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ABSTRACT (THAI) 
 ชนาธิป แซ่เตีย : การตดัประโยคภาษาไทยแบบกึ่งมีผูส้อนโดยใช้ตัวแทนของคำประเภทเฉพาะที่และ

ไกล. ( Semi-Supervised Thai Sentence Segmentation Using Local and Distant Word 
Representations) อ.ที่ปรึกษาหลัก : ผศ. ดร.พีรพล เวทีกูล 

  
ประโยคคือหน่วยไวยากรณ์ที่มีขนาดเล็กที่สุด เพื่อที่สื่อใจความสำคัญครบถ้วนในประโยค ซึ่งช่วยใน

การแบ่งข้อความที่ขนาดยาวให้เป็นหน่วยท่ีเล็กลง อย่างไรก็ตามในภาษาไทย ไม่มีตัวแบ่งประโยคที่บ่งช้ีชัด เราจึง
ได้พัฒนาโมเดลการเรียนรู้เชิงลึกเพื่อการตัดประโยคจากข้อความ ซึ่งประกอบด้วยสามองค์ประกอบ อย่างแรกคือ
การใช้ตัวแทนข้อมูลคำข้างเคียง หรือตัวแทนข้อมูลแบบใกล้ในการจับกลุ่มคำที่อยู่ใกล้กับตัวแบ่งประโยค อย่างที่
สองคือการสนใจคำที่เป็นอนุประโยคที่อยู่ด้วยตัวเองไม่ได้ โดยใช้ตัวแทนข้อมูลแบบไกลซึ่งได้จากกลไกจุดสนใจ 
อย่างสุดท้ายคือการใช้สองเทคนิคเพื่อใช้ประโยชน์จากข้อมูลที่ไม่มีการกำกับข้อมูล เนื่องจากข้อมูลที่มีการกำกับ
ข้อมูลนั้นมีน้อย และยังยากและต้องการเวลาในการกำกับข้อมูล โดยเทคนิคแรกคือการสอนแบบหลายมุมมอง ซึ่ง
เป็นการเรียนรู้กึ่งมีผู้สอน และเทคนิคที่สองคือการใช้โมเดลภาษาแบบถูกสอนมาก่อนเพื่อพัฒนาตัวแทนของ
ข้อมูล ในการทดลองของการตัดคำภาษาไทย โมเดลของเราสามารถลดความผิดพลาดสัมพัทธ์ลง 7.4% และ 
18.5% เมื่อเปรียบเทียบกับโมเดลก่อนหน้า เมื่อเทียบบนชุดข้อมูล Orchid และ UGWC ตามลำดับ เรายังได้
ทดสอบกับงานที่ใกล้เคียงกันบนภาษาอังกฤษ คือการทำนายเครื่องหมายวรรคตอนที่หายไป โดยโมเดลของเรา
สามารถลดความผิดพลาดสัมพัทธ์เมื่อเทียบกับโมเดลก่อนหน้าลง 7.6% จากศึกษาพบว่าการใช้ตัวแทนข้อมูลจาก
คำใกล้เคียงเป็นปัจจัยหลักในการพัฒนาขึ้นบนภาษาไทย ในขณะที่ในภาษาอังกฤษการเรียนรู้กึ่งมีผู้สอนเป็นปจัจัย
หลักในการทำให้โมเดลดีขึ้น 
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ABSTRACT (ENGLISH) 
# # 6170135321 : MAJOR COMPUTER ENGINEERING 
KEYWORD:  
 Chanatip Saetia : Semi-Supervised Thai Sentence Segmentation Using Local and 

Distant Word Representations. Advisor: Asst. Prof. PEERAPON VATEEKUL, Ph.D. 
  

A sentence is typically treated as the minimal syntactic unit used for extracting 
valuable information from a longer piece of text. However, in written Thai, there are no explicit 
sentence markers. We proposed a deep learning model for the task of sentence segmentation 
that includes three main contributions. First, we integrate n-gram embedding as a local 
representation to capture word groups near sentence boundaries.  Second, to focus on the 
keywords of dependent clauses, we combine the model with a distant representation 
obtained from self-attention modules. Finally, due to the scarcity of labeled data, for which 
annotation is difficult and time-consuming, we also investigate and adapt two techniques, 
allowing us to utilize unlabeled data. The first one is Cross-View Training (CVT) as a semi-
supervised learning technique, and the second one is a pre-trained language model (ELMo) to 
improve representation. In the Thai sentence segmentation experiments, our model reduced 
the relative error by 7.4% and 18.5% compared with the baseline models on the Orchid and 
UGWC datasets, respectively. We also applied our model to the task of punctuation restoration 
on the IWSLT English dataset. Our model outperformed the prior sequence tagging models, 
achieving a relative error reduction of 7.6%. Ablation studies revealed that utilizing n-gram 
representations was the main contributing factor for Thai, while the semi-supervised training 
helped the most for English. 
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1. INTRODUCTION 
1.1. Motivation 

Machine translation, automatic text summarization, dependency parsing, and semantic 
parsing are useful for processing, analyzing, and extracting meaningful information from text. 
These tasks require a basic unit that has a simple grammatical structure to reduce the tasks' 
complexity. For example, dependency parsing [1], which extracts a syntactic structure for 
language understanding, needs to consider every word pair in the text to assign a relation. Thus, 
the complexity of dependency parsing depends on the input text's sequence length. If the text is 
segmented into smaller parts, the task will be easier to perform. However, the basic unit should 
be not only as small as possible but also required to be complete in itself. For instance, if the 
basic unit is too short and does not contain sufficient information, many meaningful relations in 
dependency parsing will not be extracted inside the basic unit. Thus, the basic unit should be 
small yet contain complete meaning to make the mentioned tasks more efficient. 

A sentence is raised as a basic unit because a sentence is always complete in itself. 
Moreover, a sentence can also be easily extracted from raw text because the sentence 
boundaries in English are easily identified by a period (“.”) [2]. Many prior works require a 
sentence to perform their tasks. For example, in machine translation, a sentence pair is required 
for supervised training [3-5]. Meanwhile, many automatic text summarization works treat a 
sentence as one item of information and select the important ones to be summarized [6-8]. 
Dependency parsing also requires a sentence as an input text to extract its syntactic structure 
that the machine understands [1, 9, 10]. 

However, there is no explicit end-of-sentence marker for identifying the sentence boundary 
in some written languages, such as Thai, Arabic, Khmer, and Lao [11]. Therefore, extracting 
sentences from raw text in these languages is not trivial. For example, “He wishes to buy 4 
ingredients for cooking an omelet. Therefore, he goes shopping and buys an egg, milk, salt, and 
pepper.” The text can be segmented with a period “.” into two sentences “He wishes to buy 4 
ingredients for cooking a fried egg.” and “Therefore, he goes shopping and buys an egg, milk, salt, 
and pepper.” Meanwhile, in Thai, the same text is “เขาตอ้งการที่จะซือ้ส่วนประกอบ 4 อย่างส าหรบัท าไข่เจียว 
ดงันัน้เขาจึงไปซือ้ไข่ นม เกลือ และพริกไทย” Note that there is no punctuation or even a word to indicate 
where the text should be segmented. Although most Thai people usually use a space character 
as a sentence boundary, the illustrated text shows that only one out of six space characters is a 
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sentence boundary. Therefore, there is no explicit marker for identifying sentence boundaries to 
segment the text, especially for the exemplified case. 

Prior works on Thai sentence segmentation have adopted traditional machine learning 
models to predict where a sentence boundary is in the text. The authors of [12-14] proposed 
traditional models to determine whether a considered space is a sentence boundary based on 
the words and their part of speech (POS) near the space. Although a space is usually considered 
essential as a sentence boundary marker in Thai, approximately 23% of the end of sentences is 
not a space character in a news domain corpus [15]. Thus, Zhou N. et al. [15] proposed a 
conditional random field (CRF)-based model with n-gram features to predict which word is the 
sentence boundary. This work considered Thai sentence segmentation as a sequence tagging 
problem similar to named entities recognition and part-of-speech tagging. Each word in the text 
will be classified whether it is the end of a sentence or not, as shown in Figure  1. With a CRF 
module [16], the model extracts sentence-level tag information, where each prediction in a 
sequence considers the previous predicted tags instead of only the input words. Meanwhile, the 
n-gram [17], which is an input feature, is constructed from a combination of words around the 
considered position. This method achieves the state-of-the-art result for Thai sentence 
segmentation and achieves greater accuracy than other models by approximately 10% on the 
Orchid dataset [18]. 

 

Figure  1. An example of a labeled paragraph. Here, sb represents a sentence boundary. 

Several deep learning approaches have been applied in various tasks of natural language 
processing (NLP), including the long short-term memory [19], self-attention [20], and other 
models. To tackle the sequence tagging problem, Huang Z. et al. [21] proposed a deep learning 
model called Bi-LSTM-CRF, which integrates a CRF module to gain the benefit of both deep 
learning and traditional machine learning approaches. In their experiments, the Bi-LSTM-CRF 
model achieved an improved level of accuracy in many NLP sequence tagging tasks, such as 
named entity recognition, POS tagging and chunking. This model is also used as a base 
(backbone) model for many works that achieve promising accuracy in sequence tagging tasks.  
[22-26]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

In this work, two models are chosen as baseline models. First, the Bi-LSTM-CRF model is 
adopted as our baseline and backbone model because many sequence tagging works also apply 
the model as a backbone model and yield respectable performance. Second, the CRF model, 
which achieved the best result on the Thai sentence segmentation task [27] is also treated as 
another baseline model to compare with prior works. 

This work makes three contributions to improve Bi-LSTM-CRF for Thai sentence 
segmentation. These contributions apply the suitable deep learning modules carefully to tackle 
various problems of this task. Each contribution is described as follows. 

First, we propose adding n-gram embedding to Bi-LSTM-CRF due to its success in [27]. To 
integrate n-gram features in Bi-LSTM-CRF, the feature is embedded into a dense embedding 
vector trained along with the model. With the n-gram embedding addition, it can extract a local 
representation from n-gram embedding, which helps in capturing word groups that exist near a 
sentence boundary. Although Jacovi A. et al. [28] reported that a convolutional neural network 
(CNN) can be used as an n-gram detector to capture local features, we chose n-gram embedding 
over a CNN due to its better accuracy, as will be shown in Section  5.4.1. 

Second, we propose adding distant representation into the model via a self-attention 
mechanism [20], which can focus on the keywords of dependent clauses that are far from the 
considered word. Self-attention has been used in many recent state-of-the-art models, most 
notably the Transformer [20] and Bidirectional Encoder Representations from Transformers (BERT) 
[29]. BERT has outperformed Bi-LSTM on numerous tasks, including question answering and 
language inference. Therefore, we choose to use self-attention modules to extract distant 
representations along with local representations to improve model accuracy. 

Third, we also apply two techniques to utilize unlabeled data: semi-supervised learning and 
a pre-training method, which are essential for low-resource languages such as Thai, for which 
annotation is costly and time-consuming. The first technique is semi-supervised learning  [30]. 
Many semi-supervised learning approaches have been proposed in the computer vision [31, 32] 
and natural language processing [33-35] fields. Our choice for semi-supervised learning to 
enhance model representation is Cross-View Training (CVT) [33]. Clark K. et al. [33] claim that CVT 
can improve the representation layers of the model, which is our goal. However, CVT was not 
designed to be integrated with self-attention and CRF modules; consequently, we provide a 
modified version of CVT in this work. 
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Instead of using only CVT to improve the representation with unlabeled data, the pre-
training method is also adopted in our model. There are many proposed pre-trained word 
representations in the field of NLP [29, 36-38]. In this task, to decide whether each word is a 
sentence boundary, the context of the given text is essential. Thus, contextualized word 
representations are chosen over Word2Vec [37] that embeds each word independently from the 
context. Currently, BERT [29] or other variant contextual models of BERT are usually a part of the 
state-of-the-art methods for many tasks [22, 39, 40]. However, BERT models require a large 
amount of GPU memory in the training process. Therefore, ELMo, which needs less GPU memory 
than BERT [41], is chosen in this work due to our resource limitations. Note that some variants of 
BERT models are also optimized for less memory usage but require additional techniques, such 
as knowledge distillation [41] and factorized embedding parameterization [42], which requires 
further investigation on the Thai corpus. 

Based on the above contributions, we pursue the experiment on Thai sentence 
segmentation. The experiment is performed on two Thai sentence segmentation datasets, 
including Orchid and UGWC [43]. In the experiment, the proposed model is compared to four 
existing methods: POS-trigram [13], Winnow [12], Maximum entropy [14], and CRF [27]. Moreover, 
we also perform ablation studies, which add each proposed contribution sequentially to observe 
their individual effect on the performance. The ablation studies found that local representation 
(n-grams) yields the largest improvement on Thai sentence segmentation; thus, its effect is 
further analyzed using interpretation techniques. 

1.2. Research objectives 

This thesis aims to solve Thai sentence segmentation using a deep learning method. The 
main hypothesis is “The accuracy in Thai sentence segmentation will be enhanced by applying 
various deep learning modules and training with a semi-supervised method along with a pre-
trained language model.” Moreover, we also perform an interpretation of n-gram features to 
reveal the understanding of the trained model. To sum up, the following two objectives are 
specified and will be addressed by the proposed contributions in this work: 

• To propose a novel deep learning model for Thai sentence segmentation 

• To utilize unlabeled data with semi-supervised techniques to improve the 
representation of a model along with a pre-trained language model 
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1.3. Contributions 

The studies in this thesis will focus on four main contributions to improve the accuracy of 
the model in Thai sentence segmentation as following: 

• We added n-gram features to Bi-LSTM-CRF as local representation to captures the word 
groups around boundaries. 

• We applied self-attention modules to extract a distant representation that focuses on 
the keywords in the dependent clause. 

• We presented a semi-supervised learning technique or CVT, which is specific for Thai 
sentence segmentation, to utilize unlabeled data. 

• We adapted ELMo or deep contextual embedding as a pre-trained language model to 
improve the representation of the model. 

1.4. Thesis outline 

Chapter 2 presents an overview of background knowledge that is related to this thesis. A 
sentence in Thai is defined. Deep learning modules, which are used in this work, are reviewed. 
Furthermore, we describe how to apply a deep learning model with semi-supervised learning and 
elaborate on the detail of CVT. The pre-trained language model and ELMo are also included in 
this chapter. Finally, interpretation approaches of a deep learning model are explained. 

In Chapter 3, we review the prior works of Thai sentence segmentation for a comparison 
with our model. Moreover, we also review the literature on a related task which is English 
punctuation restoration.  

Chapter 4 presents our proposed model architecture, including local and distant features. 
We also provide how to train the model with a novel CVT and how to pre-trained the language 
model. 

In Chapter 5, we describe the experimental setups and the results on both Thai sentence 
segmentation and English punctuation restoration. The data statistics and hyper-parameter in our 
experiments are described in the experimental setups section. Meanwhile, the results show a 
comparison between our model and the baseline and the improvement of each contribution. 
Moreover, we analyze how the proposed contribution improves the model. In addition, to 
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understand the impact of n-gram features, we also perform the model interpretation to indicate 
the importance of local representation is in both tasks. 

Finally, Chapter 6 concludes this thesis and shows the best performance for each task. Also, 
we summarize the ablation studies about each contribution. 
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1.5. Research schedule 

In this section, Gantt chart is provided with the project’s activities and the duration of each 
activity: 
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1.6. Publications 

The work in this thesis primarily relates to the following peer-reviewed article: 

1. Saetia, C., Chuangsuwanich, E., Chalothorn, T., & Vateekul, P. (2019). Semi-supervised Thai 

Sentence segmentation using local and distant word representations. Engineering Journal.  
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2. BACKGROUND KNOWLEDGE 

In this chapter, the background knowledge related to this work is presented. There are four 
subsections included. The first section describes what a sentence is in Thai. Second, deep 
learning models related to the work is described. Third, we explain semi-supervised learning 
algorithms, including Cross-View Training. Finally, the last subsection presents various of pre-
trained language models. 

2.1. Sentence in Thai 

A sentence is considered as a minimal syntactic unit for many tasks such as text 
summarization, question answering, and machine translation. To extract sentences from the input 
text, a machine exploits the explicit sentence marker like period “.” in English for identifying 
sentence boundary.  

However, there are several languages, such as Thai, Lao, and Myanmar, of which sentence 
marker is not explicit. In Thai, the text does not contain any marker which certainly identifies the 
sentence boundary; nevertheless, the Thai writer usually uses space as a vital element to 
separate apart of text into the sentence. In contrast, there are also three ways to use space in 
contexts [44]. The first is before and after an interjection. The second is before conjunctions. 
Before and after a numeric expression is the last one. Therefore, segmenting text into sentences 
is not simply performed by splitting with space. 

As studied in [11], annotated sentence boundary is found in three cases with substantial 
agreement among people. First, the sentence boundary is found when the topic shift occurs. 
Second, the overt noun and pronoun, which is used for continuing the topic in a coordinate 
clause, is seen as the sentence boundary.  In addition, the coordinate clause, which is identified 
from a zero subject, is not considered as a new sentence. The last case is that sentence 
boundary is identified where the discourse marker is found, such as “และต่อมา” (and then), 
“ตลอดระยะเวลาดังกล่าวนี”้ (throughout this period), “ในสมัยนั้น” (in this period) and “ในระยะแรก” (in 
the first phrase), is found. 

We also provides ten examples of sentence segmentation from various sources including 
Pantip’s posts, books and dissentions. ‘|’ is considered as a sentence boundary in the following 
text. 
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• ปัจจุบันพลังงานจากก๊าซธรรมชาติมีบทบาทมากขึ้น โดยเป็นแนวทางหนึ่งในการลดการใช้พลังงานจากน ้ามัน

และเป็นพลังงานอีกทางเลือกหนึ่งที่ประเทศไทยเลือกใช้ | ซึ่งที่ผ่านมามีการใช้ประโยชน์จากก๊าซธรรมชาติไม่

มากเท่าท่ีควร | เนื่องจากมีความยุ่งยากในการขนส่งก๊าซธรรมชาติ โดยต้องลงทุนจ านวนมากในการก่อสร้างท่อ

ส่งก๊าซ | ดังนั้นหากแหล่งส ารองก๊าซธรรมชาติต้ังอยู่ห่างจากแหล่งที่ต้องการใช้เป็นพลังงานแล้ว ก็จะไม่มีการ

น ามาใช้ประโยชน์จากแหล่งก๊าซธรรมชาตินั้นๆ | เนื่องจากต้องเสียค่าใช้จ่ายเป็นจ านวนมากในการก่อสร้างท่อ

ส่งก๊าซ 

• เจอบ่อยมากค่ะพวกทีพ่ึ่งมาคุยกันได้แค่วันสองวันแล้วมาขอเป็นแฟนเลย | เคยเจอที่อาการหนักสุดคือ คุยวัน

แรกก็ขอจีบเลย | ละก็มาขอวิดีโอคอล | แต่เราไมเ่อาเค้าก็เลยขอแค่โทรปกติ | แล้วก็เล่นเกมด้วยกันไปค่ะ 

• สวดมนต์เย็นบนพระที่น่ัง บ่ายวันนี้มังคะ | เสด็จให้มาทลูถามเสด็จว่าจะเสดจ็หรือไม่เสด็จ | ถ้าเสด็จจะเสด็จ 

เสด็จจะเสด็จด้วย 

• ในปัจจุบันมีบริษัทผลิตละครโทรทัศน์ท่ีมีชื่อเสียงหลายค่ายที่ผลิตละครอย่างต่อเนื่องเพื่อแพร่ภาพออกอากาศ

ทางโทรทัศน์ระบบฟรีทีวี ได้แก่ สถานีโทรทัศน์ไทยทีวีสีช่อง 3 สถานีโทรทัศน์กองทัพบกช่อง 5 สถานีโทรทัศสี

กองทัพบกช่อง 7 และสถานีโทรทัศน์โมเดิร์นไนน์ทีวี (ช่อง 9) | โดยแต่ละค่ายได้ผลิตผลงานละครที่โด่งดังและ

ประสบความส าเร็จมากมาย | บริษัทผลิตละครที่มีอยู่ในปัจจุบัน บ้างก่อต้ังมาแล้วหลายปี สั่งสมประสบการณ์

มามากมาย บ้างก็เพิ่งก่อต้ังไม่นาน | โดยแต่ละค่ายย่อมมีกลยุทธ์และวิธีการด าเนินงานที่แตกต่างกันไป | ต่าง

ท าหน้าที่ผลิตละครโทรทัศน์เพื่อตอบสนองความต้องการและความพึงพอใจของผู้ชม และดึงดูดผู้ชมให้สนใจ

ชมละครของตน | ซึ่งในปัจจุบันมีบริษัทผลิตละครโทรทัศน์รายใหญ่ เป็นท่ีรู้จักของประชาชนอยู่หลายบริษัท 

• การฉีดยาชาเฉพาะที่เป็นสิ่งที่ทันตแพทย์เกือบทั้งหมดท าก่อนการรกัษาทางทันตกรรมในเด็ก | แต่การฉีดยาชา

เป็นสิ่งท่ีก่อให้เกิดความกลัวและกงัวลมากท่ีสุด | เด็กมักกลัวเข็ม | กงัวลต่อสิ่งแวดล้อมใหมข่ณะมาท าการ

รักษา | รวมไปถึงอาจมปีระสบการณ์ที่ไม่ดีจากการฉีดวัคซีน เจาะเลือด หรืออาจไดร้ับค าบอกเล่าที่นา่กลัว | จึง

ท าให้มีพฤติกรรมต่อต้าน ขัดขวางการฉีดยาชา 

• การเรียนกวดวิชาแม้จะก่อให้เกิดประโยชน์ แต่การเรียนกวดวิชาก็ได้ก่อให้เกิดผลกระทบในด้านลบพอสมควร | 

โดยเฉพาะการสร้างภาระค่าใช้จ่ายแก่ผู้ปกครองอย่างมาก | นอกจากการสร้างภาระค่าใช้จ่ายกับผู้ปกครองแล้ว 

การกวดวิชายังก่อให้เกิดผลกระทบต่อนักเรียน | เนื่องจากนักเรียนต้องใช้เวลาว่างไปกับการเรียนกวดวิชา | 

ก่อให้เกิดความห่างเหินระหว่างเด็กกับผู้ปกครอง | มีผลต่อความอบอุ่นในครอบครัว 

• ป่าชายเลนมีความส าคัญทางด้านอนุรักษ์พื้นที่ชายฝั่งทะเล | โดยท าหน้าท่ีเป็นปราการตามธรรมชาติ | ป้องกัน

ลมพายุ | ป้องกันชายฝั่งไม่ให้ถูกกัดเซาะจากกระแสคลื่น | ช่วยในการรักษาคุณภาพสิ่งแวดล้อม โดยช่วยดัก

กรองของเสีย และขยะบริเวณชายฝั่งก่อนลงสู่ทะเล | นอกจากน้ีป่าชายเลนยังเป็นแหล่งกักเก็บคาร์บอนที่มี

ความส าคัญอีกด้วย 

• ความรุนแรงในสังคมและความรุนแรงในครอบครัวมีความคล้ายคลึงกันที่เหย่ือ คือผู้อ่อนแอและมีสถานภาพต ่า

กว่า เช่น สตรี เด็ก ฯลฯ | แต่ผลกระทบของความรุนแรงในครอบครัวรุนแรงและยาวไกลกว่าความรุนแรงใน

สังคม | เพราะนอกจากจะเป็นสาเหตุส าคัญของปัญหาครอบครัวแตกแยกและน ามาซึ่งปัญหาสังคมอีกมากมาย

แล้ว | ความรุนแรงในครอบครัวยังเป็นมรดกถ่ายทอดไปลูกหลานต่อ ๆ ในอนาคตอย่างไม่รู้จบสิ้น 
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• ในปัจจุบันความส าคัญในการใช้สุนัขล่าสัตว์ และช่วยหาอาหารนั้นได้ลดความส าคัญลงไป | แต่มนุษย์จะเลี้ยง

สุนัขเพื่อใช้เป็นเพื่อน และใช้ประโยชน์อย่างอื่น ท่ีนอกเหนือไปจากการเฝ้าบ้าน การป้องกันขโมย ใช้ต้อนฝูง

สัตว์ หรือเลี้ยงเพื่อการค้า | ในบางครั้งสุนัขที่ได้รับการฝึกหัด สามารถจะใช้ในงานสะกดรอยติดตามจับตัวผู้รา้ย 

ดมกลิ่นระเบิด ตรวจค้นหาสารเสพติด เป็นต้น 

• มลพิษทางอากาศภายในอาคาร บ้านเรือน เป็นปัญหาหนึ่งที่ส าคัญต่อมนุษย์ | เนื่องจากมนุษย์ใช้เวลาส่วนใหญ่

อยู่ในอาคาร บ้านเรือน หรือ สถานที่ท างาน | พบว่ามนุษย์โดยเฉพาะคนในเมืองใหญ่ใช้เวลาประมาณ 89% 

ในอาคาร บ้านเรือน | จึงไม่ใช่เรื่องที่น่าประหลาดใจ ถ้าการได้รับมลพิษในอากาศของประชากรในเขตเมืองจะ

เกิดขึ้นภายในอาคารมากกว่าที่เกิดขึ้นขณะด าเนินกิจกรรมอยู่ภายนอกอาคาร | จากข้อเท็จจริงดังกล่าวท าให้

องค์กรพิทักษ์สิ่งแวดล้อมของประเทศสหรัฐอเมริกาก าหนดให้ความเสี่ยงทางสุขภาพของมนุษย์อันเน่ืองมาจาก

คุณภาพอากาศภายในอาคารอยู่ใน 5 อันดับแรกของความเสี่ยงทางสุขภาพเนื่องจากสภาวะแวดล้อมด้านต่าง 

ๆ 

2.2. Deep learning models for NLP 

 There are various deep learning techniques which are used in NLP and achieve improved 
results on numerous tasks, including LSTM, self-attention, and others. There are two techniques 
used in this work and described as follows. 

2.2.1. Long-short term memory (LSTM) [19] 

Long-short term memory (LSTM) is one type of recurrent neural network (RNN). RNN can 
capture the temporal pattern from an input sequence; meanwhile, the traditional neural network 
assumes that each time step of an input sequence is independent of each other. Hence, RNN, 
which utilizes input and history of the previous sequence, gives the promising accuracy over a 
traditional neural network in many NLP tasks, such as named entity recognition, POS tagging, and 
semantic role labeling. Although, in theory, vanilla RNN can capture arbitrary long-term 
dependency information from an input sequence, its practical training process faces the vanishing 
gradient problem, in which the model cannot learn from a long sequence of input. Therefore, 
LSTM is proposed to avoid this problem by allowing the gradient to flow unchanged. 

LSTM is composed of a cell, input gate, output gate, and forget gate, as shown in Figure  2. 
The cell takes charge of remembering the values from the previous sequence; meanwhiles, the 
gates control the flow of in and out information. The calculation of each gate is defined in 
Equations 1 to 3. Each function takes the input representation of the current position 𝑥𝑡 and the 
hidden state of the previous position ℎ𝑡−1 as an input where 𝑊∗, 𝑈∗, and 𝑏∗ denote as a weight 
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matrix and bias of linear transformations; meanwhile, σ𝑔 and σ𝑐 represent the sigmoid and 
hyperbolic tangent function. 

 

Figure  2. An architecture of LSTM [45]. 

𝑓𝑡 = σ𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (1) 

𝑖𝑡 = σ𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

ot = σg(Woxt + Uoht−1 + bo) (3) 

In each timestep, the model utilizes the output from these gates and generates two types 
of state. The first type is the cell state, which is used to calculate 𝑐𝑡, as shown in Equation 4. This 
cell state represents the memory from the previous sequence, where the forget gate determines 
whether the memory persists.  Furthermore, by using forget gate combine with cell state without 
an input, LSTM can allow the gradient can flow over a long input sequence and get rid of the 
vanishing gradient problem. The second type is a hidden state, namely, the output of LSTM. The 
calculation of this hidden state ℎ𝑡 is shown in Equation 5, where the output gate and cell state 
go through element-wise multiplication to receive the hidden state. 

𝑐𝑡 = 𝑓𝑡 ⊕ 𝑐𝑡−1 + 𝑖𝑡 ⊕ σ𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)  (4) 

ℎ𝑡 = 𝑜𝑡 ⊕ σ𝑐(𝑐𝑡)  (5) 

2.2.2. Self-attention [20] 

Attention mechanism has become popular in many tasks of NLP, including machine 
translation, question answering, and others.  Attention mechanism allows the model to focus 
selectively on each word regardless of the distance between words. 
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However, the attention mechanism relies on both input and output, which sometimes need 
the information from the previous sequence; therefore, the attention mechanism cannot be 
parallelized in the computation. To handle the mentioned problem, Self-attention mechanism is 
proposed. The only input sequence is considered in self-attention mechanism to learn the 
attention matrix; thus, the model can compute immediately without waiting to generate a 
previous output sequence and gain the ability of parallelization. 

One of variant self-attention mechanism is Scaled-dot-product attention, of which inputs are 
keys 𝐾, query 𝑄, and value 𝑉 vectors and computed, as shown in Equation 6. The dot products 
of the key and query vectors are performed, and then scaled by dividing √𝑑𝑘 where 𝑑𝑘 is the 
number of dimensions of key and query vectors. After that, an attention matrix is acquired from 
applying the softmax function to the scaled matrix. Finally, the matrix product of the computed 
attention matrix and value vectors is calculated to be the output of Scaled-dot-product 
attention. 

ScaledDotProductAttention(𝐾, 𝑄, 𝑉) = Softmax(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (6) 

2.3. Semi-supervised learning 

While deep neural networks achieve a satisfying accuracy over traditional methods, the 
model requires massive labeled data to generalize. Especially in NLP, an annotation of each task 
requires specialized knowledge from linguists; hence, receiving labeled data is costly and time-
consuming. While suffering from the scarcity of labeled data, unlabeled data is utilized in the 
training process to improve the model. 

There are many proposed semi-supervised learning approaches [30], which achieves 
successful results. Self-training [46, 47] is the simplest and earliest approach. As the name 
implied, the model, which trained with labeled data, is used to predict unlabeled data, and then 
the predicted confident data are used for training until there is no confident data.  

 However, training with self-training, the model cannot correct and magnify their error 
comes from wrong confident data. Therefore, multi-view training approaches [35, 48-50] are 
proposed to train different models with different views of data. In the first place, each model in 
multi-view training is learned separately, which take expensive computation. Ruder S. et al. [35] 
proposed multi-task tri-training to use with deep models for NLP tasks. Inspired by multi-task 
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learning, this semi-supervised approach train three models which share the intermediate 
representation.  

Recently, instead of multi-view training only with the full model, Cross-view training (CVT) 
[33] trains auxiliary views, which are generated from the restricted input, to match the primary 
view, which comes from the full view of input. Due to the lower computation and better 
accuracy of CVT, this method is selected as a semi-supervised learning algorithm to improve the 
representations of the proposed model. The detail of CVT is described in the following 
subsection. 

2.3.1. Cross-view training (CVT) [33] 

CVT is a semi-supervised learning technique whose goal is to improve the model 
representation using a combination of labeled and unlabeled data. During training, the model is 
trained alternately with one mini-batch of labeled data and 𝐵 mini-batches of unlabeled data. 

Labeled data are input into the model to calculate the standard supervised loss for each 
mini-batch and the model weights are updated regularly. Meanwhile, each mini-batch of 
unlabeled data is selected randomly from the pool of all unlabeled data; the model computes 
the loss for CVT from the mini-batch of unlabeled data. This CVT loss is used to train auxiliary 
prediction modules, which see restricted views of the input, to match the output of the primary 
prediction module, which is the full model that sees all the input. Meanwhile, the auxiliary 
prediction modules share the same intermediate representation with the primary prediction 
module. Hence, the intermediate representation of the model is improved through this process. 

Similar to the previous work, we also apply CVT to a sequence tagging task. However, our 
model is composed of self-attention and CRF modules, which were not included in the sequence 
tagging model in [33]. The previous CVT was conducted on an LSTM using the concepts of 
forward and backward paths, which are not intuitively acquired by the self-attention model [20]. 
Moreover, the output used to calculate CVT loss was generated by the softmax function, which 
does not operate with CRF. Thus, in our study, both the primary and auxiliary prediction modules 
needed to be constructed differently from the original ones. 

Similar to the previous work, we also apply CVT to a sequence tagging task. However, our 
model is composed of self-attention and CRF modules, which were not included in the sequence 
tagging model in [33]. The previous CVT was conducted on an LSTM using the concepts of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

forward and backward paths, which are not intuitively acquired by the self-attention model [20]. 
attending all words of an input at the same time.  

Moreover, the output used to calculate CVT loss was generated by the softmax function, 
which does not operate with CRF. Thus, in our study, it is necessary for both the primary and 
auxiliary prediction modules to be constructed differently from the original modules. 

2.4. Pre-trained language model 

Employing unlabeled data, many approaches in NLP tasks use the concept of pre-train to 
create representations from the massive unlabeled text. Pre-trained word vectors [37] are firstly 
proposed to generate dense word representations from tremendous data instead of sparse 
representations, such as one-hot vectors or TF-IDF. These pre-trained word vectors are included 
as the input representation to improve the performance of a model. However, utilizing pre-
trained word vectors do not regard of context around the words; thus, a pre-trained language 
model, which is trained from enormous unlabeled data, is presented to acquire contextual word 
representations [51, 52].  

The successful pretraining objectives are generally classified into two types, autoregressive 
(AR) and autoencoder (AE). AR are trained for estimating the probability distribution of the next 
word given the previous sequence; on the other word, AR encodes only uni-directional context. 
Meanwhile, AE intends to predict the original text from the corrupted text; therefore, AE can 
consider a bi-directional context from the corrupted text. 

There are various pre-trained language models proposed to utilize enormous unlabeled 
data. Peter M. E. et al. [36] proposed ELMo, which exploits Bi-LSTM to extract the contextual 
information from the text. ELMo is learned using the concept of autoregressive where the word 
representation is generated from the forward and backward paths of Bi-LSTM. 

From the success of Transformer, OpenAI GPT [38] utilizes Transformer instead of Bi-LSTM to 
be a pre-trained language model. OpenAI GPT is also trained with autoregressive like ELMo. 
Utilizing both left and right context jointly, BERT [29] uses the concept of the masked language 
model to train Transformer in an autoencoder way. The words in input text are randomly 
dropped and fed to the model, and then the rest of the input text tries to restore the dropped 
words.  
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In this work, we utilize the output of ELMO as a part of the input vectors of the model. The 
reason that we choose ELMO instead of BERT is using the transformer approach requires a too 
high amount of memory to fit in our GPU.  

2.4.1. Embedding from Language Model (ELMo) [36] 

Word representation is an embedding of the word which is changed from discrete 
representation into dense and continuous representation. Before ELMo is invented, the word 
embedding is pre-trained in a context-independent way. Therefore, Peter M. E. et al. proposed 
the new way to embed the sequence of words to be the input vectors for target tasks.  

This representation exploits two techniques to improve the capability of word vectors. First, 
sequences of characters in word are used as part of an input to improve robustness in spell error 
and comprehend an affix of words. Second, a model exploits the Bidirectional language model 
concept (BiLM) to learn the context of a sentence. By applying these two concepts, the 
representation gain the understanding of a complex characteristic of words and usability of the 
word in various linguistic context. 

The architecture of the model is based on 𝐿 layers of Bi-LSTM. The input of the model 𝑥𝑡 is 
composed of context-independent word embedding and character-based representation which 
produced by CNN. In Equation 7, Each step 𝑡 is embedded as a single vector 𝑅𝑡 where ℎ⃗ 𝑡,𝑗𝐿𝑀 is 
forward path output, ℎ⃖⃗𝑡,𝑗

𝐿𝑀 is backward path output of layer 𝑗. The vector 𝑅𝑡 comprise forward and 
backward path output from every 𝐿 layer. As a result, ELMo representation or 𝑅𝑡 acquire the 
advantage of different information provided by each layer.  

R𝑡 = {𝑥𝑘
𝐿𝑀, ℎ⃗ 𝑡,𝑗

𝐿𝑀 , ℎ⃖⃗𝑡,𝑗
𝐿𝑀| 𝑗 = 1,… , 𝐿}                                                    (7) 

In the pretraining process, the model is taught by the autoregressive concept or next-word 
prediction. In a forward path, each token 𝑥𝑘 is predicted from {𝑥𝑡|𝑡 = 1, … , 𝑘 − 1} as shown in 
Equation 8. Meanwhile, in a backward path, each token 𝑥𝑘 is predicted from {𝑥𝑡|𝑡 = 𝑘 + 1,… , 𝑇} 
as shown in Equation 9. The combination of both forward and backward paths is jointly 
formulated into the loss, as shown in Equation 10. Note that forward and backward path output 
is independently calculated, but its parameters of Bi-LSTM are sharing. 

𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) = ∏𝑝(𝑥𝑘|𝑥1, 𝑥2, … , 𝑥𝑘−1)

𝑇

𝑘=1

                                                 (8) 
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𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) = ∏𝑝(𝑥𝑘|𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑇)

𝑇

𝑘=1

                                            (9) 

∑(𝑙𝑜𝑔𝑝(𝑥𝑘|𝑥1, 𝑥2, … , 𝑥𝑘−1) + 𝑙𝑜𝑔𝑝(𝑥𝑘|𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑇))                                 (10)

𝑇

𝑘=1

 

2.5. Interpretation process 

Although deep learning models make an advance in the NLP domain, there are always 
questions about how the models think when they operate their tasks. The prior works show that 
sometimes the model learns unwanted social biases from the training data [53] or understands 
superficial patterns to perform their tasks [54]. Therefore, the human tries to understand the 
models and gives feedback when they make a mistake. 

To perform the interpretation at an instance level, many researchers provide various 
methods to explain the prediction in different aspects [53, 55-58].  There are also invented tools 
that ease to adapt to text classification [58, 59].  

An intermediate layer interpretation is also studied in many fields. In computer vision, the 
activation of each convolutional layer is utilized to show how the features of the images are 
crafted [60]. Meanwhile, in NLP, the attention mechanism is used in a machine translation and 
gives the visualization to show how the input text related to the answer [4]. 

However, most methods are invented for specific models and difficult for users to 
implement for their models. Therefore, Allennlp Interpret [61] is presented to give an 
understanding of the effect of the input sequence in the prediction through the gradient. The 
methods in this toolkit are easy to apply and can be utilized with any deep model in NLP. Two 
groups of methods are implemented in this toolkit. The first group is gradient-based saliency 
maps [55, 62, 63]. The process of interpretation is inspired by a gradient technique [55]. The 
intuition of this method is to identify how the change in each feature affects the model. 
Simonyan K. et al. [55] shows that the score, which indicates the effect of the change in each 
feature, can be derived from a gradient of the feature. Therefore, the gradient of the feature can 
indicate the importance of the feature in the model. The second group is an adversarial attack 
which investigates the weakness of the model [56, 57].  
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In this work, we focus on a saliency maps technique in Allennlp interpret toolkit to find the 
importance of each n-gram and compare between Thai and English top most important features. 
The technique that we apply is simply calculated from the vanilla gradient of word embedding. 
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3. RELATED WORKS 

In this chapter, three subsections are included. First, the prior works of Thai sentence 
segmentation are reviewed. The second section concerns English punctuation restoration due to 
the similarity between sentence segmentation and punctuation restoration. In the last section, Bi-
LSTM-CRF, which is considered as the baseline model, is described. 

3.1. Previous studies in Thai sentence segmentation 

Due to the essential of space in sentence segmentation, previous works [12-14] from  have 
focused on disambiguating whether a space functions as the sentence boundary. These works 
extract contextual features from words and POS around the space. Then, the obtained features 
around the corresponding space are input into traditional models to predict whether space is a 
sentence boundary. Moreover, to improve the model accuracy, Thai grammar rules [64, 65] are 
also integrated with the statistical models. 

Although a space is usually considered essential as a sentence boundary marker, 
approximately 23% of the sentences end without a space character in one news domain corpus 
[27]. Hence, Zhou N. et al. [27] proposed a word sequence tagging CRF-based model in which all 
words can be considered as candidates for the sentence boundary. A space is considered as only 
one possible means of forming a sentence boundary. The CRF-based model [16], which is 
extracted from n-grams around the considered word, achieves a F1 score of 91.9%, which is 
approximately 10% higher than the F1 scores achieved by other models [12-14] on the Orchid 
dataset, as mentioned in [27]. Nararatwong R. et al. [66] extend this model using a POS-based 
word-splitting algorithm to increase identifiable POS tags, resulting in better model accuracy. 
Because the focus of this work is adjusting the POS as a postprocessing method, which is an input 
of the model instead of proposing a new sentence segmentation model, this work will not be 
considered in this paper. 

In this work, we adopt the concept of word sequence tagging and compare it with two 
baselines: the CRF-based model with n-gram embedding, which is currently the state-of-the-art 
for Thai sentence segmentation, and the Bi-LSTM-CRF model, which is currently the deep 
learning state-of-the-art approach for sequence tagging. 
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3.2. Previous studies of English punctuation restoration 

Most languages use a symbol that functions as a sentence boundary; however, a few do not 
use sentence markers including Thai, Lao, and Myanmar. Thus, few studies have investigated 
sentence segmentation in raw text. However, studies on sentence segmentation, which is 
sometimes called sentence boundary detection, are still found in the speech recognition field 
[67]. The typical input to the speech recognition model is simply a stream of words. If two 
sentences are spoken back to back, by default, a recognition engine will treat it as one sentence. 
Thus, sentence boundary detection is also considered a punctuation restoration task in speech 
recognition because when the model attempts to restore the period in the text, the sentence 
boundary position will also be defined. 

Punctuation restoration not only provides a minimal syntactic structure for natural language 
processing, similar to sentence boundary detection but also dramatically improves the readability 
of transcripts. Therefore, punctuation restoration has been extensively studied. Many approaches 
have been proposed for punctuation restoration that uses different features, such as audio and 
textual features. Moreover, punctuation restoration is also considered to be a machine learning 
problem, similar to word sequence tagging and machine translation. 

A combination of audio and textual features was utilized in [68-70] to predict and restore 
punctuation, including pitch, intensity, and pause duration, between words. We ignore these 
features in our experiment because our main task—Thai sentence segmentation— does not 
include audio features. 

Focusing only on textual features, there are two main approaches, namely, word sequence 
tagging and machine translation. For the machine translation approach, punctuation is treated as 
just another type of token that needs to be recovered and included in the output. The methods 
in [71-73] restore punctuation by translating from unpunctuated text to punctuated text. 
However, our main task, sentence segmentation, is an upstream task in text processing, unlike 
punctuation restoration, which is considered a downstream task. Therefore, the task needs to 
operate rapidly; consequently, we focus only on the sequence tagging model, which is less 
complex than the machine translation model. 

In addition to those machine translation tasks, both traditional approaches and deep 
learning approaches must solve a word sequence tagging problem. Of the traditional approaches, 
contextual features around the considered word were used to predict following punctuation in 
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the n-gram [74] and CRF model approaches [75, 76]. Meanwhile, in the deep learning approaches, 
a deep convolutional neural network [77], T-LSTM (Textual-LSTM) [70] and a bidirectional LSTM 
model with an attention mechanism, called T-BRNN [78], have been adopted to predict a 
punctuation sequence from the word sequence. T-BRNN [78] was proposed to solve the task as a 
word-sequence tagging problem, and it is currently the best model that uses the word sequence 
tagging approach. Tilk O. et al. [78] also proposed a variant named T-BRNN-pre, which integrates 
pretrained word vectors to improve the accuracy. Meanwhile, Kim S. [79] proposed to insert a 
multi-head attention module between Bi-LSTM to improve the model accuracy called Deep 
Recurrent Neural Network with Layer-Wise Multi-head Attentions (DRNN-LWMA). The model is 
currently the best model that uses the word sequence tagging approach. Yi J. et al. [22] adopt 
the pre-training method to improve the accuracy of the model. This work selects the Bi-LSTM-
CRF as a backbone model. Meanwhile, the input words are embedded by a pre-trained BERT 
before feeding to the backbone model. Because POS tags are helpful for this task, POS tags are 
always fed to the model in this task. However, POS tags are generated from the machine learning 
model which is usually error-prone. Thus, Yi J. et al. [22] also adopted adversarial transfer 
learning to imitate the effect of an error from predicted POS tags. As a result, their proposed 
model gains a 9.2% F1 score improvement compared to prior works. 

To demonstrate that our model is generalizable to other languages, we compare it with 
other punctuation restoration models, including T-LSTM, T-BRNN, T-BRNN-pre, DRNN-LWMA, and 
DRNN-LWMA-pre. These models adopt a word sequence tagging approach and do not utilize any 
prosodic or audio features. 

3.3. Bi-directional LSTM with CRF (Bi-LSTM-CRF) [21] 

From the success of bidirectional LSTM in NLP, Bi-LSTM-CRF is proposed as a sequence 
tagging model for NLP tasks, such as Name entity recognition, POS tagging, and chunking. The 
model gain benefit of both deep learning and traditional approaches. By using Bi-LSTM, the 
model is capable of efficiently utilizing both past and future input features. Meanwhile, adapting 
CRF, the model can use sentence-level tag information for the decoding process. 

The architecture of Bi-LSTM-CRF is illustrated in Figure  3. The model is composed of two 
main modules. The first module is bi-directional LSTM, which extract the context vectors from 
the forward and backward paths. The second module is CRF, which used the output of bi-
directional LSTM to calculate emission and transmission scores and then use the Viterbi 
algorithm to decode the best sequence tag for an input. 
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Figure  3. An architecture of Bi-LSTM-CRF [21]. 
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4. METHODOLOGY 

In this chapter, we describe our methodology in two subsections. The first subsection 
specifies the model architecture and the details of each module. Meanwhile, the second 
subsection expounds on how the model is trained with unlabeled data through pre-trained 
concept and the modified CVT. 

4.1. Model architecture 

In this work, the model predicts the tags 𝑦 = [𝑦1 , 𝑦2, … , 𝑦𝑁], ∀𝑦 ∈ 𝑌 for the tokens in a word 
sequence 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁] where 𝑁 is the sequence size and 𝑥𝑡, 𝑦𝑡 denote the token and its 
tag at timestep t, respectively. The word sequence is fed into the model at the same time to 
provide sequential information of the input text to the model. Each token 𝑥𝑡 consists of a word, 
its POS, and its type. There are five defined word types: English, Thai, punctuation, digits, and 
spaces. 

The tag set 𝑌 is populated based on the considered task. In Thai sentence segmentation, 
the assigned tags are 𝑠𝑏 and 𝑛𝑠𝑏; 𝑠𝑏 denotes that the corresponding word is a sentence 
boundary considered as the beginning of a sentence, while and 𝑛𝑠𝑏 denotes that the word is not 
a sentence boundary. Meanwhile, there are four tags in the punctuation restoration task. Words 
not followed by any punctuation are tagged with O. Words that are followed by a period ". ", 
comma "," or question mark "?" are tagged to 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑐𝑜𝑚𝑚𝑎, and 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, respectively. 

Our model architecture is based on Bi-LSTM-CRF, as shown in Figure  4. The model is 
divided into three modules. The first, low-level module, consists of two separate structures: local 
and distant structures. This module is designed to utilize an unlabeled dataset via cross-view 
training, which will be described in Section 4.2.2. The module gives the two separate outputs 
from two structures, which are only concatenated to feed to the next module. Meanwhile, the 
second, high-level module, contains a sequence of stacked Bi-LSTM and self-attention layers, 
which helps the model learn the context from the whole word sequence. The final module, the 
prediction module, is responsible for predicting the tags 𝑦 . Each module is described more 
completely in the next three subsections. 
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Figure  4. Model architecture that integrates local and distant representation. 

This model is composed of three main modules: a low-level module, a high-level module, and a 

prediction module. In the low-level module, two structures (local and distant) are responsible for 

extracting different features. 

4.1.1. Low-level module 

A sequence of word tokens is input into the low-level module. The input tokens pass 
through two structures. The first structure generates a sequence of local representation vectors 
𝑅𝑙𝑜𝑐𝑎𝑙 = [𝑟 1, 𝑙𝑜𝑐𝑎𝑙 , 𝑟 2, 𝑙𝑜𝑐𝑎𝑙 , … , 𝑟 𝑁, 𝑙𝑜𝑐𝑎𝑙], which is embedding vectors of n-gram features. After 
obtaining a sequence of representation vectors, the local representation vectors are fed to the 
Bi-LSTM to obtain the recurrent representation vectors. 𝑅𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =

[𝑟 1, 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑟 2, 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , … , 𝑟 𝑁, 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡], as shown in Equation 11: 

Rrecurrent = BiLSTM(Rlocal) (11) 

The second structure generates low-level distant representation vectors 𝑅𝑑𝑖𝑠𝑡𝑎𝑛𝑡 =

[𝑟 1, 𝑑𝑖𝑠𝑡𝑎𝑛𝑡 , 𝑟 2, 𝑑𝑖𝑠𝑡𝑎𝑛𝑡 , … , 𝑟 𝑁, 𝑑𝑖𝑠𝑡𝑎𝑛𝑡], which produced by Self-attention. Then, the recurrent and 
distant representation vectors are concatenated to form the low-level representation vector R  =
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[𝑟 1, 𝑟 2, … , 𝑟𝑁], as shown in Equation 12, where ⊕ represents a concatenation between two 
vectors: 

r t = r t,recurrent ⊕ r t,distant  (12) 

4.1.1.1. Local structure 

This structure is shown as the left submodule of the low-level module in Figure  4. It 
extracts the local representation vectors 𝑅𝑙𝑜𝑐𝑎𝑙. Its input tokens are used to create n-gram tokens, 
which are unigrams 𝑥𝑎 , bigrams (𝑥𝑎 , 𝑥𝑏), and trigrams (𝑥𝑎 , 𝑥𝑏, 𝑥𝑐). Each n-gram token is 
represented as an embedding vector, which is classified as a unigram embedding vector 𝑒 𝑢𝑛𝑖, a 
bigram embedding vector 𝑒 𝑏𝑖 or a trigram embedding vector 𝑒 𝑡𝑟𝑖. Each vector 𝑒 𝑔𝑟𝑎𝑚 is mapped 
from a token by gram embedding 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑔𝑟𝑎𝑚(𝑥), which is a concatenated vector of the 
word embedding 𝑊𝑜𝑟𝑑𝑔𝑟𝑎𝑚(𝑥), POS embedding 𝑃𝑂𝑆𝑔𝑟𝑎𝑚(𝑥) and type embedding 𝑇𝑦𝑝𝑒𝑔𝑟𝑎𝑚(𝑥), 
as shown in Equation 9: 

Embeddinggram(x) = Wgram(x) ⊕ POSgram(x) ⊕ Typegram(x)  (13) 

Unigram embedding vector Embedding𝑢𝑛𝑖(𝑥) is included along with contextual pretrained 
vector 𝐸𝐿𝑀𝑜uni(x)  from ELMo, as shown in Equation 14: 

Embeddinguni(x) = Wuni(x) ⊕ POSuni(x) ⊕ Typeuni(x)  ⊕ 𝐸𝐿𝑀𝑜uni(x)   (14) 

Each n-gram token at timestep 𝑡 is generated by the previous, present and next token (𝑥𝑡−1, 
𝑥𝑡 , 𝑥𝑡+1) and embedded into vectors as shown in Equations 15-17 for unigram, bigram, and 
trigram consecutively. 

𝑒 𝑡,𝑢𝑛𝑖 = Embedding𝑢𝑛𝑖(𝑥𝑡)  (15) 

𝑒 𝑡,𝑏𝑖 = Embedding𝑏𝑖(𝑥𝑡−1, 𝑥𝑡)  (16) 

𝑒 𝑡,𝑡𝑟𝑖 = Embedding𝑡𝑟𝑖(𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1)  (17) 

At each timestep 𝑡, a local representation vector 𝑟𝑡,𝑙𝑜𝑐𝑎𝑙 is combined from the n-gram 
embedding vectors generated from the context around 𝑥𝑡. A combination of embedding vectors, 
which is used to construct a local representation vector, is shown in Equation 18. A combination 
consists of the unigram, bigram, and trigram embedding vectors at timesteps t-1, t and t+1 and it 
is a concatenation of all the embedding vectors: 

𝑟 𝑡,𝑙𝑜𝑐𝑎𝑙 = 𝑒 𝑡−1,𝑢𝑛𝑖 ⊕ 𝑒 𝑡,𝑢𝑛𝑖 ⊕ 𝑒 𝑡+1,𝑢𝑛𝑖 ⊕ 𝑒 𝑡−1,𝑏𝑖 ⊕ 𝑒 𝑡,𝑏𝑖 ⊕ 𝑒 𝑡+1,𝑏𝑖 ⊕ 𝑒 𝑡−1,𝑡𝑟𝑖 ⊕ 𝑒 𝑡,𝑡𝑟𝑖 ⊕ 𝑒 𝑡+1,𝑡𝑟𝑖  (18) 
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4.1.1.2. Distant structure 

The distant structure, which is a self-attention module, is shown in Figure  4 on the right 
side of the low-level module. The structure extracts low-level distant representation vectors 
𝑅𝑑𝑖𝑠𝑡𝑎𝑛𝑡 from a sequence of unigram embedding vectors 𝐸𝑢𝑛𝑖 , as shown in Equation 19. In this 
case, the self-attention module is a scaled dot-product attention, where key, query, and value 
vectors are the linear projections of the unigram embedding vectors shown in Figure  5. The 
linear transformations for key, query, and value are learned separately and updated in the model 
through backpropagation. The output vector, which is the scaled dot-product attention at each 
timestep, is concatenated with the input vector 𝑒 𝑡,𝑢𝑛𝑖 and projected by a linear transformation. 
That projected vector is the output vector of a self-attention module, which is a low-level distant 
representation vector. 

𝑅𝑑𝑖𝑠𝑡𝑎𝑛𝑡 = SelfAttention(𝐸𝑢𝑛𝑖)  (19) 

 

Figure  5. The architecture of a self-attention module. 

This module mainly contains Scaled-Dot Product Attention, which requires three inputs: Key, Query, 

and Value. Those inputs are generated from the same input sequence but projected by different linear 

transformations. 

4.1.2. High-level module 

The low-level representation vectors R are used as the input for this module, which outputs 
the high-level representation vectors H whose calculation is shown in Equation 20. The high-level 
module, as shown in Figure  4, is composed of a stacked bidirectional LSTM and a self-attention 
module. A stacked bidirectional LSTM contains K layers of bidirectional LSTMs in which the 
output from the previous bidirectional LSTM layer is the input of the next bidirectional LSTM 
layer. The self-attention part of this structure is the same as that in the low-level distant 
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structure. The self-attention module helps to generate the high-level distant representation 
vectors that are output by the high-level module. 

𝐻 = SelfAttention(StackBiLSTM(𝑅))  (20) 

4.1.3. Prediction module 

The prediction module is the last module. It includes two layers: a fully connected layer 
and a CRF layer. In the fully connected layer, the output vectors from the high-level module are 
projected by a linear transformation as shown in Equation 21. The purpose of this layer is to 

create the virtual logit vectors 𝐺 = [𝑔 1, 𝑔 2, … , 𝑔 𝑁], which represent the probability distribution for 
CVT, as discussed in Section 4.2.2.2. Therefore, the number of dimensions of logits equals the 
number of possible tags in each task: 

𝑔 𝑡 = NN(ℎ⃗ 𝑡)  (21) 

The CRF layer is responsible for predicting the tag 𝑦𝑡 of a token at each timestep, as shown 
in Equation 22. The layer receives a sequence of virtual logit vectors (G) as input and then 
decodes them to a sequence of tags 𝑦  using the Viterbi algorithm. 

𝑦 = CRF(𝐺)  (22) 

4.2. Training process 

To train the sentence segmentation model, the process is split into two steps. First, the 
language model (ELMo) is trained with unlabeled data. The pre-trained language model is treated 
as a part of input vectors for the model. The second step is to train the model with CVT for the 
sentence segmentation problem. Each mentioned step is described in the following subsections. 

4.2.1. Pre-trained language model 

In this process, the pre-trained language models come from different sources depending on 
the language. In UGWC, we pre-train ELMo with original implementation on our unlabeled 
dataset. Meanwhile, in English punctuation restoration, the original ELMo of English is applied in 
this case. 
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Figure  6. Unlabelled data utilization. 

two auxiliary predictions (𝑝 𝑡,𝑙𝑜𝑐𝑎𝑙 and 𝑝 𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑡) are obtained from the local and distant structures in 

the low-level module. The primary prediction 𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦  is obtained from the virtual logit vector 𝑔 𝑡. 

4.2.2. Cross-view training (CVT) 

In this step, CVT is adopted to train the sentence segmentation with labeled and unlabelled 
data simultaneously in a semi-supervised learning way. The weights of the model are initialized 
normally, except for the low-level module, which is initialized from the pre-trained language 
model, as described in Section 4.2.1. 

As discussed in Section 2.3.1, CVT requires primary and auxiliary prediction modules for 
training with unlabeled data to improve the representation. Thus, we construct both types of 
prediction modules for our model. The flow of unlabeled data, which is processed to obtain a 
prediction by each module, is shown in Figure  6. The output of each prediction module is 
transformed into the probability distribution of each class by the softmax function and then used 

to calculate 𝐿𝑜𝑠𝑠𝐶𝑉𝑇, as shown in Equation 23. 

𝐿𝑜𝑠𝑠𝐶𝑉𝑇 =
1

|𝐷|
∑𝐷KL(𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑝 𝑡,𝑙𝑜𝑐𝑎𝑙)

𝑡∈𝐷

+ 𝐷KL(𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑝 𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑡)  (23) 

The 𝐿𝑜𝑠𝑠𝐶𝑉𝑇 value is based on the Kullback–Leibler divergence (KL divergence) between the 
probability distribution of the primary 𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 output and those of two auxiliary modules, 
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𝑝 𝑡,𝑙𝑜𝑐𝑎𝑙 and 𝑝 𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑡, where 𝑡 ∈ [1, … , 𝑁]. The KL divergence at each timestep is averaged when 
the timesteps are dropped timesteps D. 

The details of the primary and auxiliary prediction modules, which are used in the 𝐿𝑜𝑠𝑠𝐶𝑉𝑇 
calculation, are described in the following subsections. 

4.2.2.1. Primary prediction module 

In [33], the output of the primary prediction module is acquired from the last layer and 
used to predict tags. However, our model uses a CRF layer to decode the tags instead of the 
softmax function. Thus, in semi-supervised learning, the probability distribution of the primary 
prediction module should be acquired from the CRF layer. However, the Viterbi algorithm, which 
is used for decoding, gives only the best combination for the prediction, but does not provide 
the probability distribution. Normally, the distribution from the CRF is calculated by a forward-
backward algorithm [80] which is time consuming. To reduce the training time, the probability 
distribution of the primary prediction module 𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is obtained from the output of the 
softmax function, whose input is a virtual logit vector 𝑔 𝑡, as shown in Equation 24. 

𝑝 𝑡,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = Softmax(𝑔 𝑡)  (24) 

4.2.2.2. Auxiliary prediction module 

Two auxiliary views are included to improve the model. The first view is generated from a 

recurrent representation vector 𝑟𝑡,𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to acquire the local probability distribution 𝑝 𝑡,𝑙𝑜𝑐𝑎𝑙, 
where 𝑡 ∈ [1, … , 𝑁]. The second view is generated from the low-level distant representation 
vectors 𝑟𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑡 to acquire the probability distribution of a distant structure in the low-level 
module 𝑝 𝑡,𝑑𝑖𝑠𝑡𝑎𝑛𝑡 where 𝑡 ∈ [1, … , 𝑁]. By generating the views from these representation vectors 
separately, the local and distant structures in the low-level module can improve equally. 

Although both representation vectors are used separately to create auxiliary views, the input 
of each structure is still not restricted, unlike [6], where the input is restricted to only previous or 
future tokens. Because BERT, which is trained by the masked language model, outperforms 
OpenAI GPT, which uses an autoregressive approach for training as reported in [29], we adopt the 
concept of the masked language model [81] to obtain both auxiliary views. This approach allows 
the representation to fuse the left and the right context, which results in a better representation. 
By using the masked language model, some tokens at each timestep are randomly dropped and 
denoted as removed tokens <REMOVED>; then, the remaining tokens are used to obtain auxiliary 
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predictions in the dropped timesteps 𝐷 = [ 𝑑 ∈ 𝑁 | 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑖𝑠 𝑎 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ], as shown 
in Figure  7. The details of both auxiliary prediction modules are described below. 

 

Figure  7. An example of performing a masked language model. 
Words are dropped (denoted as <REMOVED>) randomly. Those positions are used to calculate 

𝐿𝑜𝑠𝑠𝐶𝑉𝑇 and update the auxiliary prediction modules to improve the model. 

4.2.2.3. Local auxiliary module 

For recurrent representation vectors, if one of the tokens is dropped, the related n-gram 
tokens that include the dropped tokens will also be dropped. For example, if (𝑥𝑡) is dropped, 
(𝑥𝑡−1, 𝑥𝑡) and (𝑥𝑡 , 𝑥𝑡+1) will also be dropped as removed tokens in the case of a bigram. The 
remaining n-gram tokens are then used to obtain the recurrent representation vectors at the 
dropped timesteps. Then, the vectors are provided as an input to the softmax function to obtain 
the probability distribution of the first auxiliary prediction module, as shown in Equation 25. 

𝑝 𝑑,𝑙𝑜𝑐𝑎𝑙 = Softmax (NN(𝑟 𝑑,𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡))  (25) 

4.2.2.4. Distant auxiliary module 

In the other auxiliary prediction module, a sequence of the low-level distant representation 
vectors is generated and some tokens are dropped. This sequence of vectors is also input into 
the Softmax function, just as in the first auxiliary prediction module, and the output is another 
probability distribution, which is the second auxiliary prediction, as shown in Equation 26. 

𝑝 𝑑,𝑑𝑖𝑠𝑡𝑎𝑛𝑡 = Softmax (NN(𝑟 𝑑,𝑑𝑖𝑠𝑡𝑎𝑛𝑡))  (26) 
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4.3. Interpretation process 

In this section, we discuss our method to interpret our model decision process by identifying 
important n-gram features. These selected features can be compared to the human annotations 
or the label of the dataset in order to further analyze the model. The process is inspired by a 
vanilla gradient technique, which is proposed in [55].  

Based on Equation 27, nine types of features, which are unigram, bigram, and trigram at 
timesteps 𝑡 − 1, 𝑡 and 𝑡 + 1, are used as input features for our model. Thus, the gradient of 
these nine types of n-gram features are calculated. The gradient ∇𝑒 𝑡,𝑢𝑛𝑖(x) is the derivative of the 
output of the model 𝑦 with respect to 𝑒 𝑡,𝑔𝑟𝑎𝑚(𝑥) where 𝑔𝑟𝑎𝑚 ∈ {𝑢𝑛𝑖, 𝑏𝑖, 𝑡𝑟𝑖} is the token type 
and 𝑝𝑜𝑠 ∈ {−1, 0, +1} is the relative position from the current timestep, as shown in Equation 
27. 

∇𝑒 𝑡,𝑔𝑟𝑎𝑚(x)  =  
∂𝑦

𝜕𝑒 𝑡,𝑔𝑟𝑎𝑚(𝑥)
                                                           (27) 

After that, the score of each feature 𝑢𝑝𝑜𝑠,𝑔𝑟𝑎𝑚 is calculated, as shown in Equation 28. 
The score is the summation of all the gradients of tokens 𝑥𝑡+𝑝𝑜𝑠,𝑔𝑟𝑎𝑚 that are 𝑢𝑝𝑜𝑠,𝑔𝑟𝑎𝑚 over all 
timesteps 𝑡 ∈ {1, … , 𝑁} in all documents 𝐷. This score is used to measure the importance of 
each feature. When the summed gradient of the feature is high, that feature is important in 
contributing to the model's predictions. On the other hand, if the summed gradient of a feature is 
low, that feature is not necessary for the model's prediction. 

𝑆𝑐𝑜𝑟𝑒(𝑢𝑝𝑜𝑠,𝑔𝑟𝑎𝑚) =  ∑∑∇𝑒 𝑡+pos,𝑔𝑟𝑎𝑚(𝑥)

𝑁

𝑡=1

𝐷

 

                                            (28) 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑡+𝑝𝑜𝑠,𝑔𝑟𝑎𝑚 = 𝑢𝑝𝑜𝑠,𝑔𝑟𝑎𝑚    

To compare the model to humans, two lists of tokens are created from the computed 
score and labels. Then, the intersection of both lists is used to compare the similarity. The first 
list 𝐓𝑝𝑜𝑠,𝑔𝑟𝑎𝑚

(𝑚𝑜𝑑𝑒𝑙)  includes the top 500 features which have the highest computed score 
𝑆𝑐𝑜𝑟𝑒(𝑢𝑝𝑜𝑠,𝑔𝑟𝑎𝑚) from the gradient. The second list 𝐓𝑝𝑜𝑠,𝑔𝑟𝑎𝑚

(𝑙𝑎𝑏𝑒𝑙)  contains of top 500 features with 
the highest frequency as a sentence boundary in the training set. After that, the features in the 
intersection between two lists are counted, as shown in Equation 29, where ‖A‖ is a number of 
instances in a set 𝐀. The counted number Count(𝑝𝑜𝑠, 𝑔𝑟𝑎𝑚) will be used for further analysis in 
Section 5.4.2.3. 
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Count(𝑝𝑜𝑠, 𝑔𝑟𝑎𝑚) =  ‖𝐓𝑝𝑜𝑠,𝑔𝑟𝑎𝑚
(𝑚𝑜𝑑𝑒𝑙)

 ∩  𝐓𝑝𝑜𝑠,𝑔𝑟𝑎𝑚
(𝑙𝑎𝑏𝑒𝑙)

‖                                           (29) 
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5. EXPERIMENTS AND RESULTS 

In this section is described conducted experiments. We have already explored the effect of 
local and distant representations. Moreover, the impact of CVT has already been investigated. 
However, there is no experiment on the pre-training process. 

5.1. Dataset 

Three datasets are used in the experiments as described in the following subsections. We 
use two datasets for Thai sentence segmentation, and the third dataset is used for English 
punctuation restoration. The statistics of the preprocessed data are shown in Table  1, including 
the number of sequences and the number of vocabulary words in each dataset.  

Table  1. The number of passages and vocabulary words in each dataset.  

Dataset Statistics # passage # words # vocab 

Orchid (Thai) Label data 3,427 685,319 17,047 
UGWC (Thai) Label data 48,374 1,242,118 46,463 

Unlabeled data 96,777 40,431,319 81.932 

Labeled + Unlabeled 145,151 41,673,437 109,415 

IWSLT (English) Label data 12,803 2,547,797 47,532 

Unlabeled data 8,449 1,678,167 35,931 

Labeled + Unlabeled 21,252 4,225,964 56,762 

 

The labeled and unlabeled data are separately counted and shown in the rows. 

Note: There are no unlabeled data in the Orchid dataset due to the lack of the same word segmentation 

and POS tag set. 

We also calculate the average number of words per passage in the unlabeled data that do 
not appear in the labeled data, as shown in Table  2. 

Table  2. Average number of words per passage that exist in the unlabeled data but not in the labeled 

data. 

Dataset # words 
UGWC 0.650 

IWSLT 1.092 
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5.1.1. Thai sentence segmentation 

In this subsection, two Thai sentence segmentation datasets are described. The first dataset 
is Orchid and the second one is UGWC. 

5.1.1.1. Orchid [18] 

This dataset is a Thai part-of-speech-tagged dataset containing 10,864 sentences. In the 
corpus, text was separated into paragraphs, sentences, and words hierarchically by linguists. Each 
word was also manually assigned a POS by linguists. These data include no unlabeled data with 
the same word segmentation and POS tag set. Hence, we do not execute semi-supervised 
learning or pretraining process on this dataset. Sample paragraphs in this dataset is shown in 
Figure  8. 

 

Figure  8. Labeled paragraphs in Orchid dataset. Here, sb represents a sentence boundary. 

The text in this dataset is collected from publications in the NECTEC annual conference. 
Therefore, the text is structured as formal document. The documents usually contain similar 
word phrases or function words [82] to convey the lexical meaning such as “For example” or 
“Introduction”. Moreover, the named entities like the name of organization are often found in 
the text. As a result, the text sometimes contains duplicate word phrases or content words [82]. 

Our data preprocessing on the ORCHID corpus was similar to that in [27]: all the comments 
are removed, and the data are partitioned into 10 parts containing equal numbers of sentences 
to support 10-fold cross-validation. Each training set is split into one part used for validation and 
the rest is used for model training. Subsequently, all the words in each dataset are concatenated 
and then separated into sequences with 200 words per instance. Each sequence always begins 
with the first word of a sentence. If a sequence ends with an unfinished sentence, the next 
sequence starts with that complete sentence. 
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5.1.1.2. UGWC (User-Generated Web Content) [43] 

This Thai dataset includes many types of labeled data useful in sentence segmentation 
tasks. The raw text was generated by users having conversations in the financial domain and was 
acquired mainly by crawling social sites. The labeled data for sentence segmentation were 
manually annotated by linguists using the definitions in [43]. Sample paragraph in this dataset is 
shown in Figure  9. 

 

Figure  9. Labeled paragraphs in UGWC dataset. Here, sb represents a sentence boundary 

The text in this dataset is crawled from social media, which includes both conversations and 
news which are related to the financial domain. The text that is collected from conversations are 
normally formal, so the text always ends up with final particles “ครบั” and “คะ”. While, if the text 
is informal, the emoticon is often found in the text. In addition, the text from news contains a 
number of conjunctions to create the influence article. 

At the time of this study, the dataset was extended from that in [43]; the data were 
collected from January 2017 to December 2017. The labeled dataset includes 48,374 passages. 
To support semi-supervised learning, the first 3 months of data (96,777 passages) are unlabeled. 

Because the data stem from social media, some text exists that cannot be considered as 
part of any sentence, such as product links, symbols unrelated to sentences, and extra space 
between sentences. These portions were not originally annotated as sentences by the linguists. 
However, in this work, we treat these portions as individual sentences and tag the first word of 
each fraction as the sentence boundary. 

For evaluation purposes, the collection of passages in this dataset is based on 5-fold cross-
validation, similar to the previous work [43]. The passages are treated as input sequences for the 
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model. For each passage, word segmentation and POS tagging are processed by the custom 
models from this dataset. 

5.1.2. English Punctuation Restoration 

For an English punctuation restoration experiment, a common dataset called IWSLT is 
performed. The detail of dataset is described in the following subsection. 

5.1.2.1. IWSLT [83] 

We adopted this English-language dataset to enable comparisons with models intended for 
other languages. The dataset is composed of TED talk transcripts. To compare our model with 
those of previous works, we selected the training dataset for the machine translation track in 
IWSLT2012 and separated it into training and validation sets containing 2.1 million and 295 
thousand words, respectively. The testing dataset is the IWSLT2011 reference set, which contains 
13 thousand words. To acquire unlabeled data for semi-supervised learning, we adopted the 
IWSLT2016 machine translation track training data; duplicate talks that also appear in IWSLT2012 
are discarded. 

The data preprocessing follows the process in [78]. Each sequence is generated from 200 
words, of which beginning is always the first word in a sentence. If a sentence is cut at the end of 
a sequence, that sentence is copied in full to the beginning of the next sequence. 

To use our model, the POS of each word is required. However, the IWSLT dataset contains 
only the raw text of transcripts and does not include POS tags. Thus, we implement POS tagging 
using a special library [84] to predict the POS of each word. 

5.2. Hyperparameter settings 

Before mapping each token included in the unigram, bigram, and trigram to the embedding 
vector, we limit the minimum frequency of occurring words that are not marked as an unknown 

token. There are 2 parameters set for the unigram 𝐶𝑤𝑜𝑟𝑑 and the remaining 𝐶𝑛𝑔𝑟𝑎𝑚, respectively. 
We found that model accuracy is highly sensitive to these parameters. Therefore, we use a grid 
search technique to find the best value for both parameters for the model. 

We apply two optimizers used in this work: Adagard [85] and Adam [86], whose learning 
rates are set to 0.02 and 0.001 for the Thai and English datasets, respectively. To generalize the 
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model, we also integrate L2 regularization with an alpha of 0.01 to the loss function for model 
updating. Moreover, dropout is applied to the local representation vectors, recurrent 
representation vectors, between all bidirectional LSTMs and enclosed by the self-attention 
mechanism in the high-level module. 

During training, both the supervised and semi-supervised models are trained until the 
validation metrics stop improving; the metrics are (1) sentence boundary F1 score and (2) overall 
F1 score for Thai sentence segmentation and English punctuation restoration, respectively. 

CVT has three main parameters that impact model accuracy. The first is the drop rate of the 
masked language model, which determines the number of tokens that are dropped and used for 
learning auxiliary prediction modules as described in Section 3.2. The second is the number of 
unlabeled mini-batches 𝐵 used for training between supervised mini-batches. Third, rather than 
using the same dropout rate for the local representation vectors, a new dropout rate is assigned. 

Meanwhile, ELMo is pre-trained with different learning rate from the model. The parameters 
of ELMo, such as the layers of Bi-LSTM and hidden nodes are set as same as original. The pre-
training of ELMo is processed three epochs with batch size equals 32. 

The hyperparameter values were determined through a grid search to find their optimal 
values on the different datasets. All the hyperparameters for each dataset are shown in Table  3. 
The optimal values from the grid search depend on the task. For Thai sentence segmentation, 
the hyperparameters are tuned to obtain the highest sentence boundary F1 score, while the 
overall F1 score is used to tune the parameters for English punctuation restoration. 

Table  3. Model hyperparameters for each dataset. 

Parameters Orchid UGWC IWSLT 
𝐶𝑤𝑜𝑟𝑑 2 2 2 
𝐶𝑛𝑔𝑟𝑎𝑚 2 2 13 

Optimizer AdaGrad AdaGrad Adam 
Learning Rate 0.02 0.02 0.001 

Batch size 16 16 16 
Early stopping patience 5 5 5 

Unigram embedding size (Text) 64 64 300 

Unigram embedding size (POS and Type) 32 32 300 
Bigram & Trigram embedding size (Text) 16 16 10 
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Parameters Orchid UGWC IWSLT 

Bigram & Trigram embedding size (POS and Type) 8 8 10 
LSTM hidden size 25 25 256 

Number of LSTM layers in High-level module (𝐾) 2 2 4 
Self-attention output size 50 50 256 

A number of Low-level Self-attention layers 1 1 1 

A number of High-level Self-attention layers 1 1 1 
Low-level Self-attention projection size 64 64 32 

High-level Self-attention projection size 25 25 128 
Local embedding dropout 0.30 0.30 0.30 

Dropout between layers 0.15 0.15 0.15 

Dropped rate of masked language model - 0.30 0.30 
Number of unlabeled mini-batch B - 1 2 

Dropout of the unlabeled input - 0.50 0.30 
Hidden size of LSTM in ELMo - 4096 4096 

Number of layers of LSTM in ELMo - 2 2 

5.3. Evaluation 

During the evaluation, each task is assessed using different metrics based on previous works. 
For Thai sentence segmentation, three metrics are used in the evaluation: sentence boundary F1 
score, non-sentence boundary F1 score, and space correct [27]. In this work, we mainly focus on 
the performance of sentence boundary prediction and not non-sentence boundary prediction or 
space prediction. Therefore, we make comparisons with other models regarding only their 
sentence boundary F1 scores. The equation for the sentence boundary F1 score metric is shown 
in Equation 32 where #(𝐴) is the number of 𝐴. In calculating the F1 score, the positive class is 
defined as the sentence boundary, and the negative class is defined as the non-sentence 
boundary.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑏 =
#Collectly predicted sentence boundaries

#All predicted sentence boundaries
 

𝑟𝑒𝑐𝑎𝑙𝑙𝑠𝑏 =
#Collectly predicted sentence boundaries

#All expected sentence boundaries
 

𝐹1,𝑠𝑏 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑏 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑠𝑏

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑏 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑠𝑏
  (32) 
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For English punctuation, the evaluation is measured on each type of punctuation and 
overall F1 score. For the punctuation restoration task, we care only about the performance of 
the samples belonging to the classes that are tagged to words followed by punctuation; 
therefore class 𝑂, which represents words not immediately followed by punctuation, is ignored in 
the evaluation. Consequently, the overall F1 score does not include 𝑂 as the positive class in 
Equation 33. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
#Collectly predicted punctuation marks

#All predicted punctuation marks
 

𝑟𝑒𝑐𝑎𝑙𝑙𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
#Collectly predicted punctuation marks

#All expected punctuation marks
 

𝐹1,𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑎𝑙𝑙 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑎𝑙𝑙 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑜𝑣𝑒𝑟𝑎𝑙𝑙
  (33) 

To compare the performance of each punctuation restoration model in a manner similar to 
sentence segmentation, the binary F1 score is calculated to measure model accuracy, as shown 
in Equation 34. The calculation of this metric is the same as that used in [77]. The metric 
considers only where the punctuation position is and ignores the type of restored punctuation. 
Therefore, this measure is similar to the metric sentence boundary F1, which only considers the 
position of the missing punctuation. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2−𝑐𝑙𝑎𝑠𝑠 =
#Collectly predicted punctuation positions

#All predicted punctuation positions
 

𝑟𝑒𝑐𝑎𝑙𝑙2−𝑐𝑙𝑎𝑠𝑠 =
#Collectly predicted punctuation positions

#All expected punctuation positions
 

𝐹1,2−𝑐𝑙𝑎𝑠𝑠 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2−𝑐𝑙𝑎𝑠𝑠 × 𝑟𝑒𝑐𝑎𝑙𝑙2−𝑐𝑙𝑎𝑠𝑠

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛2−𝑐𝑙𝑎𝑠𝑠 + 𝑟𝑒𝑐𝑎𝑙𝑙2−𝑐𝑙𝑎𝑠𝑠
  (34) 

5.4. Results and Discussions 

We report and discuss the results of our two tasks in five subsections. Comparison of CNN 
and n-gram models for local representation are discussed in the first subsection. The second and 
third subsections include the effect of local representation and distant representation, 
respectively. The impact of CVT is explained in the fourth subsection. The last subsection 
presents a comparison of our model and all the baselines. Moreover, we also conduct paired t-
tests to investigate the significance of the improvement of each contribution. 
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5.4.1. Comparison of CNN and n-gram models for local representation 

Jacovi A. et al. [28] proposed that a CNN can be used as an n-gram detector to capture local 
text features. Therefore, we also performed an experiment to compare a CNN and n-gram 
embedded as local structures. The results in Table  4 show that the model using the embedded 
n-gram yields greater improvement than the one using an embedded CNN on the Orchid and 
UGWC datasets. 

Table  4. Comparison between CNN and n-gram embedding for local representation extraction. 

Model F1 score (%) 
ORCHID UGWC 

Bi-LSTM-CRF 90.9 87.6 
Bi-LSTM-CRF + n-gram 92.4 88.7 
Bi-LSTM-CRF + CNN 91.2 87.9 

5.4.2. Effect of local representation 

To find the effect of local representation, we compare a standard Bi-LSTM-CRF model using 
our full implementation to the model that includes n-gram embedding to extract local 
representation. In Table  5 and Table  6, the standard Bi-LSTM-CRF model is represented as Bi-
LSTM-CRF (row (e)), while the models with local features are represented as + 𝑙𝑜𝑐𝑎𝑙 (row (f)). 

Table  5. The result of Thai sentence segmentation for each model. 

For the Orchid dataset, we report the average of each metric on 10-fold cross-validation. Meanwhile, 

average metrics from 5-fold cross-validation are shown for the UGWC dataset. 

Model Orchid UGWC 

precision recall F1 precision recall F1 

(a) POS-trigram [13] 74.4 79.8 77.0 - - - 

(b) Winnow [12] 92.7 77.3 84.3 - - - 

(c) ME [14] 86.2 83.5 84.8 - - - 

(d) CRF (Thai baseline) [27] 94.7 89.3 91.9 87.4 82.7 85.0 

(e) Bi-LSTM-CRF [21] 92.1 89.7 90.9 87.8 87.4 87.6 

Our Improvement 

(f) + local 93.1 91.7 92.4 88.4 89.0 88.7 

(g) + local + distant 93.5 91.5 92.5 88.8 88.8 88.8 

(h) + local + distant + CVT - - - 88.9 89.0 88.9 

(i) + local + distant + CVT + ELMo - - - 88.8 91.0 89.9 
Note: The CVT model is not tested on the Orchid dataset because of the lack of unlabeled data. 
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5.4.2.1. Thai sentence segmentation 

The results in Table  5 show that using n-gram to obtain the local representation improves 
the F1 score of the model from 90.9% (row (e)) to 92.4% (row (f)) on the Orchid dataset and from 
87.6% (row (e)) to 88.7% (row (f)) on the UGWC dataset. These results occur because many word 
groups exist that can be used to signal the beginning and end of a sentence in Thai. Words 
always found near sentence boundaries can be categorized into two groups. The first group 
consists of final particles, e.g., "นะ|คะ" (na | kha), "นะ|ครับ" (na | khrạb), "เลย|ครับ" (ley | khrạb), "แล้ว|

ครับ" (læ̂w | khrạb), and others. These word groups are usually used at the ends of sentences to 
indicate the formality level. For instance, the model with local representation can detect the 

sentence boundary at "ครับ" (khrạb) that is followed by "แล้ว" (læ̂w), as shown in Figure  10, while 
the model without local representation cannot detect the word as a sentence boundary. The 
second group consists of conjunctions that are always used at the beginnings of sentences, e.g., 
"จาก|นั้น (after that)", "ไม่|ง้ัน (otherwise)" and others. The model that uses n-gram to capture word 
group information is better able to detect word groups near sentence boundaries. Thus, this 
model can identify these sentence boundaries easily in the Thai language.  

 

Figure  10. An example of sentence boundary prediction. 

The outputs are predicted by a normal Bi-LSTM-CRF and by the model with local representation 

(+ 𝑙𝑜𝑐𝑎𝑙). Here, "sb" indicates that the word is predicted as the sentence boundary. 

5.4.2.2. English punctuation restoration 

In contrast, for the English dataset, local representation using n-gram drops the overall F1 
score of punctuation restoration from 64.4% (row (g)) to 63.6% (row (h)), as shown in Table  6. 
However, the binary F1 score increases slightly from 81.4% (row (g)) to 81.8% (row (h)) when 
compared to the Bi-LSTM-CRF model, which does not integrate n-gram embedding. Common 
phrases such as “In spite of”, “Even though” and “Due to the fact” might provide strong cues for 
punctuation; however, such phrases can be found at both the beginnings and in the middle of 
sentences. Because such phrases can be used in both positions, they may follow commas when 
they are in the middle of the sentence or periods when they are at the beginning of a sentence. 
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However, they still follow either a period or a comma; consequently, such phrases can still help 
identify whether the punctuation should be restored, which increases the binary F1 score, which 
considers only the positions of missing punctuation. Moreover, English does not use the concept 
of a final particle usually found at the end of the sentence—similar to the Thai word group 
mentioned earlier—including "นะ|คะ"(na | kha), "นะ|ครับ"(na | khrạb), "เลย|ครับ" (ley | khrạb), "แล้ว|

ครับ" (læ̂w | khrạb) and others. Therefore, the word groups captured by n-gram can only help to 
identify where punctuation should be restored but they do not help the model determine the 
type of punctuation that should be restored. 

 

Table  6. The result of English punctuation restoration by each model. 

Each model is evaluated by the F1 score of each class of punctuation, the overall F1 score and the 

binary F1 score. 

Model Comma Period Question mark Overall Binary 

(a) T-LSTM [70] 45.1 56.6 49.4 50.8 - 

(b) T-BRNN [78] 53.1 71.9 62.8 63.1 - 

(c) T-BRNN-pre [78] 54.8 72.9 66.7 64.4 - 

(d) DRNN-LWMA 59.3 74.7 73.3 67.2 - 
(e) DRNN-LWMA-pre 61.9 75.5 69.6 68.6 - 

(f) CRF (Thai baseline) [27] 44.9 60.8 26.7 52.7 - 

(g) Bi-LSTM-CRF [21] 55.3 73.1 63.5 64.4 81.4 

Our Improvement 

(h) + local 55.0 72.3 63.3 63.6 81.8 

(i) + local + distant 56.7 72.9 59.2 64.5 81.7 

(j) + local + distant + CVT 56.8 73.7 61.2 65.4 82.8 

(k) + local + distant + CVT + ELMO 64.0 78.6 66.7 71.0 86.9 
Note: F1 score for the "O" class, which indicates that there is no punctuation following the word, is not 

calculated because we care only the performance of each punctuation class. 

5.4.2.3.   Interpretation of n-gram feature 

In this section, our model is interpreted and analyzed via the method presented in Section 
2.5. Count(𝑝𝑜𝑠, 𝑔𝑟𝑎𝑚), which refer how similarity between the model and human, is calculated 
over the training set of each corpus, as shown in Table  7. The result of the interpretation shows 
the focused n-gram features are rarely found around the punctuation. Compared with the Thai 
sentence segmentation model, the focused n-gram features are usually located at the sentence 
boundary.  
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In UGWC section of Table  7, the result indicates that the model mostly focuses at the end 
of the sentence more than the beginning of the sentence due to the lower number of focused 
features at the relative position 𝑝𝑜𝑠 = +1. In the intersection list from UGWC at the relative 
position 𝑝𝑜𝑠 = −1,0, the features found near sentence boundaries are usually final particles, e.g., 
“นะ|คะ” (ná ǀ khá), “นะ|ครบั” (ná ǀ khráp), “เลย|ครบั” (ləːy ǀ khráp), “แลว้|ครบั” (læ̂w ǀ khráp), and 
others. These features are usually used at the ends of sentences to indicate the formality level. 
Meanwhile, the intersection list at the relative position 𝑝𝑜𝑠 = +1 are composed of greeting 
words and "Thank you" phrases that are always at the beginning of sentence, e.g., “สวสัดี (Hello)”, 

“ขอบคณุ (Thank you)” and others. 

In contrast, in Orchid, the model focuses more at the beginning of sentence. The features 
can be categorized into two groups. First, the content words [82], such as topics (“บทคดัยอ่ 

(abstract)”, “บทน า (introduction)”), are focused due to their high frequency caused by the similar 

structure between documents. The second group is the function words [82], such as “เป็นดงันี ้(as 

follows)”, “ขา้งล่างนี ้ (as shown below)” and “ไดด้งันี ้ (as follows)”, which are simply classified as 
the end of paragraphs or sentences. 

As a result, the models of both Thai datasets focus on different types of features due to the 
different writing styles. Despite these findings, our model is able to learn and utilize these n-
grams features, which are also used by humans to decide where the sentence boundary is. 
Therefore, using local representation to capture n-grams features attains more improvement over 
other contributions in Thai sentence segmentation.  

Meanwhile, in English punctuation restoration, the model hardly learns n-gram features 
around the punctuation. As a result, the n-gram features degrades the performance in English 
punctuation restoration due to the overfitting problem. 

Table  7. The number of features in the intersection of two lists that is created from the interpretation 

score and labels. 

Type of n-gram (gram) Relative position (pos) 

Orchid UGWC IWSLT 

-1 0 +1 -1 0 +1 -1 0 +1 

Uni-gram 51 64 117 203 171 152 0 10 1 

Bi-gram 6 22 54 162 165 3 0 10 0 

Tri-gram 45 98 56 206 75 28 3 5 4 
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5.4.3. Effect of distant representation 

The effect of this contribution can be found by comparing the model that integrates the 
distant representation and the model that does not. The model with distant features integrated 
is represented as + 𝑙𝑜𝑐𝑎𝑙 +  𝑑𝑖𝑠𝑡𝑎𝑛𝑡 (row (g) and row (i) in Table  5 and Table  6 respectively). In 
this case, the distant representation is composed of the self-attention modules in both the low- 
and high-level modules, as shown in Figure  4. 

From the combination of local and distant representation, the results in Table  5 and Table  
6 show that the distant feature improves the accuracy of the model on all datasets compared to 
the model with no distant representation. The F1 scores of the sentence segmentation models 
improved slightly, from 92.4% and 88.7% (row (f)) to 92.5% and 88.8% (row (g)) on the Orchid and 
UGWC datasets, respectively. For the IWSLT dataset, the distant feature can recover the overall 
F1 score of punctuation restoration, which is degraded by the n-gram embedding; it improves 
from 63.6% (row (h)) to 64.5% (row (i)). The reason is that the self-attention modules focus 
selectively on certain parts of the passage. Thus, the model focuses on the initial words of the 
dependent clauses, which helps in classifying which type of punctuation should be restored. An 
example is shown in Figure  11: the model with distant representation classifies the punctuation 
after “her” as a “COMMA” because “Before” is the word that indicates the dependent clause. 
Meanwhile, the model without distant representation predicts the punctuation as a “PERIOD” 
because there is no self-attention module; therefore, it does not focus on the word “Before”.  

This also illustrates that the model can be improved by adding the self-attention modules 
to Bi-LSTM layers. In conclusion, the results have shown that each of the proposed modules 
have a positive effect on the overall performance. 

 

Figure  11. An example of punctuation prediction. 

The outputs are predicted by the model with distant representation (+ 𝑙𝑜𝑐𝑎𝑙 +  𝑑𝑖𝑠𝑡𝑎𝑛𝑡) and without 

distant representation (+ 𝑙𝑜𝑐𝑎𝑙). The "COMMA" indicates that the word is followed by a comma (,) 

and "PERIOD" indicates that a period (.) is restored at that position. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

5.4.4. Effect of CVT 

To identify the improvement from CVT, we compared the models that use different training 
processes: standard supervised training (+ 𝑙𝑜𝑐𝑎𝑙 +  𝑑𝑖𝑠𝑡𝑎𝑛𝑡) and CVT (+ 𝑙𝑜𝑐𝑎𝑙 +  𝑑𝑖𝑠𝑡𝑎𝑛𝑡 +

 𝐶𝑉𝑇). The model trained with CVT improves the accuracy in terms of the F1 score on both Thai 
and English datasets, as shown in Table  5 and Table  6. 

5.4.4.1. Thai sentence segmentation 

This experiment was conducted only on the UGWC dataset because no unlabeled data are 
available in the Orchid dataset, as mentioned in Section 5.1.1.1. The model improves the F1 
score slightly, from 88.8% (row (g)) to 88.9% (row (h)) on the UGWC dataset. Since the labeled 
and unlabeled data in the UGWC dataset were drawn from the same source and domain, it 
provides little additional knowledge that can be learned by the model. The average number of 
new words found in the unlabeled data is only 0.650 per passage, as shown in Table  5. In other 
words,  the unlabeled passages barely contain any new words. 

5.4.4.2. English punctuation restoration 

CVT also improved the model on the IWSLT dataset, from an overall F1 score of 64.5% (row 
(g)) to 65.3% (row (h)) and from a 2-class F1 score of 81.7% to 82.7%. Because both the labeled 
and unlabeled data were collected from TED talks, the number of vocabulary words grows 
substantially more than in the UGWC dataset because the talks cover various topics. In this 
dataset, an average of 1.225 new words are found in each new unlabeled data passage, as shown 
in Table  6. Thus, the improvement on the IWSLT dataset is more noticeable than in the UGWC 
dataset. 

5.4.5. Effect of ELMo 

By applying ELMo or contextual representation to the model, an accuracy in both tasks 
increase noticeably, from 88.8% to 89.9% in Thai sentence segmentation and from 65.4% to 
71.0% in English punctuation restoration. From the results, the gap of improvement in Thai is 
lower than in English because the English ELMo is trained from one billion words which is ten 
times higher than the data which we used in Thai. Therefore, Thai ELMo that is given more data 
might elevate the accuracy of Thai sentence segmentation. 
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5.4.6. Comparison with baseline models 
5.4.6.1. Thai sentence segmentation 

For the Thai sentence segmentation task, our model is superior to all the baselines on both 
Thai sentence segmentation datasets, as shown in Table  5. On the Orchid dataset, the 
supervised model that includes both local and distant representation was adopted for 
comparison to the baseline model. Our model improves the F1 score achieved by CRF-ngram, 
which is the state-of-the-art model for Thai sentence segmentation in Orchid, from 91.9% (row 
(d)) to 92.5% (row (h)). Meanwhile, in the UGWC dataset, our CVT model with ELMo (row (h)) 
achieves an F1 score of 89.5%, which is higher than the F1 score of both the baselines (CRF-
ngram and Bi-LSTM-CRF (rows d and e, respectively)). Thus, our model is now the state-of-the-art 
model for Thai sentence segmentation on both the Orchid and UGWC datasets. 

To prove the significance of the model improvements, we compared the cross-validation 
results using paired t-tests to obtain the p-values, which are shown in Table  8 for the Orchid 
dataset and Table  9 for the UGWC dataset. 

Table  8. The improvement of each contribution on the Orchid dataset results shown as p-values from 

paired t-tests 

Model CRF Bi-LSTM-CRF + local 

+ local +0.47% ± 0.42% (0.009) +1.53% ± 0.39% (<0.001) - 

+ local + distant +0.54% ± 0.36% (0.002) +1.60% ± 0.39% (<0.001) +0.07% ± 0.22% (0.370) 
Note: The number in the table reflects the percentage of improvement from the columns compared with 

the rows. The number in parentheses is the p-value computed from a paired t-test. 
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Table  9. The improvement of each contribution on the UGWC dataset results shown as p-values from 

paired t-tests 

Model CRF Bi-LSTM-
CRF 

+ local + local  
+ distant 

+ local   
+ distant 
+ CVT 

+ local +3.66%  

± 0.16% 

(<0.001) 

+1.09%  

± 0.14% 

(<0.001) 

   

+ local + distant +3.77%  

± 0.20% 

(<0.001) 

+1.20%  

± 0.20% 

(<0.001) 

+0.11%  

± 0.14% 

(0.182) 

  

+ local + distant + CVT +3.92%  

± 0.20% 

(<0.001) 

+1.34%  

± 0.14% 

(<0.001) 

+0.26%  

± 0.06% 

(0.001) 

+0.15%  

± 0.12% 

(0.065) 

 

+ local + distant + CVT + ELMo +4.87%  

± 0.25% 

(<0.001) 

+2.29%  

± 0.16% 

(<0.001) 

+1.21%  

± 0.10% 

(<0.001) 

+1.10%  

±  0.14% 

(<0.001) 

+0.95%  

± 0.05% 

(<0.001) 
Note: The number in the table reflects the percentage of improvement from the columns compared with 

the rows. The number in parentheses is the p-value computed from a paired t-test. 

5.4.6.2. English punctuation restoration  

Our model outperforms all the sequence tagging models. DRNN-LWMA-pre (row (e)) is the 
current state-of-the-art model, as shown in Table  6. The CVT model with ELMo improves the 
overall F1 score from 68.6% of DRNN-LWMA-pre to 71.0% (row (k)). 

5.4.7. Discussion 

We have shown that incorporating local and global information with CVT can be used to 
improve the Thai sentence segmentation and English punctuation restoration tasks. However, we 
would like to note that our proposed method assumes no idiosyncrasies specific to the Thai 
language. They might be able to improve other languages or tasks as well. For example, one 
might consider the tasks of Elementary Discourse Unit (EDU) and clause segmentation which can 
help downstream tasks such as text summarization and machine translation by providing the 
minimal syntactic units. Also, the experiment results show that each contribution yields different 
results for each language. Thus, the results of features or methods are still essential to be 
discovered for a particular language, even though the trend of current NLP research is trying to 
find the best generic method for every language.  
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Moreover, due to the scarcity of labeled data in Thai, more amount of data with sentence 
boundaries is still needed. However, only a large number of instances are insufficient to build a 
generic model that can be applied to any written styles and domains; the dataset should be 
built from various data sources too. Also, all available sentence segmentation datasets, such as 
ORCHID, UGWC, and the recently released LST20 [87], should be integrated. However, the 
annotation criteria of the datasets are different making the task non-trivial. One possible venue 
for exploration is to use multi-criteria learning to utilize the shared information in all datasets. 
This method was successfully applied to Chinese word segmentation, which has a similar 
problem [88, 89]. 
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6. CONCLUSIONS 

In this paper, we propose a novel deep learning model for Thai sentence segmentation. This 
study makes three main contributions. The first contribution is to integrate a local representation 
based on n-gram embedding into our deep model. This approach helps to capture word groups 
near sentence boundaries, allowing the model to identify boundaries more accurately. Second, 
we integrate a distant representation obtained from self-attention modules to capture sentence 
contextual information. This approach allows the model to focus on the initial words of 
dependent clauses (i.e., "Before", "If", and "Although"). The last contribution is an adaptation of 
CVT, which allows the model to utilize unlabeled data to produce effective local and distant 
representations. 

The experiment was conducted on two Thai datasets, Orchid and UGWC, and one English 
punctuation restoration dataset, IWSLT. On the Thai sentence segmentation task, our model 
achieves F1 scores of 92.5% and 89.9% on the Orchid and UGWC datasets, constituting a relative 
error reduction of 7.4% and 18.5%, respectively. On the English punctuation task, the binary F1 
score reached 86.9% when considering only two punctuation classes (making the task similar to 
sentence segmentation in Thai). Based on our contributions, the local representation has the 
highest impact on the Thai corpus. From the interpretation process, the local representation 
revealed that it captures phrases that frequently occurred near the sentence boundary, which is 
usually the approach used by humans to recognize the boundary. Meanwhile, the distant 
representation and CVT result in strong improvements on the English dataset. Also, ELMo is 
suitable for both Thai and English corpus. 
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APPENDIX 

A. Performance on a public UGWC dataset 

In this section, the model is evaluated on a public dataset, a subset of UGWC; the dataset 
consists of 15,000 passages, 28,514 sentences, and 183,193 words. Due to the lack of public 
unlabeled data, the semi-supervised technique does not be applied.  Thus, only the model with 
local and distant representation is evaluated by 5-fold validation. The performance is shown in 
Table  10.  

Table  10. The result of public UGWC and LST20 by the proposed model. 

Algorithm Public UGWC LST20 
Precision Recall F1 score Precision Recall F1 score 

Bi-LSTM 91.730 91.000 91.360 78.036 59.806 67.715 
+ local + distant 92.262 91.196 91.718 78.578 59.952 68.012 

B. Performance on LST20 dataset [87] 

LST20 Corpus is a news dataset developed by National Electronics and Computer 
Technology Center (NECTEC), Thailand. The dataset includes word boundaries, part of speech 
tagging, named entities, clause boundaries, and sentence boundaries. For data preprocessing, 
sentences with more than 100 words are filtered out. Each instance is selected from consecutive 
sentences in the same file with no filtered sentence between them. If the instance is longer than 
ten words, the instance will be divided into two or more instances consisting of ten sentences or 
less. After that, the instances that consist of only one sentence are filtered out. As a result, the 
data statistics of preprocessed datasets are shown in Table  11. The code for data preprocessing 

is publicly available on GitHub. 1 

Table  11. The number of instances, sentences, and words in preprocessed LST20 dataset.  

Dataset # instances # sentences # words 
Train 8,315 60,269 2,290,655 

Eval 784 5,452 217,652 
Test 699 5,201 200,079 

 

1 https://github.com/ChanatipSaetia/PreprocessLST20/blob/main/PrepareLST20.ipynb  

https://github.com/ChanatipSaetia/PreprocessLST20/blob/main/PrepareLST20.ipynb
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To apply to our proposed model, sentences in each instance are concatenated with a space 
token (‘_’) into one sequence of tokens. Each token is labeled as a sentence boundary when it is 
the end of sentences or the added space token. Similar to the Orchid dataset, in which there is 
no unlabeled dataset using the same word tokenization criteria, so the semi-supervised method 
is not adopted. Thus, only the model with local and distant representation is evaluated. Its 
performance is shown in Table  10. 
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