in the RG flow solution. Therefore, we will
only consider supersymmetric Janus solution with SO(2) x SO(4) symmetry which

is more traceable and can be analytically calculated.

6.2.1 Janus solutions with SO(2) x SO(4) symmetry

In this case, we have a real superpotential

W = 4¢g cosh ¢, (6.2.15)

so we will use the definition of the phase e’ of the form () We note
that €5? and e with A = 3,4,5,6 transform differently under SO(2) x SO(4) as
(2,1)+(1,4), so they satisfy different projection conditions. We further find that

1.2 and €9,

the consistency of BPS equations require k = 1 and x = —1 for €
respectively. Therefore, the surface detect preserves N = (2,4) or N = (4,2)
superconformal symmetry.

The BPS equations are given by

8g2(2 A'e* sinh(2¢p)
e (6.2.16)
16g%kle?
¢ = 14 2ARe2A (6.2.17)
A2 164 cost? 6.2.18
7 = 1697 cosh™o. (6.2.18)

We also note that for £ — oo, these equations reduce to the equations of RG
flow studied in the case of domain wall solutions.

To find the solution, we take ¢ as an independent variable, so we can evaluate

A(p) and ((p) given by

A = (C —lInsinhy, (6.2.19)
32¢%0% tanh?[4g(r — r¢)]
h(2 = 2.2
cosh(2¢) 160202 — 1 ) (6.2.20)

ktan( = —y/1— 16¢2¢?sinh[4g(r — ro)] (6.2.21)
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where C' and ry are constant. We note that these solutions are similar to those in
N = 8, 5,3 gauged supergravities, see [32], [33] and [31] .

We also mention that the unbroken supersymmetries on the conformal de-
fects in these cases are N = (4,4), N = (4,1) and N = (2,1). All of these
solutions should be related by the consistent truncations of the maximal N = 8
gauged supergravity to N = 3 and N = 5,6 theories. Thanks to the AdS/CFT
correspondence, we expect that the dual N = 3,5,6 SCFTs possess the same two-
dimensional conformal defect as in the N =8 SCFT.

Finally, we also comment on the possible SO(3) symmetric Janus solution
due to the complicated analysis. By doing partial analysis, it turns out that the
BPS equations for Janus solutions being very similar to the case of N =5 theory
in [B1]. Therefore, we expect that N = 6 gauged supergravity should also give a

supersymmetric N = 2 Janus solution with SO(3) symmetry.

6.3 Supersymmetric AdS black holes

In this section, we will study the supersymmetric AdS, black hole by considering
solutions interpolating between AdS, and AdS, x ¥? geometries. The AdS, de-
scribes the asymptotic spacetime at a large distance from the black hole and the
AdS, x Y2 governs the near horizon geometries with ¥ being a two-dimensional
Riemann surface.

We can write down the metric ansatz as
ds? = —eX M dt? + dr? + 27 (df? + F(0)%dp?). (6.3.1)
The metric on X2 takes the form of two-sphere S? and hyperbolic H?, with

sing, if X2 = 52
F(0) =
sinh @, if ¥? = H%
As mentioned above, we are interested in the asymptotic anti-de Sitter space, so

a result one should expect at large distance limit » — oo is given by

f=h— (6.3.2)
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with L being AdS, radius. Moreover, in order that the solution approaches an
supersymmetric AdS, x Y2 fixed point at near horizon limit r — —oo, we require

the boundary condition as

1
o — 0, h'—0, and f — : (6.3.3)
L aas,
with [ indicates the number of scalars.
We can also write down the vielbein as
e = efdt, e’ =d, (6.3.4)
! =ehdy, e = IF(9)do. (6.3.5)
The non-vanishing components of spin connection are
W = fi(r)e, W =1 (r)é, (6.3.6)
A 5 F'(0 ;
w? = h'(r)e?, Wl = ( )e_he¢. (6.3.7)

To further consider the BPS equations of supersymmetric AdS, black hole solu-

tions, we first consider the supersymmetry variation of the 01,4 given by
1 -
5@%,4 = ®u€A = SAB’YNEB - 4_\/§FP—ZAB’}//M€B (638)
along the direction of )

J—
0:. =Dres — Wry0age® — —F7 po B
wqﬁA HtA 7¢ AB 4\/5 pcrAny

1 4 1 4 1 1 1 -

— ., T . - A9¢ . -n .B - LAt po., B
1Y% Vgr€a + 59 Vogea + 2Q¢A €B 2W7¢e 4\/§FMA37 Vg€
1F _ 1 1 1 1 - .

=57 "Yog + S vgrea+ EQQMBEB - §W’V¢;€A - 4—\/§F,;ZAB’Yp vge”.

(6.3.9)

In general, the existence of Riemannian surface $? on the world-volume of the
domain wall will break supersymmetries. However, there is a method called the
topological twist that will preserve some amount of supersymmetry. To preserve
such supersymmetries, we need to turn on gauge fields along 32 written in term of
gauge connection, which enters the covariant derivative of €4 through the compos-

ite connection Q £. To cancel the spin connection w9 with the gauge connection
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in 0v 44, We write the four-dimensions gauge field ansatz as

A™ = APdt — p™ F'(0)dg
R (6.3.10)

A" = Adt — e, F'(0)d¢
where p™ and e,, denote magnetic and electric charges of the black holes. If
magnetic and electric charges are present the solution is called dyonic solution,
however, we are interested in only the presence of magnetic charge corresponding

to the absence of e,,, A}, and A;. We can also write the gauge fields in term of

gauge generators as

A= (=p"F(0))(T,n)" (6.3.11)
= (—pm%e"‘eé)(Tm)U. (6.3.12)

In this work, we focus on only solutions with SO(2) x SO(2) x SO(2) and
a truncated SO(2) of SO(2) x SO(2) x SO(2) twists. We first consider SO(2) x
SO(2) x SO(2) with the following gauge field ansatz

AP = —p F'(0)dg, A =-—pF'(0)dp, A =—p3F'(0)dp. (6.3.13)

where p;, 1 = 1,2, 3, are magnetic charges with the corresponding field strengths

given by

F'2 = kp F(0)dO A do, F3* = kpy F(0)dO A do, F = kps F(0)dO A dg .
(6.3.14)

We define a parameter x with x = 1, —1 for X2 being S? or H?, respectively.
Note that F"(0) = —xF(0).
For N = 6, with SO(6) gauging, we have

—JKCD>

: — €D
Qriap’ = —4i (fABJKh]K + hagik f (6.3.15)

and

1 op”
Qria® = ZQIJACBC - f_OQ[JCDDC (6.3.16)
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for SO(2) x SO(2) x SO(2) subgroup of gauge group of SO(6), the composite

connection are given by

Q(Z)AB - = _gAMAQAAB
1
= _§gAMIJQIJAB
Al2 (6.3.17)
@
= 2gioy ® Az‘l

56

4
We find that the spin connection w? can be cancelled by the following topological

twist
=S¢ Vesea + qu;A €B. (6.3.18)

As a result, we find the following projector

0

Yos€a = (to9 ® ]I3)AB€B (6.3.19)
with the twist condition

2gp1 = 29p2 = 2gp3 = 1. (6.3.20)

We have p; = ps = p3. The twist can be obtained from the diagonal sub-
group SO(2)dgiag C SO(2) x SO(2) x SO(2) similar to pure N = 4 and N =5
gauged supergravities investigated in [b8] and [B1], respectively. Moreover, it
appears that in the case of SO(2) x SO(2) x SO(2), we need to turn on the
SO(2) ~ U(1) gauge field of U(6) ~ SU(6) x U(1) to find the consistent BPS
equation. Similarly, we define the ansatz of the U(1) gauge field as

A® = —poF(0)d¢ and FO = +kpodd A ¢ (6.3.21)

We note that both A° and A!/ appear in the BPS equation because of the off-
diagonal element of the scalar coset representative. In particular, we can write

the relations
~ 1
Fip = haapF ™ = hoapF*° + §hIJ,ABF+[J, (6.3.22)

, 1
FY = hpoF™ = hog FT0 + §h1J0F+I‘]. (6.3.23)
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We now consider the relation among F!7, F*1/ and P17 by considering the field

strengths

F7 = kpF(0)do A dé

= kpF(0) (Z—i A #ﬁeh) (6.3.24)

so, the components read
F;2 = Fp5 = F;9 = rpe™™". (6.3.25)

By using the definition of the complex self-dual and anti-self-dual gauge field

strengths

1 .
B (F" + 26WWFA"") (6.3.26)

we find that there are two non-vanishing tangent spacetime components of

1 )
Fg{;] 2 <F+IJ i _€9¢pUF+IJpU)

2
L pins 6.3.27
= S F ( )
1
= E/fpe_%
and
1 :
FHT 5 (F’t-i-IJ 4 ; tr9¢F+IJ9¢>
ING (DRN-UNIVERS (6.3.28)
4
_ %/ﬁ;pe_%
so, we obtain
F:h12 — Ft34 F+56 lfipe 2h
2
+12 +34 456 _ L _op (6.3.29)
F2=F"""=F""=—rpe .

tr 9
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Return to the BPS equation resulting from 61 34 = 0, we now have

1F 1 1 - .
0hyq = 2 ¢ "Yog + 2h/’7¢r€A + Q¢A €5 — §W7¢3€A - 4—\/§Fp+gAB’7p V€ et
1 ” o
= §h"Y¢;%6A - §W’Y¢3€A - 4_\/§Fp—t_7AB7p g€’
1 / 1 A 1 o+ tF B
- §h TgEeA T §W7<136 NG (FEfA37 Vg T Ey: ¢>AB7 7¢>
1 .., 1 .
= 5}1’7{;7;@; - §W’Y¢;€ + mvd) (Fé;;AC - ZF;FAO) (iog @ 13)% ge
1 1 1
= 517/’7(;5%% - QW’Y(Q,EA 5 %7364
= h'ypeq — Wet — Zea
= (h'eiA - W — Z) e
(6.3.30)
We also note that we have the definition of €4 6 = 1 and 564 = —€4 and

the projection conditions, defined in(), and the twist condition implying
ey = —w Py (0, @13)a €5 (6.3.31)
We also define the “central charge” matrix as

1 .
ZAB N \/§(F9§>AC TS ZF()JrAc)(ZO-Z ® H3>CB . (6332)

In the present case, the central charge Z g is proportional to the identity matrix
as

Zap = 204B. (6.3.33)
We find a BPS equation resulting from 61, as
e =W -2 =0 (6.3.34)

which gives
W+ Z

W =+W+2 d R Ly 6.3.35
W2l and =gt (6:3.3)
Then, we consider dv;, =0
1 1 1
5¢9A = Z—lwéuy’yuy’)/éﬁA — §W€A — 52;’7@614
(6.3.36)

= (he™ — 2 — W)et
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which gives the same BPS equation as 51/)(;5 4~ Moreover, we can also look at

;4 = 0 as follows

1 1 1 1 £ .
0Yiq = §f/%f + 5@&1363 - §%GA - 2\@ <F9J;AC F,;AC) (iog @ I3)C ye?

(f/ 1A+2igAleiA_W+Z) 6B
(6.3.37)

With the previous BPS equations, we obtain
f'=Rele™W—-2)] and  2¢4; = Im[e (W - 2)]. (6.3.38)
The latter fixes the time component of the gauge fields. Finally, we can look at
0Yra = 0 given as
0pg = Op€pg — %We_iAeA + %Ze_iAeA

1 : .
—Ores — 3 (f’e”A) e ey (6.3.39)

'\
= 0r€4 — §f ‘€A
We then get r-dependence of the Killing spinors

I
2

€4 = €2€4(0) (6.3.40)

which is similar to the case of domain walls and Janus solutions. To complete the

consistent set of the BPS equations, we will consider dxapc = 0 and dya =0

dXaBc = — MABCDVMED + NDABCGD = 2_\/§7WF;:/[AB€C]
R 3
= —Prapopy €’ + NPpoen — ﬂ(_@F+ + F )[AB(W2 ® I3)c) Pep

: 3 o ~ .
= (—PfABCDeZA + NDABC - E(—ZF;TT < Fe?;)[AB(wg ® ]Ig)C]D) €D

(6.3.41)
and
1 1 -
oxA = _EEABCDEFP BOPEyiel 4 N jep — ﬁFLVWEA
1

1
= __GABCDEFP BCDE’)/TEF + N AEF — —(—ZF’Jr + F+)(’i02 & Hg)AFEF

4! V2

1 1
= (_EEABCDEFP BCDE 1A+NF - E(—ZF++F+>(202®H3> F> Ep.

(6.3.42)
With these equations, we can find the BPS equations of scalar fields.
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6.3.1 Solutions with SO(2) x SO(2) x SO(2) twist

We start the supersymmetric black hole solution with the case of non-vanishing
p;- In this case, the topological twists allow the full N = 6 supersymmetry corre-
sponding to non-vanishing of e*, A =1,2,...,6. Similar to the RG flow analysis,
the consistency of the BPS equations coming from d¢p4 = 0 and dxa, dxanc

require

G=G6=¢=0 (6.3.43)
po = Kpi (6.3.44)

respectively, and the former result in real W and Z giving e* = +1.

We note that, in this scenario, the condition of py = 0 will break all super-
symmetry. This indicates that the SO(2) x SO(2) x SO(2) twist goes together
with the U(1) gauge field A9,
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With all of these, we find the set of consistent BPS equations written as

;0w +Z
. dpr
_ %6—601—902—903 [29(1 + 62(5024-903) _ 62(<p1+¢2) i 62(%-’_903))

—p1ke
oW + 2

/ —
S02 8('02 )

—2h+2<p1+2902+§03} 7 (6.3.45)

_plﬁe—2h+2<p1+2tp2+§03} 7 (6.3.46)
o= _IW + 2|
3 dps
1

— 56—501—@2—503 [29(1 _ 2pates) 4 2prtea) 62(<P1+503))

—pike

o= W+ 2Z]
_ 16—301—902—903 [29(1 == e2(p2tp3) 4+ e2(p1+¢2) + 62(<P1+<P3))
2

4y ﬁ6_2h+2¢1+2¢2+¢v3} ) (6.3.48)

—2h+2p1 +2g02+303}

: (6.3.47)

o= -

- 16—501—902—% [29(1 = e2(p2+ps) + e2(p1t+e2) + 62(‘P1+SD3)>
2

_p1ﬁ€—2h+2901+2§02+903} : (6349)

For the existence of an AdS, x 222 fixed point, we need ¢} = ¢} = @4 = b’ = 0 and

/
f ~ L aas,

anyAdSy x Y2 fixed points.

as r — —oo. However, the BPS equations given above do not admit

Despite of the lack of supersymmetric AdS, x X2 fixed point, we still can
find the analytic solutions to these BPS equations which may be useful for some
holographic studies. By the change of the variable of p using %ﬁ = e, we find

the linear combinations

(p1—p2) = 2g9(e”77 —e”7%?) (6.3.50)

@
(2 —p3) = 2g(efr 92 — ePriva—2es) (6.3.51)

i
dp
d
and d_p
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The former equation can be solved analytically with the solution given by

e¥2 (649p + e4gpo>
¢1 = In { prrR—r (6.3.52)
with py being constant. By using this solution in the latter, we find
P3—29p (49 __ o490
oy —1n | S ) (6.3.53)
\/€49° + edaro 4 8gC

with again C' being constant.
Assume that f and h are the function of (3, we find the solutions for f and

h as

1 ~ ~ 1 89(p—po) t g ('et9p—89r0
f= —3n [&WO (2569300—1690689p0+/{p1 h{ re T ogte D

e89(p—po) — 1
—8¢gCkp; tanh ™! 649("7’”0)} + h, (6.3.54)

1+ e89(p—po) 4 8906499—8900
e89(p—po) — 1

1 _
h = 5 In {649”) (1696’(689p° —16¢%C?*) — kp; In {

1 1 [6129;)0(1 _ e89(;}*/)0))2

—1 ,49(p—po) C
+ 8gCkp; tanh™ " e } + Sg(chom — 1642C7)

5 10 } + 3 — 4gp (6.3.55)

Finally, the solution of ¢3(p) can be written as

(6.3.56)

et9lpo—p) 4 1
4C)e*9P (89P0 4 e39P 1 8gCe*?) = By+ Biln [ }

edalpo—p) — 1
eBalp—po) _ 1
1 + eBalp=ro) 8906494

+32 In {

with Cy being a constant, and the coefficients Sy, f; and (3, are defined in term of

w3(p) by

By = —16gé’e4p0(16C’gQ — B9r) [264303+8g(p+po) + 8gce4gp(689p + e89r0)

(€890 4 o1099Y(1 _ (hen | 2€8g(p+po)] ’ (6.3.57)

_ kP1 12gp 49(p+2p0) 8gp 43
b = 2(6499 + e49(3p—2p0) 4 809689(p—po)) [e te +4Cge (3 te )

+169202€4gp(1 + GBQ(P*PO)) _ 20{](64% _ 1)(6851,00 + 68g(2p7p0)):| 7 (6.3.58)
Kkp1[(e39P0 + €89° 4 8C get9r)? — eles (89P0 — 890)2]

ﬁQ = 4649(9_90)(689p0 + 689p + 8Cg64gp> . (6359)

Because the solution does not permit any AdS; x Y2 fixed point in the IR, the

solution describes a flow from the locally supersymmetric AdS; vacuum to a curved
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domain wall with world-volume R x 2. Thanks to the AdS/CFT correspondence,
the solution is thought to govern an RG flow from the N = 6 SCFT in three
dimensions to a supersymmetric quantum mechanics in the IR resulting from a

twisted compactification on ¥2.

6.3.2 Solutions with SO(2) twist

We now look at a possible truncation of the previous result so that we can have
a AdSy x X2 fixed point. The strategy is to set p; = p3 = 0 and @, = @3 = 0.
Therefore, we obtain a solution preserving SO(2) x SO(4) symmetry with the twist
performed along the SO(2) factor, and the supersymmetry is unbroken with only

e52. With the condition given above, and €% = 0, we find the BPS equations

¢ = le —2h=218¢ge® — po + kpy — €22 (8ge*" + po + Kkp1)], (6.3.60)

W= ie_gh_“o[fige?h — po + kp1 + €29(8ge* + po + kp1)],  (6.3.61)

= i —2h=¢18ge*h 1 py — kpy + €27(8ge*" — py — Kp1)] (6.3.62)
where 1 = .

We note that with only the SO(2) twist, there is no need to set py = kp;.
Nevertheless, to obtain an AdS, x X2 fixed point, we require the vanishing of py.

The corresponding AdS; x %2 fixed point give

1 Kp1 1
= h=-1 P ) L = — 0.
v = ‘o o [ 8¢ } ’ 5% 8¢ cosh 2 (6.3.63)

where g is a constant. Moreover, for the possible value of h, it requires that
k = —1 which means that this fixed point is an AdS,; x H? fixed point.
Finally, we give the flow solution by the similar method as in the previous

calculation as
h = ¢—1In(l—e*)+C, (6.3.64)

f = h—2¢p+n[kp(1+e*) +2e*(dg — rp1)],  (6.3.65)
2g 4g + kp1(e** — 1)
Kp1 — 29 2v/29(kp1 — 29)

o [0 %) £ 26249 — )
(1 — e2¢)2

89(p—po) = 2

(6.3.66)
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with a new radial coordinate p defined by% = e¥. Besides, we omit the integral
constant of f by rescaling time coordinate ¢ to absorb such a constant.

At large distance limit of r ~ p — oo, we find
0~ e T h ~ f~4gr (6.3.67)

being an asymptotically locally AdS, critical point. Moreover, with near horizon
limit, where ¢y = %ln (1 -2 —5—;) and C' = —¢y, we find ¢ — ¢y and the

following result

1—./—
1
he o {—Z—I;] and  f ~ Sgr (6.3.68)

These solutions reinforce that the solution admits AdS,; x H? fixed point.

6.3.3 U(3) symmetric solutions

Finally, we study U(3) symmetric solutions with a twist performed along the
SO(2) ~ U(1) factor. The gauge generator of the U(1) factor can be written as

X4+ Xo5 + X36. As a result, we just turn on the following gauge fields
A =AY = A% = A% = A(r)dt — kpF'(0)dé. (6.3.69)

where the singlet scalar of U(3) given in (), we find the composite connection
as

Qa” =2giA(l; ® ioy). (6.3.70)

The twist condition results in
Vo5€a = (iog ® I[g)ABeB and 29p =1 (6.3.71)

We note that, similar to the case of SO(2) x SO(2) x SO(2) twist, all of the

Killing spinor €4 are non-vanishing. Besides, we also need non-vanishing A° using

the ansatz () In this case, consistency requires py = —Kp.
Similar to the RG flows, in order to have the consistency between the BPS
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equations and the field equations, we set ¢ = 0. As a result, we obtain A(r) = 0,

and the BPS equations given by

. 1 .
¢ = gle™? —e) + §/<epe_2h_‘w, (6.3.72)
1
o= g(3e7? 4 &) + §ﬁp6_2h_3‘p, (6.3.73)
1
¢ = g(3e ¥4 ¢e*) — §/<;pe*2h*3¢. (6.3.74)

It is obviously that there is no AdS, x X2 fixed point in this case. Moreover, we

also cannot obtain the analytic flow solution.



CHAPTER VII

Conclusions and comments

In this thesis, we have studied four-dimensional N = 6 gauged supergravity with
SO(6) gauge group resulting from a consistent truncation of the maximal N = 8
theory with SO(8) gauge group. The N = 6 gauged theory admits a unique N = 6
supersymmetric AdSy vacuum preserving the full SO(6) gauge symmetry, which
can be explicitly identified with AdS; x C'P? geometry in type ITA theory dual to a
three-dimensional N = 6 SCFT. We have found several holographic solutions with
various symmetries governing the RG flows from this N = 6 SCFT to possible non-
conformal phases in the IR. In particular, there is the solution with SO(2) x SO(4)
symmetry in which the SO(6) R-symmetry are broken with unbroken N = 6
Poincare supersymmetry. This precisely coincides with the field theory result on
mass deformations of N = 6 SCETs given in [16]. We also found other solutions,
breaking the SO(6) R-symmetry to U(3), SO(3) and SO(2) x SO(2) x SO(2)
symmetries. While most of the solutions preserve N = 6 supersymmetry, the
solution with SO(3) symmetry possibly beaks N = 6 to N = 2 supersymmetry.
We found all analytic solutions, however, the N = 2 solution gives non-physical
IR singularities by the criterion given in [57].

We have also generalized the flat domain walls to the curved ones, AdSs-
sliced domain walls. We have found a supersymmetric Janus solution, which
describes a two-dimensional conformal defect within the N = 6 SCFT, with
SO(2) x SO(4) symmetry and N = (2,4) supersymmetry on the defect. The
solution has the similar form as those in N =8, N =5 and N = 3 gauged super-
gravities, [32], [B1] and [33] respectively. Therefore, we argue that these solutions

can be related to the N = 8 solution by consistent truncations. For Janus solu-
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tions to exist, it is indispensable that there must exist non-vanishing pseudoscalars
pointed out in [32]. As a result, among the remaining cases, only the SO(3) in-
variant sector possibly admits supersymmetric Janus solutions.

Moreover, we have also studied supersymmetric solutions of the form AdSs x
¥:2 together with solutions interpolating between these geometries and the N = 6
AdS, vacuum. We found one AdS; x H? fixed point with SO(2) x SO(4) sym-
metry from SO(2) twist. The solution interpolating between this fixed point and
the AdS, vacuum preserves two supercharges while the IR fixed point AdS, x H?
has four supercharges. Holographically, this solution describes an RG flow from
the N = 6 SCFT to superconformal quantum mechanics which is useful in the
entropy computation of black hole [47-49].

For SO(2) x SO(2) x SO(2) twist, the BPS equations are more complicated
but admit no AdS, x ¥? fixed point. However, we could find the flow solution
between the AdS, critical point to a curved domain wall with world-volume R x %2
in the IR. The solution preserves N = 6 supersymmetry in three dimensions, or
twelve supercharges, and SO(2) x SO(2) x SO(2) symmetry, which should be dual
to a twisted compactification on 32 of the UV N = 6 SCFT to a supersymmetric
quantum mechanics in the IR. Besides, we have also considered an SO(2) ~ U(1)
twist in the case of U(3) symmetric solutions, and the corresponding AdS, x X2
geometries, however there exist no AdS, x %2 fixed points.

We hope that these analytic solutions could be useful in the study of gauge/
gravity holography and other related aspects. Since this is the only first-step in
classifying supersymmetric solutions of N = 6 gauged supergravity, there are some
directions we can further investigate. It would be very interesting to uplift the RG
flow solutions to M-theory via the embedding in N = 8 gauged supergravity which
can be obtained from a consistent truncation of M-theory on S7. This would lead
to a complete holographic description of mass deformations of N = 6 CSM theory
and possible related M-brane configurations.

In this work, we have only considered gauged supergravity with SO(6) gauge
group which is electrically embedded in the global SO*(12) symmetry. It would be
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interesting to study magnetic and dyonic gaugings involving also magnetic gauge

fields.
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APPENDIX A

Group

Symmetry is a transformation that leaves physical quantities invariant. Symme-
tries play a very crucial role in physics because a certain physical theory is usually
based on a certain set of symmetry called a symmetry group. The symmetry
group is the study of the structure between elements of the symmetry group and
the operation among themselves denoted by (G,0). A certain group represents
a particular structure, [101-104]. Symmetry group is a group, so it must satisfy

group axioms.

1. Closure : The operation between group elements are trapped in the group,

so g10g2 € G, it g1, g2 €G.

2. Associativity : The order of operation does not matter, so (g; o go) 0 g3 =

g1 0 (92 o 93)-

3. Identity : There exists e so that there exist the operation of doing nothing,

so €0 g; = g;0e = g; where g; € G.

4. Inverse : No matter where we go, we are always be able to go back to the

same point, so there exists g; ! such that g; ' o g = e.

The number of elements of the group is called the order of the group. H is a
subgroup of G, if H satisfies the group axiom and h; € H are the elements in G.
We can construct a bigger group by a group product. If G and H are a group, the
product can be classified by
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1. Direct product : If G and K are commute, the product can be written by
GxK.

2. Semi-direct product : If G and K are not commute, the product can be

written by G x K.

Representation We can represent the elements of groups by a set of num-
bers called a group representation D(G). The representation of the group is said

to be homomorphism if it preserves the group namely

D(g;) o D(gj) = D(g Ogj)- (A.0.1)

The elements of G become D(e), D(g1), D(g2), ..., D(gn). It does not matter how
to choose to represent the elements. However, one representation may be more
useful than another representation for a certain application. To see the set of
number which represents a elements of a group, we can use a vector space as the
representation of the group where the number of basis vector space corresponds

to the group elements

e=g1 —|e),92 = [g2), s gn = |Gn)- (A.0.2)

The matrix representation of the group elements g5, are nxn matrices of dimensions

n denoted by
D(gr)i; = (9:1D(gx)|g5) (A.0.3)

where 7,7 = 1,2,...,n. The n X n matrices are called a regular representation.
Moreover, the representation is said to be a faithful representation if D(G) is an
isomorphism. However, one may find representations that are smaller than the
regular representation, and the smallest one is called the fundamental representa-
tion corresponding to the number of Cartan generators. If a regular representation
can be reduced to smaller dimensions, there are subspaces. Let V' be n-dimensional
space spanned by n basis vectors. U and W are subspaces of V' if for every vector

v such that v = u 4+ w where v € V, w € W, and u € U. We write

V=UaW (A.0.4)
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Let X be an operator in an n-dimensional space of V' which is composed of two
subspaces U and W with corresponding operators A,, and By, respectively. X is

a block diagonal matrix of A,, and By written as

A 0
Xopn = (A.0.5)
0 B

with m + k = n. This means that there exists a similarity transformation of D(g)

with an invertible matrix S,,«,, such that

Ani (9)

B, (9)
D (g)=SD(g)S7" = Cra(9) (A.0.6)

D, (9)

Each subspace, A,,, Bn,(9), Cns(g)s -y Dn, (g) is called an invariant subspace.

A.1 Lie Group

Lie group is a continuous group with infinite group elements, however such group
elements can be parameterized by a finite set of continuous variables «;(6), where
1=1,2,..,n. nis called the dimension of Lie group corresponding to the number

of generators of the Lie group itself.

A.1.1 Generators

The elements of the group can be defined by g(«;), and there exists the element

corresponding to the identity as

9(i)|as=0 = € (A.1.1)

The corresponding representation can be written as

Dn(g(al)”ai:() = ]nxn (A.1.2)
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Due to the continuous parameterization, we can look at the infinitesimal elements

of D,, around the identity by Taylor’s series
D,(g9(a;)) =1+ ia"T, (A.1.3)

where 7 indicates that Ty, is a hermitian operator and D,,(g(«;)) is unitary operator.

T, is called generators written as

0
Ta = —Zaﬁ.i]a a®=0- (A14)

There is a generator for each parameter corresponding to the element of the group,
and the entire representation can be completely defined by the generators 7.
These generators form the basis vector of the parameter space near the identity,
and each point in the parameter space would correspond to a particular element
of the group. So, the number of generators is equal to the dimensions of the Lie
group which turns out to be the number of dimensions on a tangent space on a
manifold. Therefore, one can characterize the manifold as Lie group called a coset

manifold.

A.1.2 Lie Algebra

The element of Lie group is defined by the values of the parameters in the pa-
rameter space spanned by the generators, so the generators themselves form the
algebra called Lie algebra as the consequence of the group axiom composed of Lie

bracket resulting from the closure given by
(To, Ty) =if,, “Te (A.1.5)
and Jacobi identity resulting from the associativity given by

[Tm [Tb: Tc“ + [Tb> [Tca Ta]] + [Tc, [Ta, Tb]] =0. (A16)

Representation of Lie group

A particular representation of any group element can be written by

D, (a;) = e, (A.1.7)
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In this representation of a vector space, there exists a set of eigenvectors and the
corresponding eigenvalues denoted by |j : m),on which Lie group act, where j are
the eigenvectors and m, are the eigenvalues. The basis of the vector space is the
set of simultaneously diagonalized generators called Cartan generator which forms
a closed algebra, an algebra being commute among themselves but not outside the
algebra. The number of Cartan generators is called the rank of the group. The
list of eigenvalues is called the weight vector. The remaining generators can be
formed as linear combinations which transform one vector into another and the

resulting vector space is a physical space called root space.

A.2 Lorentz Group

Lorentz group is a symmetry underlying special relativity. We will review some
important features of Lorentz group and Lorentz algebras to discuss representa-
tions of Lorentz group which are objects representing fields of elementary particles

in physics.

Lorentz Algebra

Lorentz group SO(1, 3) is a group which preserves spacetime interval
2= P 7 (A.2.1)

so, an action which is invariant under SO(1,3) is called Lorentz invariant theory
and all physical theories of our universe should be invariant under this symmetry.

Lie algebra can be written as
[T, PN = i (M TP — AT — TN g ) (A.2.2)
There are six generators of Lorentz group which consist of three rotations denoted
by [J;]#, and three boosts denoted by [K;]*, where
) 1 ... .
Ji=Z= Z]k?ij)
¢

(A.2.3)
K'=J"
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We can write the Lorentz algebra as
(s, J;) = i€,
(A.2.4)

[Ju Kj} = i€ K,
[K“Kj} = —iEiijk.
We can rewrite such generators as the combination as
(A.2.5)

1
N = §(J,» +iK;)

(2

where the commutation relation of new generators lead to
[N;r, Njﬂ = z'el-jkN,j,
[N, N;| =ieiuN; (A.2.6)
[V, N7] =0.
Here, we can obviously see that SO(1,3) Lorentz algebra is made of two pieces of

SU(2) Lie algebra. This is true in four-dimensional spacetime.

A.2.1 Lorentz Representation

The representation of SO(1,3) can be denoted by doublet (7, ;") of (25 + 1)(2j +
1) x (25" +1)(25' + 1) matrices.

(0,0) Representation This representation is 1 x 1 matrix or scalar which
is a trivial representation.

(1/2,0) Representation By setting N, =0, so

1
2 (A.2.7)

o4
2

and we get
(A.2.8)

R(0) = €7 — R(g) = ¢
B(9) = €7 = B(g) = ¢

[SINT)

where R(#) and B(¢) correspond to rotation and boost transformation the (1/2,0)

representation, respectively.
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(0,1/2) Representation By setting N;¥ = 0

1 1
Ni_ = _(Jz — ZKZ> — —ik; = =0y,
2 2 (A.2.9)

and we obtain

(A.2.10)

where R(A) and B(¢) correspond to rotation and boost transformation the (0,1/2)
representation, respectively.

Therefore, the two (1/2,0) and (0,1/2) are identical under rotation, but
slightly different under boost. Therefore, the (1/2,0) and (0, 1/2) representation
is called left-handed spinor and right-handed spinor respectively, and they are

conjugate of each other.

(1/2,1/2) Representation This representation is called the vector repre-

sentation which comprises of two non-overlapping copies of SU(2).

A.3 Clifford Algebra

Clifford algebra is a general idea for looking at the spinor representation in various
n-dimensional spacetime, that corresponds to a set of n matrices of v*, u =

0,...,n — 1 with components (7#)® satisfying anti-commutation relation
{97} =29, (A.3.1)
We can also show that Clifford algebra can be related to Lorentz algebra by defined

S = —[y*,4"]. (A.3.2)

This leads to the algebra given by

[S;w’ Sp)\] _ ~(77/\,u,8pl/ . nukspu _ nPMSO\V + 771/950\/!) (A'3,3)
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which coincides exactly with Lorentz algebra (|A.2.2).

Moreover, Clifford algebra can also naturally arise from Dirac’s equation
(iv*0, —m)y =0 (A.3.4)
once, we try to obtain Klein-Gordon equation
(198 — m) (i7" 0 — M) = (1770, + m2) = 0. (A.3.5)

We then obtain the Clifford algebra (|A.3.1)). Let’s solve Clifford algebra in four

dimensions by using a trick given by

Aby; Abis
AR B =
Ab21 AbQQ
ail 12 a11 a2
b1l bia
Q21 A2 Q21 A22
@11 A12 11 a2
bay bao
Q21 A22 Q21 A22
a11bi1 @121 aiibia aigbio
ag1b11  @22011  a1bia agebis (A 3 6)
a11b21 CL12521 a11b2a  a12bao
a1b21  a22b21  az1baa  ag2ban
11 Q12 bi1 by
where A = and B =
Q21 Q22 ba1  ba

We also note that (A® B)(C' ® D) = (AC ® BD). Let us now mention few

crucial solutions to the Clifford algebra.

Chiral representation In this representation, we have

V= ("®o') = =

Y

0 o° 0
a® 0 1

0
(A.3.7)
) 4 0 —iot 0 o
v =i(oc'®o?) =i ' = ‘ :
o' 0 (—02 0

l

It is also called Weyl representation.
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Dirac representation In this representation, we give

V' =("®0") = :
(A.3.8)

Majorana representation Lastly, Majorana representation can be ob-

tained by giving

002
,70 — (0'2 ® 0_1) — 7
a2 0
iod 0
’71 — (0_3 ® 0_0) — ,
0 io®
(A.3.9)
0 —o?
V=i’ ®o%) = :
o2 0
—io! 0
v =i(c'® 0% =
0 —iot

This results in every non-vanishing components to be imaginary number, so we
have real spinor in Majorana representation. Moreover, we also note that one can

generally identify the chirality of spinor by using projection operators
1
Py = 5(1 +4°) (A.3.10)

where 75 = 17%y!92~3 being invariant under Lorentz transformation denoted by
[S#7°] = 0. This holds in any representation of the Clifford algebra of v matrices.

Furthermore, we can also consider a higher rank of gamma matrices as
AR = ,y[ulfyuz .. .fyun] (A.3.11)

Moreover, one can also have the Clifford algebra on local Lorentz coordinate can

be mapped to the manifold on a tangent space as

{77} =2¢". (A.3.12)
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APPENDIX B

Field Theories

Fields area mathematical objects that eat a spacetime location and split out a
value in the field space, and the type of the value depends on the type fields. In
this appendix, we will review scalar fields, spinor fields, and vector fields describing
particle with spin-0, spin-1/2, and spin-1 ,respectively. We will also discuss the

the global and local symmetry called gauge symmetry of Lagrangian.

B.1 Scalar Fields

Scalar fields ®;(%,t) are used to represent spinless particles such as the Higgs
boson. In Minkowski spacetime, the dynamics of an real scalar field are captured

by the action
S = /d4x(—%8u¢(x)8“<l>(x) —V(z)) (B.1.1)

where the first term is the kinetic energy of scalar field and the second term is

potential term. Let V(z) = $m?®?, the action becomes
a1 L o2
S=1[d x(—ﬁau@(x)ﬁ“fb(x) —5m o). (B.1.2)

We can evaluate the equation of motion by doing the variation of the action with

respect to the scalar field itself, 0S = 0. We get
0,0"® () — m*® = 0. (B.1.3)

The field’s equation of motion of scalar field is called the "Klein-Gordon equation”.

Moreover, we can generalize a real scalar field to a complex scalar field of ®(Z,t) =
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(D1 +1iDy)/ V2 where ®,, and P, are real scalar fields. The action can be written

as

S— / d%(—%@@(a:)a“fb(:c)f - %m2CI)<I>T). (B.1.4)

The field’s equations of motion for ®(%,t) and its complex conjugate ®' can be

written as

9,0"®(z) — m*® = 0,
(B.1.5)
9,0"®d" — m?® = 0.

B.2 Vector Fields

Vector fields can be used to described spin-1 particles which play a very crucial
role in elementary particle physics. They represents gauge bosons such as pho-
ton, ZW bosons, and gluon which are the gauge mediators of electromagnetic,
weak, and strong interactions, respectively. Let us consider a massless vector field
A, (Z,t) = (¢(x), A(z)), where ¢(x) and A(z) are called potential and vector po-
tential, respectively. The dynamics of the vector field can be described by the

action

S= /d%(—}J:FWF"” + A,5") (B.2.1)

where F,, = 0,4, — 0,A, = —F,, is electromagnetic field tensor and j* = (p, f)

is four current.

F,, = (B.2.2)
E, -B; 0 B

ks By, —-Bl1 0

and its Hodge dual tensor defined as G, = «F*% = Z€,,05 "

G = (B.2.3)
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One can find the equation of motion of vector field by doing the variation of the

action with respect to A,, then one obtain
o, F* = j+

with the Bianchi’s identity
pkFyp = 0.

These equations form Maxwell’s equations

V-B=0,
0B - -
- E =
8t+V>< 0,

V-E=p,
3B o —=
=z, | E=—
e V x j

B.3 Spinor field

(B.2.4)

(B.2.5)

(B.2.6)

(B.2.7)

(B.2.8)

(B.2.9)

Spinor fields are used to describe half-integer spin particles. They are very im-

portant to describe fermionic particles such as leptons and quarks. Here, we will

review the representation of spin-1/2 field.

B.3.1 Dirac Spinor

A spinor ¥(x) is used to describe spin half-integer particles. There are three

interesting types of spinors, Dirac spinor, Weyl Spinor, and Majorana spinor. Let

us firstly start reviewing Dirac spinor describing spin 1/2 particle. The dynamics

of Dirac spinor field can be written as

S = /d”‘x(@v“@ulll —mUV),

(B.3.1)
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By doing the variation of the action with respect to ¥ and .

One obtain the equations of motion as
Yo, —m¥ =0 (B.3.2)
0,y —mW =0 (B.3.3)

which is the set of first order equation of motion, one can also find the correspond-

ing second order equation of motion as
o0, ¥ —m*V¥ = 0 (B.3.4)

This shows that the Dirac’s equation satisfies the Klein-Gordon equation.

B.3.2 Weyl Spinor

Dirac spinor can written in terms of two Weyl spinor written as

U= (B.3.5)

X
In Chiral representation, one can write Dirac equation as
o0 = my (B.3.6)

o"0,x = my (B.3.7)
and the action in term of this representation can be written as
S =i / d*z(x'a"0,x — a0, + mytx — myx') (B.3.8)

If m = 0, we can obviously see that Dirac spinor is a reducible representation of
Weyl spinors. However if m # 0, Dirac spinor is irreducible, but Dirac spinor will
be equivalent to two Weyl spinors. The action of massless spinor can be written

as
S =—i / d* x50, (B.3.9)

with the equation of motion as

79,10 = 0 (B.3.10)



139
B.3.3 Majorana Spinor

A real Majorana spinor is a direct result from the Majorana representation of

Clifford algebra with reality condition called Majorana constraint given by
=l =T (B.3.11)

where C' being charge conjugate. The corresponding Majorana Lagrangian is given
by
Lar = NGO — S (Mo?A = X)) (B.3.12)

where we define the Majorana field to be

by 2 [V (B.3.13)

(i0®)X* YR
where we express the right and left component into each other and A = ¢, = (ic%).
The physical interpretation of charge conjugate can be obvioulsy seen by taking

the complex conjugate of gauge theory of Dirac’s equation given (|D.1.10)

((Z’VM(au =5 iun) 7 m)w)* =0,

(B.3.14)
("0 = iun)¢(c)) = 0.

We see that if ¢ does satisfy the Dirac’s equation for a particle with charge ¢, ¥
need to also satisfy Dirac’s equation with negative charge —¢q. As a result, C is

the charge conjugate in the sense that it does swap the charge of the field.
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APPENDIX C

Symmetry

Symmetry is a set of transformation which leaves physical system invariant and
the physical system can be described by the functional action. If the action is
invariant under generic field transformation without imposing field’s equations
and boundary conditions, the symmetry is called “off-shell symmetry”. If the
action is only invariant by imposing field’s equations and boundary conditions,
the symmetry is called “on-shell symmetry”. The mathematical tool which is used
to study symmetry is group theory. According to group theory, symmetry can
be classified in many different ways whether or not the symmetry is discrete or
continuous, spacetime or internal, global or local (gauged), abelian or non-abelian.
Here, we mostly focus on continuous symmetry. One of the most important roles
of symmetry is the applications of understanding interactions between fields or

particles.

C.1 Spacetime and Internal Symmetry

Spacetime symmetry is a symmetry which act on spacetime, so it does transform

spacetime such as Poincare symmetry
at — AF " +a”. (C.1.1)

Moreover, there is also the symmetry which does not act on spacetime, but it acts

on hidden degree of freedom of the field

¢'(x) — Uijgbj(x). (C.1.2)
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This is called "internal symmetry”.

C.2 Global and Gauged Symmetry

Both of the spacetime and internal symmetry can be either global symmetry or
guage symmetry, where the parameter of transformation is independent and de-
pendent of spacetime, respectively. Global symmetry is a symmetry which acts
on the field at all points on spacetime in the same way at once such as for the

spacetime symmetry of Poincare symmetry
ot — A (x)z” + a” (C.2.1)
or the internal symmetry of SU(N) symmetry
¢'(z) — U’]¢7(x) (C.2.2)
The gauge symmetry is a symmetry which depends on the point in spacetime.

PRNEL () (C.2.3)

C.3 Symmetry and Noether Current

For a certain continuous symmetry, there exists a corresponding conserved quan-
tity according to Noether’s theorem and the conversed charges correspond with
the Noether currents.

For the action
st = [ ot (o', 00) (C.3.)
which is invariant under a certain transformation,

o(x) = ¢ (z) (C.3.2)

namely,

S[¢'] = S[e']. (C.3.3)
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The variation of the field can be expressed as

50" (1) = €N () (C.3.4)

and the variation of the Lagrangian can written as

0L
Yo

The variation of Lagrangian may not vanish under the transformation, however,

5L
00,0

oL

0L =
[ (aaﬂ(bz

— (55 7)100" + 0¢"). (C.3.5)

it can be vanished up to the total derivative of the action given by

0L = e“@LK“a. (C.3.6)
We can write
0L oL oL
" 7 7
Ou (K", — 0.5 A9') = (W o, (aaw,z))A a® (C.3.7)

where we have assumed that e is spacetime independent. And we impose Euler

equation, we then obtain the Noether current as

0L
90,6

gHo= K" — Ay’ (C.3.8)

with the conservation law of

9,5", = 0. (C.3.9)
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APPENDIX D

Gauge Theories

To consider the interaction between fields or particles, we need an interaction
term in our Lagrangian L. This can be done by coupling Noether current of a
field and then multiply it by the field to which we need to couple together with
a coupling constant. However, this process can be done with a more fundamental
process called "Gauge Theory”. Gauge theory is a way to include an interaction
by promoting a certain global symmetry group of Lagrangian to gauge symmetry
group and force the Lagrangian to be invariant under the gauge symmetry. This
process forces us to define a covariant derivative which automatically includes
gauge fields with a coupling constant into the theory. As a result, we have an
interaction term in the Lagrangian. Therefore, gauge theory plays a central role
in modern physics especially in the theory of fundamental interaction of elementary

particle physics. Here, we will review some crucial features of gauge theory.

D.1 Abelian Gauge Theories

It is obvious that Maxwell’s equations of the action
1
S = —7 /d‘*xFWFW (D.1.1)
are invariant under gauge transformation of
A, — A;L = A, +0,a(x) (D.1.2)

where «(z) is the infinitesimal gauge parameter which depends on spacetime. As

a result, one can have the action of electromagnetic fields which is invariant under
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local U(1). Moreover, the existence of mass term of gauge field A, will violate the
local symmetry U(1).

For the Dirac action which govern the dynamics of spin 1/2 particle

Lp = ¢Y(in" 0, — m)i. (D.1.3)
One can promote the global symmetry U(1) of the Dirac Lagrangian
P — e M%) (D.1.4)

to a gauge symmetry by setting v = a(x) and under local U(1) transformation
we obtain

Lp = Y(iy"0, — m — Y Oua(z))1p. (D.1.5)
We need to way a way to cancel the extra term. One way is to define a new gauge

field which transforms under U(1) as

AN/ A gaua(x) (D.1.6)
so, we have just introduced a covariant derivative written as

0y — D, = 0, +iqA,. (D.1.7)

The covariant derivative indicate that the field is charged under the gauge sym-

metry, and the Lagrangian can be rewritten as

Lp = P(v" D, —m) (D.18)

which is invariant under both global and gauged U(1) symmetry. Here, we have
just added the gauge field into our theory, however there is no dynamics of gauge
field due to the lack of kinematic term of gauge field. One can add the extra term

which contribute the dynamics of the gauge field given by

1
Lyina = _ZFWFW (D.1.9)

where F),, = 0,A, — 0,A, due to the abelian property of U(1) gauge symmetry.
Therefore, the interacting theory of spin 1/2 field cam be written as

— 1
L=y D, —m)y — ZFWFW (D.1.10)

if one quantize this Lagrangian, one would get the theory of quantum electrody-

namics or QED.
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D.2 Non-Abelian Gauge Theories

Now, we will generalize our gauging procedure of arbitrary compact Lie group of

dimensions G, which transforms the field by
¢ — Ui (D.2.1)
and the structure of the group can be represented by Lie algebra
[T, T°) = i fare T (D.2.2)
and the corresponding gauge field transformation can be written as
AP S Ua) AU (2) + gU(x)a“U(x)T. (D.2.3)

We can introduce the covariant derivative in the similar way, which indicate the
introduction of gauge fields and the field of theory would be charged by the gauged

fields under the covariant derivative given by
D,u = ]INXN8M N ZgA'u <D24)
where A, is the N x N matrix, and it acts on the fields as

(Du)j = 0udj(@) — iglAu ()] judn (). (D.2.5)
The field strength can be defined as

F,

uv

= g[D’“ D,] = 0,A,(z) — 0,A, — ig[A,(z), A, (z)]. (D.2.6)

The invariant form of field strength under gauge group is the trace of field strength
given by

1
Lkin = —§TI'(F’LLVFMV). <D27)

Here, we have just promoted a non-interacting field theory with a global symmetry
to interacting field theory with gauge symmetry gauged by vector fields. For a

certain Lie group, there exist particular gauge fields with a particular interaction.
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