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ผู้ให้บริการอินเทอร์เน็ตและโครงข่ายในระดับองค์กรเผชิญกับการเปลี่ยนแปลงและการเติบโตอย่างรวดเร็ว

ของอินเทอร์เน็ต ซ่ึงนำไปสู่ความซับซ้อนของโครงข่ายในการดำเนินงานเพื่อรองรับแอปพลิเคชันท่ีต้องมีข้อตกลงระดับการ
บริการที่เข้มงวด การจัดเส้นทางเซกเมนต์เป็นเทคโนโลยีการกำหนดเส้นทางที่ต้นทางที่สามารถเอาชนะข้อเสียของ
โครงข่ายมัลติโปรโตคอล เลเบิล สวิตชิ่งแบบเดิมในด้านความสามารถในการปรับขนาด ความยืดหยุ่น และการนำไป
ประยุกต์ใช้ในโครงข่ายกำหนดด้วยซอฟต์แวร์ โดยการจัดเส้นทางเซกเมนต์ช่วยให้อุปกรณ์ต้นทางสามารถสั่งเส้นทางได้
ด้วยการใช้เซกเมนต์หรือรายการเซกเมนต์เพื่อผ่านโครงข่าย  เซกเมนต์สามารถใช้งานได้ในระบบไอพีวี 6 และมัลติ
โปรโตคอล เลเบิล สวิตชิ ่ง เซกเมนต์สามารถกำหนดเป็นข้อมูลที ่สั ่งให้โหนดที่มีความสามารถจัดเส้นทางเซกเมนต์
ดำเนินการบนแพ็กเก็ตขาเข้าได้ ในการจัดเส้นทางเซกเมนต์น้ันส่วนหัวของแพ็กเก็ตมีคำสั่งเพียงพอสำหรับการเปลี่ยนแพ็ก
เก็ตจากต้นทางไปยังปลายทาง ดังนั้นการจัดเส้นทางเซกเมนต์จึงไม่ต้องการโปรโตคอลการส่งสัญญาณที่แยกจากกัน  และ
ไม่รักษาสถานะเส้นทางในเราเตอร์ระดับกลาง 

เนื่องจากค่าเริ่มต้นของการจัดเส้นทางเซกเมนต์เป็นการกำหนดแบบหลายเส้นทางที่มีต้นทุนเท่ากันซ่ึงอาจทำ
ให้เกิดการใช้งานลิงก์ในเครือข่ายสูงสุดในระดับสูง จึงหลีกเลี่ยงการใช้หลายเส้นทางที่มีต้นทุนเท่ากันและใช้การจัดเส้นทาง
เซกเมนต์แบบเข้มงวด วิทยานิพนธ์นี ้ศึกษาแบบจำลองโปรแกรมเชิงเส้นจำนวนเต็มในบทความ  [1] เพื ่อประเมิน
ประสิทธิภาพวิศวกรรมทราฟฟิกในโครงข่ายที่มีการจัดเส้นทางเซกเมนต์  และปรับปรุงแบบจำลองการโปรแกรมเชิงเส้น
จำนวนเต็มซึ่งบังคับให้เลือกเส้นทางที่สั ้นที่สุดเท่านั้นเพื่อลดการใช้งานสูงสุด  วิทยานิพนธ์นี้เปรียบเทียบผลลัพธ์ของ
แบบจำลองโปรแกรมเชิงเส้นจำนวนเต็มของ [1] และแบบปรับปรุงที่เสนอ ผลลัพธ์แสดงให้เห็นว่าเราสามารถได้การใช้งาน
สูงสุดได้เกือบเท่ากับแบบจำลองท่ีเสนอของ [1] เนื่องจากความลึกของรายการเซกเมนต์ท่ีจะต่อท้ายเพื่อสร้างเส้นทาง SR-
TE แบบเข้มงวดได้ถูกนำมาเป็นส่วนหัวของแพ็กเก็ต อีกทั้งเรายังลดจำนวนของความลึกของรายการเซกเมนต์ที่จะผนวก 
สุดท้ายน้ีเราจะพัฒนาแอปพลิเคชันเพื่อใช้แบบจำลองโปรแกรมเชิงเส้นจำนวนเต็มท่ีปรับปรุงแล้วของเราในสภาพแวดล้อม
ท่ีจำลองโดยใช้เราเตอร์เชิงพาณิชย์ ตัวควบคุมโครงข่ายท่ีกำหนดด้วยซอฟต์แวร์และการให้บริการโพสต์แมน 
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cost Multipath 
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OPENDAYLIGHT CONTROLLER ON EMULATED VIRTUAL ENVIRONMENT NEXT GENERATION (EVE-
NG). Advisor: Assoc. Prof. LUNCHAKORN WUTTISITTIKULKIJ, Ph.D. 

  
Internet service providers and enterprise networks face rapid changes and rapid growth of 

the internet, and the networks become complex in operations to support the strict Service-level 
Agreements (SLAs) needed applications. Segment Routing (SR) is a source routing technology that 
overcomes the conventional Multiprotocol Label Switching (MPLS) networks’ drawbacks in scalability, 
flexibility, and applicability in Software-defined Networking (SDN). SR enables the source device to 
instruct the path using a segment or list of segments to go through the network. SR can be implemented 
in IPv6 and MPLS. A segment can be defined as information that instructs SR capable nodes to execute 
on the incoming packet. In SR, the packet header has enough instruction for packets to traverse from 
source to destination. So, SR does not need separate signaling protocols and does not maintain the 
path state in the intermediate routers. 

As the default forwarding of SR, equal-cost multi-path (ECMP), can cause higher maximum 
utilization of links in the network, ECMP is avoided, and strict SR paths are used. This thesis studies ILP 
models in the paper [1] to evaluate traffic engineering performance in SR networks and enhance the 
integer linear programming (ILP) model, which forces to choose among only shortest paths to reduce 
the maximum utilization. This thesis compares the results of the ILP models of [1] and the proposed 
enhanced version. Results show that we can achieve the maximum utilization as nearly as the proposed 
model of [1]. As the Segment List Depth (SLD) to be appended to form a strict SR-TE path introduces 
the packet overhead, we also reduce the number of SLD to be appended. Finally, we will develop an 
application to implement our proposed enhanced ILP model in an emulated environment using 
commercial routers, SDN controller, and Postman. 
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Chapter 1  

Introduction 
 

Today applications such as video conferencing, video streaming need strict 

Service Level Agreements (SLAs) for latency, bandwidth or loss, etc. Internet service 

providers and enterprise networks face rapid changes and rapid growth of the internet, 

and the networks become complex in operations to support these strict SLAs needed 

applications. The operations become complex in a traditional IP/MPLS network 

because of complicated traffic engineering configurations and a lack of scalability and 

flexibility. Service providers and enterprises are demanding more scalable, flexible, and 

programmable solutions to keep up with the rapidly changing demand to support 

demanding applications. [1] 

Segment Routing (SR) [2] is a source routing technology that enables the source 

device to instruct the path using a segment or list of segments to go through the 

network. SR can be implemented in IPv6 and MPLS. A segment can be defined as 

information that instructs SR capable nodes to execute on the incoming packet. In SR, 

the packet header has enough instruction for packets to traverse from source to 

destination. So, SR does not need any signaling protocols and does not maintain the 

path state in the intermediate routers. 

 SR [2] keeps the network's core very light and stateless because SR [2] does 

not need heavy signalings such as Label Distribution Protocol (LDP) and Resource 

Reservation Protocol (RSVP). SR [2] helps overcome the downside of traditional IP and 

MPLS networks in scalability, flexibility, and applicability in Software-Defined 

Networking (SDN). SR [2] simplifies the transport layer by extending existing routing 

protocols such as Open Shortest Path First (OSPF) or Intermediate System to 

Intermediate System (ISIS). SR is a source-based routing that makes the IP/MPLS and 

IPv6 simpler and run scalier. 
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SDN is a technology that introduces capabilities to program and automates the 

traditional network infrastructures to enable end-to-end management [3]. Existing 

traditional network infrastructures lack automation and programmability because the 

control plane and data plane are tightly coupled. SDN logically centralizes the state 

and network intelligence in the centralized entity called the controller and provides 

abstractions to the underlying network infrastructure from the application running on 

top of the SDN controller. The application running on top of the SDN controller collects 

network status from the SDN controller through Web-based REST Application 

Programming Interface, executes algorithms, and applies its forwarding and traffic 

engineering rules through Southbound APIs. Southbound APIs may include Path 

Computation Element (PCE) Communication Protocol (PCEP), Border Gateway Protocol 

Link-State (BGP-LS), OpenFlow, and NETCONF. 

 

1.1: Motivation 

 

Segment Routing has been proposed by the Internet Engineering Task Force 

SPRING working group as an alternative TE solution to simplify the control plane. In SR, 

the source node or ingress node specifies the specific path by encoding the list of 

Segment IDs (SIDs). Intermediate nodes only look at the top SID of the segment list to 

perform packet forwarding. 

SR can be instantiated over MPLS without any changes and makes the control 

plane simpler. SR instantiation over MPLS does not require signaling protocols and 

improves MPLS network scalability. And also, SR over MPLS doesn’t need to store the 

path state of the information in the intermediate routers as the source node enforces 

a specific path to flow packets by the list of Segment IDs (SIDs). In Segment Routing 

with the MPLS, an MPLS label encodes a segment, and a stack of labels encodes a list 

of segments. SR can also be implemented in the IPv6 data plane with Segment Routing 
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Header (SRH). SR supports various cases such as layer 3 and 2 Virtual Private Network 

(VPN) tunneling services, traffic engineering by implementing SR-TE paths, network 

resiliency. 

Several applications are running on top of the MPLS network, requiring strict 

SLAs such as bandwidth, latency, loss, etc., to carry the customer traffic. In Segment 

Routing, IGP segments are combined to steer the packets on the traffic-engineered 

path. SR over MPLS data plane can be deployed to recognize the routes to meet 

required SLAs. However, the default behavior of SR ECMP using IGP shortest paths 

leads to shortcomings such as congestion, higher network resource utilization [1]. TE is 

used in SR to overcome these drawbacks. TE can be used to place traffic in the network 

effectively to improve network capability [4]. SR-TE expresses the SR path with the 

computed segments list in order, enables the ingress device to encode segments list, 

and sends the traffic along the SR-TE paths. Among traffic engineering objectives, 

proper utilization of network resources such as bandwidth helps to serve many user’s 

traffic demands not by expanding the network infrastructure [4]. 

Traffic Engineering in Segment Routing, in addition to conventional TE 

objectives such as minimization of maximum utilization on all network links, several 

objectives have to consider such as SR-TE path to be encoded with a segment or list 

of segments. And also, the number of segments in the list or Segment List Depth (SLD) 

to be encoded on the packet introduces the packet overhead and encoding segment 

lists have to be minimized. Also, SR-capable MPLS routers support limited SLD 

numbers [1]. 

This thesis studies the traffic engineering performance of SR with ILP models as 

in [1]. This thesis will propose the enhanced version of the ILP model in [1] (explained 

details in section 3.3). This paper will present the proposed ILP model to minimize the 

maximum utilization of the network while using k-shortest paths. This paper will also 

propose the model to compute the segment lists to encode in the packet. Finally, this 
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paper will implement the enhanced ILP model in an emulated environment. Emulated 

Virtual Environment Next Generation (EVE-NG) [5] is used to emulate commercial 

IP/MPLS routers for the implementation. OpenDaylight [6] is used as a centralized SDN 

controller to collect topology information and implement the SR-TE tunnel deployed 

by the Python GUI application and the Postman [7]. Python GUI application is used to 

collect topology information from the controller, visualize the topology, take the user's 

traffic demand, and generate the XML files for SR-TE tunnels to be configured the 

network element through SDN controller using Postman [7]. 

 

1.2: Problem Statement 
 

Traffic Engineering can be applied in the network to arrange traffic demands to 

improve network operational efficiency. However, Traffic Engineering in Segment 

Routing has to consider extra constraints such as the maximum number of SLD to be 

appended in the packet in addition to conventional traffic engineering objectives such 

as minimization of maximum utilization on the network links. 

In SR-TE, the default behavior ECMP makes network resource utilization higher 

than avoiding ECMP. When the ECMP paths are wholly avoided, and only the shortest 

path is considered, the maximum utilization is higher compared to considering non-

shortest paths. When non-shortest paths are considered, the number of segment lists 

or SLD to be appended in the header becomes larger. So, we also have to consider 

how to reduce the number of SLD to append. To implement commercial IP/MPLS 

routers in an SDN environment, we can implement SR-TE tunnels by sending RESTCONF 

commands to the controller. There is an open-source application by Cisco called 

Pathman-SR [8] to visualize and implement SR-TE tunnels. But Pathman-SR cannot 

reduce the number of segments to form strict SR-TE tunnels. So, the application to 

implement with the lower SLD is needed in addition to visualizing topology. 
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1.3: Objective 

 

This thesis is designed to explore the SR-TE performance from maximum 

utilization among links using non-shortest paths with limited SLDs to be appended. In 

addition, we will implement the proposed enhanced model in the emulated 

environment using EVE-NG emulator, commercial IP/MPLS routers, SDN controller, and 

Python application. 

General Objectives: 

• To minimize the maximum utilization among links and reduce the number of 

SLD to be appended to the packet. 

• To implement the proposed model in the emulated environment using 

commercial IP/MPLS routers, SDN controller, Python application, and Postman. 

Specific Objectives: 

• To study and explain the current/reference ILP models. 

• To compare the results of the proposed model with the reference ILP models. 

• To propose the enhanced version of the reference ILP model. 

• To minimize the maximum utilization among links. 

• To reduce the SLD. 

• To apply the proposed model in various topologies. 

• To implement the proposed model in EVE-NG emulator using commercial 

IP/MPLS routers, SDN controller, Python application, and Postman. 

• To visualize the network infrastructure, execute the proposed enhanced ILP 

model, and implement SR-TE tunnels. 
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1.4: Scope of the Thesis 
 

As the default behavior, ECMP of the SR leads to higher network resource 

utilization, such as higher maximum utilization among links than cases where ECMP is 

avoided. This thesis will evaluate the maximum utilization among the links. In addition, 

the application to test the proposed model is also essential to test the applicability 

of the model. So, this study will develop the application running on top of the SDN 

controller to visualize the topology, take the user’s traffic demand, run the proposed 

enhanced ILP model and generate the XML configuration files to implement SR-TE 

tunnels via Postman API. 

This thesis studies the three ILP models in [1] and aims to enhance the second 

model (explained in detail in 3.2) to minimize the maximum utilization among links 

using ILP. In this thesis, Python PuLP [9] CBC solver is used to solve ILP models. This 

thesis will also compare the maximum utilization among links, mean utilization, mean 

hop count, the total number of constraints to solve the ILP model, the program 

running time, ILP solving time, and maximum SLD. This study analyzes 11 different 

topologies ranging from 4 nodes to 30 nodes with bidirectional links and unidirectional 

node pairs. This study will examine traffic demand with two types of traffic demand: 

same traffic demand and random traffic demands. Hop count is used as a metric in 

this thesis. 

To implement the proposed model in an emulated environment, the thesis 

will use EVE-NG community edition [5] as an emulator, Cisco IOS XRV [10] as a router, 

and OpenDaylight controller [6] as an SDN controller. The application running on top 

of the SDN controller is written in Python. This thesis will use BGP/LS and PCEP as 

southbound protocol because the router used in this thesis does not support 

Openflow. The thesis aims to add the SR capability to the MPLS network in the 

intradomain network without changing to the network device that supports OpenFlow. 
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To implement SR-TE tunnels through the SDN controller, Postman is used to 

implement through RESTful interface. 

 

1.5: Contributions 

 

SR default behavior ECMP leads to higher maximum utilization among links of 

the network. The paper [1] proposes 3 ILP models, namely ECMP, SHP, and SEGMR. 

ECMP is the default behavior of SR and splits the traffic whenever it is possible. The 

SHP model is forced to choose only one route among all shortest paths, and the third 

model, SEGMR, chooses the sub-paths among unique shortest paths between every 

node pair (explained details in 3.4), which are equal to or less than maximum SLD. This 

thesis will enhance the SHP model to choose a path among k-shortest paths and 

minimize the maximum utilization as the third model, SEGMR. In addition, we will also 

have to reduce the SLD to be appended to the source of the SR-TE tunnel as labels 

appended on the packet header introduce packet overhead. This research will develop 

an application written in Python, namely SHP_En Traffic Engineering, to apply the 

proposed model to commercial IP/MPLS routers in an emulated environment. This 

application will help the service providers to visualize the network, apply the proposed 

enhanced ILP model to minimize the maximum utilization so that the traffic demand 

can be placed efficiently without expanding network infrastructure. 

 

1.6: Literature Review   

 

The papers [11] and [12] proposes an algorithm for path encoding in a 

centralized environment. However, path encoding is only applied on shortest paths, 

and they do not consider paths that are longer than shortest paths. In paper [13], 
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ELEANOR architecture is proposed to reduce the size of segment lists to be appended 

to the packet. ELEANOR performs path computation, management, and label stack 

optimization based on an open-source project called Pathman-SR [8]. Paper [14] 

introduced 2-segment routing where traffic from source to destination flows exactly 

one intermediate node. This paper considers three cases: Traffic Matrix Oblivious, 

Online, and Traffic Matrix Aware Segment Routing exploiting ECMP. Finally, the primary 

reference paper [1] proposed 3 ILP models, namely, ECMP for default SR behavior 

ECMP, SHP for forcing to choose only one shortest path and SEGMR to choose the sub-

paths among unique shortest paths and heuristic to perform traffic engineering 

efficiently by evaluating maximum utilization among links. 

In [15], the demonstration of the implementation of segment routing is 

presented. The author implements segment routing in two testbeds. The first one is in 

OpenFlow switches with SR controller (specifically enhanced and designed OpenFlow 

controller). The second one is commercial IP/MPLS routers with the Segment Routing 

controller using PCE with an extended version. In [16], the segment routing 

implementation is emulated in the GNS3 network emulator. This study emulates the 

segment routing in commercial IP/MPLS routers with the OpenDaylight controller as an 

SR controller. The author implements traffic engineering tunnels from an API client, 

Postman using ERO through OpenDaylight Controller. In [17], traffic engineering with 

segment routing is implemented in Open Segment Router (OSR) routed with IP unicast 

data plane with standard MPLS operations using the ONOS controller. In [17], the 

authors implement based on the project [18]. Project [18] uses OpenFlow version 1.3 

instead of the existing protocols such as OSPF or ISIS, and the ONOS controller 

discovers the topology and maintains information about the network. The project [18] 

does not aim to make for Generally Available for large-scale WAN SDN. In [19], the 

implementation of Segment Routing Traffic Engineering is demonstrated in an IP/MPLS 

network with distributed control and centralized control with a centralized controller. 

For the distributed control, the author implements SR-TE tunnels from the routers. For 
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centralized control, the author implements EROs from the OpenDaylight controller 

using the Postman API client. However, these studies lack the efficient TE algorithm to 

place the traffic demand efficiently on the network. 

 

1.7: Thesis Layout 

 

There are five chapters in this thesis. Chapter 1 describes thesis motivation, 

problem statement, objective, contributions, and literature review. Chapter 2 studies 

background technology such as MPLS, Segment Routing, BGP, etc. Chapter 3 discusses 

traffic engineering in segment routing networks and the results from 4 different ILP 

models and evaluates the performance. Chapter 4 explains the operating environment 

and implements the segment routing traffic engineering using “SHP_En Traffic 

Engineering” in an emulated environment. Finally, chapter 5 will conclude the thesis. 

References are also described at the end of chapter 5. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

Background 
 

2.1 Multiprotocol Label Switching (MPLS) 

 

Multiprotocol Label Switching (MPLS) is an efficient encapsulation mechanism. 

MPLS can operate on the so-called 2.5 layer, as shown in Fig. 1. In term, Multiprotocol 

means that MPLS can run on IP, Ethernet, PPP, frame relay, etc., and Label Switching 

means that forwarding is based on labels and no longer need to look up the longest 

best match and easily route the packet based on 32-bit MPLS header [20]. In a 32-bit 

MPLS header, 20 bits carry a specific label in the label field. There are 3 bits for Class 

of Service (COS), which can influence the discard algorithms applied to packet and 

queuing. There is 1 bit for the Stack field (S) to support the hierarchical label stack. 

There are 8 bits for the TTL (Time to Live) header to prevent infinite forwarding loops 

of MPLS like IP header. The labels in the MPLS network can be seen in Fig. 1. Combining 

Labels with a group of sites, bandwidth paths, and prefixes, new services such as MPLS 

VPN, Traffic Engineering (TE), and GMPLS are introduced [21]. Open Shortest Protocol 

(OSPF), Intermediate System to Intermediate System (ISIS), or Border Gateway Protocol 

(BGP) is needed for reachability. Labels are distributed using dedicated LDP or 

extending existing protocol - BGP. LDP is used to discover neighbors and exchange 

prefix/label information. RSVP is used in Traffic Engineering (TE). BGP is used in the 

MPLS VPN and needs to extend to multiprotocol BGP. 

Forwarding Equivalence Class (FEC) is a group of packets that traverses the 

network in the same manner. In traditional IP forwarding, each router along the path 

will reexamine the packet to assign to an FEC. However, in MPLS forwarding, FEC's 

assignment to a particular packet is done only once a packet enters the network. A 
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label that is an index for the router to specify the next label is sent with the packet 

when the packet is forwarded [22]. 

 

 

Fig. 1. Wireshark Capture of Multiprotocol Label Switching Header 
 

MPLS Traffic Engineering (TE) is used to route the data traffic to balance the 

network’s capacity among available resources in the network. MPLS TE is mainly used 

in the network where multiple back-ups or parallel paths exist in the network. TE can 

improve network congestion because of the traffic changed patterns such as famous 

football matches, emergency news, etc. TE can also help route the traffic on better 

network utilization by steering traffic from the non-shortest paths. TE can also improve 

the aggregate availability of the network. 

 

2.1.1 MPLS Operations  

 

There are three different operations treated to the packet by the MPLS router 

when the packet comes to the MPLS network. Three various operations are PUSH, 

SWAP, and POP. When the packet with no MPLS label arrives at the Label Switch 

Router (LSR), the PUSH appends an associate label to the incoming packet. In SWAP 
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operation, the new label is swapped with the existing label of the packet and sends 

the packet through the outgoing interface. Before the label reaches the egress router, 

the MPLS router does the POP operation by removing the label and sends the packet 

to the destination router or egress router. 

 

 

Fig. 2. MPLS topology in EVE-NG emulator 
 

To explain the operation of MPLS operations, the author simulates the above 

network topology shown in Fig. 2 in EVE-NG [5]. In this network, MPLS is enabled in the 

routers. When MPLS is enabled, LDP is automatically enabled. After MPLS and LDP are 

enabled, the labels will be generated locally. The local label bindings of R2 can be 

seen in Fig. 3. As shown in Fig. 3, the labels are generated by R2 locally and unique to 

R2. The label forwarding table of R2 can be seen in Fig. 4. From the label forwarding 

table, we can see that which labels will be popped or swapped. The label bindings 

for the MPLS network at R2 can be seen in Fig. 5. We can see the labels generated by 

the adjacent routers R1 and R3 and the local labels generated by R2 in Fig. 5. 
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Fig. 3. R2 MPLS label local bindings 
 

 

Fig. 4. Label Forwarding Information Base (LFIB) 
 

MPLS label operation is demonstrated in Fig. 6. When the packet, which is a 

source from R1 to the loopback 0 of R4 – 4.4.4.4/32, is forwarded, the ingress Label 

Edge Router (LER) (which is R1) performs PUSH operation by adding the MPLS label 

(202) to the packet. Label Switch Router (LSR), which is R2 in our case, performs the 

SWAP operation by changing the existing label (202) with the new label (300). When 

the packet arrives at LSR R3, R3 performs Penultimate Hop Popping (PHP) by removing 

the label (300) before sending it to the R4, egress LER. PHP is an operation that reduces 

the load of the egress LER by removing the label before passing it to the LER. The one 

cycle of label lookup is reduced by performing PHP and reducing the LER's processing 

power. The path that the packet is transmitted in the network is called the Label 

Switch Path (LSP). LSR is a router that does SWAP, PUSH, and POP operations 

depending on the router's position. 
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Fig. 5. R2 MPLS local and remote labels bindings 
 

Loopback 0 – 
          

R1 R2 R3 R4

4.4.4.4 202 4.4.4.44.4.4.4 300

Local Remote

100 R2 - 202

Local Remote

202 R1 - 100

R3 - 300

Local Remote

300 R2 - 202

R4 – Null

Local Remote

Null R3 - 300

PUSH SWAP POP

 

Fig. 6. MPLS Label Operations 
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2.1.2 MPLS Label Distribution Protocol (LDP)  

 

MPLS LDP enables the peer LSRs to exchange label binding information such 

as the label bindings information shown in Fig. 5 to support hop-by-hop forwarding in 

the MPLS network. LDP allows LSRs to request, distribute, and release label prefix 

information to neighbor LSR and establish LDP sessions to exchange label binding 

information [23]. As shown in Fig. 5, the labels are locally significant, and locally 

significant labels make the network troubleshooting hard. 

When LSRs form neighbors by exchanging hello messages, LSRs start negotiating 

LDP parameters. A router becomes the active router if the router has a higher transport 

IP address, and the other router is the passive router. After LSPs finish negotiating the 

LDP parameters, they form the LSPs and assign labels to each route based on the 

information learned from the IGPs. 

 

2.1.3 Resource Reservation Protocol 

 

RSVP enables the routers to request resource reservations from the network as 

a signaling protocol. RSVP is used in MPLS traffic engineering. MPLS TE is a process to 

route the traffic to balance among network devices in the network. Traffic engineering 

is helpful for network congestion due to changing network data traffic patterns such 

as breaking news and sports events. Traffic engineering enables better utilization of 

available bandwidth by routing the traffic on the non-shortest path. RSVP-TE uses the 

Constrained Shortest Path (CSPF) and explicit route object (ERO) to compute the paths, 

unlike LDP, which only depends on IGP. 

When MPLS uses RSVP to signal the LSPs, the headend router signals a PATH 

message along the path until the tail-end router. The PATH messages reserve resources 
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for all the nodes on the path. The tail-end node sends a reservation (RESV) message 

with a label back to the headend node. To demonstrate RSVP, the topology in Fig. 7 

is implemented, and we set up the path from R1 to R4 through R2 and R3. The example 

of Wireshark's capture of the RSVP signaling between R2 and R1 can be seen in Fig. 8. 

We can see that the PATH message is sent from R1(1.1.1.1) to R4 (4.4.4.4), and the RESV 

message is sent from the R2 interface to the R1 interface. As we can see in the output 

of Fig. 9, every node along the path must maintain the LSPs, and signal the session 

state every 30 seconds. In our topology, we can see from the output of Fig. 9 (a) and 

(b) that intermediate nodes R2 and R3 maintain the LSP information created for R1 to 

R4. 

 

 

Fig. 7. MPLS Traffic Engineering Topology 
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Fig. 8. RSVP Signaling Capture at R1 e0/0 interface 
 

 

(a) 

 

 

(b) 

Fig. 9.  Intermediate nodes maintaining LSPs (a) R2 and (b) R3 
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2.2 Segment Routing (SR) 
 

Segment Routing (SR) [24] is a source routing technique that instructs the ingress 

node to give complete information about the path to go to the egress node. A segment 

is an instruction that a Segment Routing enabled node can execute based on the 

packet that comes to the node [3]. The packet can be steered by the header 

information from the traffic engineering approach because the packet's header has 

enough instructions to guide the packets to the destination from the source. So, the 

intermediate nodes no longer need to maintain the states of every path in the network. 

The ability not to maintain states at the intermediate nodes improves the traditional 

MPLS network's traffic engineering's scalability, which requires fatty signaling and path 

states, as explained in section 2.1.3. Segment Routing can be used in the MPLS and 

IPv6. SR can be deployed in the SR instantiation MPLS network with no changes over 

the MPLS data plane. As shown in Fig. 10, an MPLS label encodes a segment, and as 

shown in Fig. 11, a stack of MPLS labels contains an ordered list of segments. SR Header 

(SRH) [25] is used to realize SR over the IPv6 data plane. However, this thesis only 

focuses on IPv4 segment routing, which is implemented using MPLS. 

Constrained SPF and IGP Shortest Path First (SPF) that considers bandwidth, 

latency, and the explicit path that network operator configures can derive the SR path. 

Segment Routing path from the Shortest Path First algorithm is the SR-SPF path that 

enables ECMP shortest path and path derived from the operator's explicit 

configuration, or CSPF is the SR-TE path that steers the path that is not IGP SPF. 
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Fig. 10. A segment 
 

 

Fig. 11. An ordered list of Segments 
 

2.2.1 Segment Routing Architecture 

 

A segment is a topological or service-related instruction that SR enabled node 

processes on the packet that came to the node. Segment Routing uses the list of 

segments that steer the packet through an explicit path. A segment can guide the 

packet to send a packet using an explicit path to the destination, send packets through 

the shortest path, or a specific service instance such as firewall, DPI (Deep Packet 

Instruction) to get to the destination. A local segment is a locally significant segment 

to an SR-enabled node, and a globally significant segment inside an SR domain is a 

global segment. In SR architecture, there are two primary components, which are the 

SR data and control planes. 
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2.2.1.1 Segment Routing Data Plane 
 

The SR data plane includes defining the procedure for encoding instructions or 

segments and processing the list of segments or segments to send the packet. MPLS 

or IPv6 header contains the list of the segments and the pointer to indicate the active 

segment to be executed and points to the next segment after the previous segment 

has been executed. A segment of the list is defined with SID – Segment ID, which can 

be globally or locally significant. The globally significant segment or global segment is 

unique within an SR domain and is advertised through the domain. The local segment 

is locally generated by an originated node and assigned to a label outside of Segment 

Routing Global Block (SRGB). For SR implementation in the MPLS network, SR enabled 

node maintains global segment labels in the SRGB. SRGB range, which is 16000 to 

23999, can be different in each SR node, but Cisco strongly recommends the same 

SRGB range to ease troubleshooting and administration. Different segments can be 

defined in Segment Routing with MPLS, such as RSVP-TE LSP segment, IGP segments, 

BGP peer segment, and LDP segment. In the scope of this thesis, the thesis will only 

focus on IGP segments. IGP segment or IGP SID is a segment that is information that 

the SR node advertises, such as connected or adjacency prefixes. Types of IGP 

segments can be seen in Fig. 12. 

 

IGP Segment 

Global Segment

Local Segment

IGP-Node Segment

IGP-Prefix Segment

IGP-Anycast Segment

IGP-Adjacency Segment  

Fig. 12. Types of IGP Segment 
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(i) IGP-Node Segment 

IG-Prefix Segment can be the IGP-Node segment or IGP-Anycast segment [26]. 

IGP-prefix segment is global inside the SR domain. IGP-Node segment indicates an exact 

node, such as a loopback interface. The IGP-Node segment’s SID is Node-SID. A Node-

SID represents the instruction to send the packet to the computed path by specific 

algorithms such as ECMP aware shortest paths to the node. To demonstrate Node SID, 

the illustration is shown in Fig. 13. Let's assume that node SID for R6 is 16001. SR 

control plane advertises the node Segment ID 16001 in the IGP domain. When a packet 

is sent from node R1 to node R6, R1 pushes the SID - 16001 on the packet header. 

Since the node segment is globally significant inside the IGP domain, the node received 

the active segment – 16001 sends the packet to node R6 through ECMP-aware shortest-

path. 

 

Node/Prefix Segment –               
R1

R2

R3 R4

R5

R6
Packet to 10.10.6.100/32

Packet

16001

Packet

16001

Packet

16001

Packet

16001

Packet

Packet

Node/Prefix SID - 16001

PUSH CONTINUE NEXT
 

Fig. 13. IGP-Node Segment illustration 
 

(ii) IGP-Anycast Segment 

Routers advertise the IGP Anycast segment in the anycast set. The set of routers 

that advertised the same IGP-Anycast segment are in the anycast set. Using the Anycast 

segment, ECMP-aware shortest path forwarding, and resiliency can be achieved in the 
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SR network. Routers included in the anycast set are set to the same loopback address 

and the same SID value (same Node-SID). As an example, an illustration of the Anycast 

segment is shown in Fig. 14. As P2 and P3 are the members of the anycast set, P2 and 

P3 are configured with the same anycast prefix, which is 10.10.23.23/32, and the same 

Anycast-SID, which is 17023. If P1 receives the packet with the Anycast-SID 17023, P1 

will load-balance the packet to P2 and P3 because P2 and P3 are set of anycast sets 

that are ECMP-paths reachable from P1. If any router of anycast sets fails, such as P2 

or P3, P1 can still send the packet with the Anycast-SID of 17023. If P2 fails, P1 can still 

send with the Anycast-SID of 17023 through P3, and it is also the same for the failure 

of P3. We can see that Anycast-SID also provides node resiliency. Anycast-SID is also 

useful when the TE path is not required to pass through a specific SR-TE path, and the 

only set of nodes or anycast set is needed to pass through. 

 

P1

P2

P3

P4

P5

P6

Anycast Set {P2, P3} 
Anycast prefix –               

Anycast-SID - 17023

 

Fig. 14. IGP Anycast Segment 
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(iii) IGP-Adjacency Segment 

An adjacency segment is a segment advertised for an adjacency advertised by 

local or remote adjacent nodes in the IGP domain. Remote and local nodes create IGP 

adjacencies. IGP-Adjacency segment or Adj-SID is locally significant to the node that 

advertises the link. The use of the adjacency segment enables the packet to steer 

through a specific interface of a node. By combining Adj-SID and Node-SID, packets can 

be steered through the ECMP-aware shortest path. 

 

2.2.1.2 Segment Routing Control Plane 

 

Link state protocols for the IGP control plane include ISIS and OSPF to exchange 

routing information among nodes. The Segment Routing node advertises the SIDs of 

each related IGP prefixes and adjacencies through the control plane of IGP. To be able 

to advertise segment identifiers, extensions to OSPF and ISIS routing protocols are 

needed. OSPF and ISIS routing protocols' extensions allow the SR node to maintain 

the information about all IGP segments and update the information according to the 

topology changes. The SR path that allows the packet depends on the IGP control 

plane. When one or more prefixes are configured on the SR node, the SR node must 

advertise the IGP SIDs for each associated prefix through the IGP control plane. 

Whenever the prefix is deleted from the Segment Routing node, the Segment Routing 

node removes the IGP SID associated with the prefix removed. 

 

2.2.2 Segment Routing Data Plane Operations 

 

SR can be implemented on the data plane of MPLS without changes. An ingress 

network device appends the lists of segments on the packet to steer the desired SR 
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path. The receiving SR node executes the label on top of the segment list. Upon 

completing the SID, the top label is popped, and the next label becomes active. There 

will be three operations in SR data plane operations: PUSH, CONTINUE, and NEXT, as 

shown in Fig. 13 [3]. PUSH is an instruction that instructs to add a SID to the segment 

list’s top. CONTINUE is an instruction that instructs to keep the active segment that is 

still processing. NEXT instructs to execute the following segment. Fig. 14 demonstrates 

how the SR data-plane operates to forward a packet from source to destination. 

 

2.2.3 IGP Segments Segment Routing Use Cases 

2.2.3.1 Simple Transport Paths 

 

As the networking devices are fast enough to process, service providers apply 

the MPLS network to get the services such as Layer 3 VPN and Layer 2 VPN services. It 

is crucial to create fully mesh MPLS tunnels to connect any PE device to enable these 

services. The ingress router encapsulates the traffic Virtual Private Network header and 

sends the traffic over one or more tunnels, as shown in Fig. 15. When SR is 

implemented with an MPLS data plane, three main benefits can be achieved, such as  

(i) ECMP aware tunnels 

(ii) Simple operations because of the ability to create tunnel automatically 

by using only IGP and without additional protocols such as LDP and 

RSVP,  

(iii) Improved scalability because the intermediate node maintains less 

state (one IGP-node SID per PE device). 
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PE1

P2

P1 P3

P4

PE2
192.168.10.0/24 192.168.20.0/24

SID 16001

SID 16011

SID 16022 SID 16044

SID 16033

SID 16002

SR IGP-based ECMP-aware MPLS 
Tunnels 

 

Fig. 15. Simple MPLS Transport Services 
 

2.2.3.2 Traffic Engineering 

 

Many applications run on top of the MPLS network, requiring strict Service Level 

Agreements (SLAs) with bandwidth, end-to-end paths loss, and latency. In a segment 

routing network, IGP segments that can be combined can steer the TE paths' traffic. 

Segment Routing provides a technique that the MPLS network's data plane will realize 

whether paths met the SLA requirements in a centralized or distributed manner. The 

SR node (headend router) computes the path subject to desired constraints based on 

the TE topology in a distributed approach. In a centralized system, an SR controller or 

SDN controller calculates the route. SR-TE route can include one or more nodes or 

prefix segments. SDN controller learns about the latest information on a network 

topology from the BGP-LS protocol. The SR-TE path calculated from the controller is 

deployed in an Explicit Route Object (ERO) to the headend router by communicating 

with Path Computation Entity Communication Protocol (PCEP) messages. A Segment 

Routing-Traffic Engineering tunnel set up by the SDN Controller can be seen in Fig. 16. 
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PE1

P2

P1 P3

P4

PE2
192.168.10.0/24 192.168.20.0/24

SID 16001

SID 16011

SID 16022 SID 16044

SID 16033

SID 16002

SDN Controller 

SBI

NBI

IGP Topology via BGP-LS
Set up Tunnel at PE1 via PCEP 

SR-ERO 
{16011,16033,16044,16002}

Application

Packet Packet

16002

16044

16033

Packet

16002

16044

Packet

16002

Packet Packet  

Fig. 16. SR-TE tunnel set up in centralized approach by SDN Controller 
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2.3 LDP vs RSVP-TE vs SR 

 

Table. 1. Comparison of SR to LDP/RSVP-TE 
 SR LDP/RSVP-TE 

Operational 
Simplicity 

Simple RSVP-TE is complex 
LDP is simple 

Traffic Engineering Yes No - LDP 
Yes - RSVP-TE - complex 
tunnel configuration 

TE Scalability  High – Core is stateless, 
and the state is in the 
headend node 

Low – RSVP creates full 
LSPs, and the transit 
router keeps a lot of 
transit information 

Number of 
Protocols 

No RSVP, LDP 
Fewer protocols in the 
network 

LDP, RSVP, or both  

Label Allocation  Node segment – Global 
Adjacency segment - Local 

Locally significant 

ECMP Yes Yes – LDP 
No – RSVP-TE 

IPv6 Native Need extensions 

 

Comparison among LDP, RSVP-TE, and SR can be seen in Table. 1 [27]. In a 

conventional MPLS network, resource reservation and signaling are made by 

implementing signaling protocols such as LDP and RSVP. As LDP largely depends on 

IGP protocol, LDP and IGP have to be synchronized, and SR removes the requirement 
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to be in sync by extending the IGP protocol to support SID. In Segment Routing, 

additional signaling protocols are not needed, and IGP link-state protocols such as 

OSPF and ISIS extensions are used for label distribution. SR is scalable because it does 

not need to keep thousands of labels in the LDP database and does not depend on 

additional LDP and RSVP protocols. RSVP-TE is not very popular because of the 

complicated tunnel configuration and is not scalable. SR-TE keeps the core network 

very scalable and light because of no additional protocols and signaling. 

 

2.4 Path Computation Element (PCE) 

 

PCE architecture includes two components, which are PCE and PCC (Path 

Computation Client). A PCE can be an application, component, or network device and 

can compute the path based on topology information and apply constraints. A PCC 

can be any client application requested to the PCE to compute the path. PCE 

Communication Protocol (PCEP) [28] communicates between PCC and PCE or between 

two PCEs [29]. PCE can configure the paths for nodes that are configured to be PCC. 

PCEP defines messages and objects to transmit PCEP sessions and paths. PCEP relies 

on TCP to guarantee a reliable session and uses TCP port 4196. PCE can be used in 

RSVP-TE and SR-TE. As mentioned in previous sessions, RSVP-TE lacks scalability 

because every intermediate router maintains state information of every TE path. SR 

solves the problem of RSVP because SR does not keep every TE state information in 

the intermediate nodes. 

Client-server communication is used between PCE and PCC. PCEP sessions 

include Open message, Keepalive, Path Computation Request (PCReq), Path 

Computation Reply (PCRep), Notification, Error message, and close. In PCEP sessions, a 

TCP 3-way handshake is performed first, and the nodes start to initiate the PCEP 

session. Parameters such as keepalive and dead timer are negotiated at initiating PCEP 
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session. After initiating the PCEP session, PCC sends PCReq to the PCE to compute the 

paths based on constraints and attributes. When PCE receives PCEReq from the PCC, 

PCE computes the path and replies with PCERep. When the PCEP session is terminated, 

the underlying TCP connection is terminated. 

Client-server communication is used between PCE and PCC. PCEP sessions 

include Open message, Keepalive, Path Computation Request (PCReq), Path 

Computation Reply (PCRep), Notification, Error message, and close. In PCEP sessions, a 

TCP 3-way handshake is performed first, and the nodes start to initiate the PCEP 

session. Parameters such as keepalive and dead timer are negotiated at initiating PCEP 

session. After initiating the PCEP session, PCC sends PCReq to the PCE to compute the 

paths based on constraints and attributes. When PCE receives PCEReq from the PCC, 

PCE computes the path and replies with PCERep. When the PCEP session is terminated, 

the underlying TCP connection is terminated. 

 

2.4.1 PCE Communication Protocol (PCEP) for Segment Routing 

 

Segment Routing-Traffic Engineering can be implemented by a centralized entity 

called PCE and distributed approach. A centralized approach can achieve several 

advantages, such as effective network utilization in multidomain networks and 

optimized traffic engineering because of the controller's global view. In the PCEP 

session, information about the SR-TE path is put inside the Explicit Route Object (ERO), 

which contains a sub-object or ordered sequence of sub-objects. Each sub-object 

represents one SID. When PCC gets ERO from PCE, PCC puts the SIDs to the incoming 

packets. PCE computed SR-TE paths can be implemented to PCC in the following ways 

1. Ordered lists of sub-objects that contain IP addresses, and in this case, PCC 

translates IP address to SID by looking up at the TED 
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2. Ordered lists of sub-objects that contain IP addresses and SIDs, and in this case, 

PCC also has to translate 

3. Ordered lists of sub-objects that include SIDs. 

 

2.5 Border Gateway Protocol Link-State 

 

Border Gateway Protocol (BGP) is a path vector protocol and one of the 

essential internet protocols. BGP is used to exchange information among 16-bit ASs 

(Autonomous Systems). AS refers to a large network or a group of networks within a 

common administration. To know network topology information across multiple 

domains and calculate end-to-end path across domains, the controller must see the 

link states information across domains. To get to know the topology information across 

multiple domains, the controller can be configured to support ISIS and OSPF as passive 

IGP peers. But link-state protocols such as IS-IS and OSPF are very chatty and will give 

the controller frequent updates about the topology. It is challenging for the SDN 

controller to place as passive IGP peers as controller peers with every different IGP 

domain. So BGP-LS is used to carry link-state information obtained by IGP domains and 

shared with the controller. BGP speakers in IGP domains get the IGP link-state 

information and share it with the SDN controller. BGP speakers can communicate 

directly to the controller, or BGP speakers form internal BGP (iBGP) mesh by connecting 

to a dedicated BGP node called BGP Route-Reflector (RR), and BGP RR nodes share the 

information with the controller [30]. As the benefits offered by the BGP-LS protocol, 

BGP-LS helps the centralized path computation, implement SR-TE from centralized 

control together with PCE. BGP-LS enables sharing of segment routing network 

information required to complement SR-TE paths. 
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2.6 Software-Defined Networking (SDN) 

 

A new emerging networking paradigm, Software-Defined Networking, is 

proposed to defeat the traditional network's limitations. In SDN, the control plane is 

not bundled with the data plane. Control logic is centralized to the control entity 

called the Network Operating System (NOS) or SDN controller, and the forwarding 

device remains only a pure forwarding device. The simple SDN overview can be seen 

in Fig. 17. 

The four main pillars of SDN are 

1. Decoupling of control and data plane – The control plane is not tightly coupled 

with forwarding devices, and forwarding devices remain pure forwarding 

devices. 

2. Programmable network – Programmable networks can be considered as the 

principal value of SDN. Software applications installed on the NOS or SDN 

controller can program the network through NOS, which communicates with 

the forwarding devices through a well-defined API. 

3. Centralized control – The control plane is allocated to the external entity 

called NOS or SDN controller. 

4. Flow-based forwarding decision – Decisions for forwarding are dependent on 

the flow instead of the destination. A flow is a packet stream between 

destination and source. 
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Fig. 17. SDN Architecture in Simple View 
 

As seen in Fig. 17, the well-defined programming interface API enables the 

communication between the controller platform and data forwarding elements such 

as OpenFlow [31], BGP-LS [32], and PCEP [28]. Open northbound API allows 

communication between network application(s) and controller platform [33]. 

According to [34], three main fundamental abstractions include 

1. Forwarding abstraction – Control plane such as OpenFlow [31], BGP-LS [32] and 

PCEP [28] enables any forwarding behavior while hiding the hardware 

architecture details. 

2. Distribution abstraction – allows the network applications installed on the NOS 

from various states and centralizes the control problem. 

3. Specification abstraction – allows the network applications to implement the 

required network action without implementing that network. 

Open Southbound API

Controller Platform

Network Applications

Open Northbound API
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2.6.1 Software-Defined Networking Architecture 

 

SDN architecture can be composed of different layers. From the Bottom-up 

approach, the different layers consist of network infrastructure, southbound interface, 

network hypervisor, network operating system, northbound interface, language-based 

virtualization, and network applications. Among these layers, layers such as 

southbound APIs, northbound APIs, NOSs, and network applications can present always 

in the SDN architecture [33]. 

In SDN architecture, as seen in Fig. 18 [33], the network infrastructure is 

composed of forwarding elements such as switches, routers, firewalls, and load 

balancers, etc. Southbound interfaces such as OpenFlow, BGP-LS, and PCEP lie 

between SDN controller and forwarding devices. Controllers program forwarding 

devices via the southbound interface. Forwarding devices are hardware or software 

configured to forward the packet, and the controller is a stack of software running on 

hardware. 
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(a)                                                   (b) 

Fig. 18. Software-Defined Network Architecture in (a) planes and (b) layers [33] 
 

The Southbound interface or Southbound API enables the connection between 

the controller and the forwarding devices such as routers, switches, etc. There is a 

Network Operating System layer or Controller layer in the control plane, "brain of the 

network". The controller makes it easy to solve the problems of networking and 

facilitates the management of the network. The controller is the critical supporting 

element to configure the network according to the network operator's policies. One of 

the critical designs of SDN control platforms is centralized and distributed platforms. 

For centralized controllers, the controllers manage all network elements by one 

controller, such as Ryu NOS [35]. As a single controller handles the whole network, 

there are drawbacks such as a Single Point of Failure (SPOF) and many scaling 

problems. Handling a large number of nodes with a single controller may not be 

enough. Distributed controllers such as OpenDaylight [6] can adjust to meet the 

requirement of potentially all kinds of network environments, from large to small 
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networks. In distributed design, controllers can be centralized in a cluster or physically 

distributed. 

Northbound API is as essential as Southbound API. Northbound API helps to 

communicate between SDN controllers and network applications and presents a 

network abstraction interface to the application running on the SDN architecture. 

Northbound API allows network programmability from the application level. In the 

management plane, network applications implement operational logic and network 

behaviors through northbound API. The network applications can monitor the network 

topology and control routing. The instructions sent by the network applications are 

translated into southbound instructions to implement in networking devices in network 

infrastructure. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Traffic Engineering using SR-TE in Segment Routing Networks 
 

This chapter will study 3 different ILP models from [1], namely ECMP, SHP, and 

SEGMR. The reason to learn three other ILP models is to understand the proposed 

enhanced version of the SHP model as a thesis contribution. We test all 4 ILP models 

with 11 topologies, including grid and real topologies. We will evaluate the 

performance of ILP models with the maximum utilization among links. In addition to 

maximum utilization, we will measure and compare mean utilization, mean hop count, 

number of constraints, maximum SLD, program running time, and ILP solving time. 

 

3.1 Equal-cost multi-path routing (ECMP) ILP Model 

 

ECMP is the default behavior of SR. In ECMP, traffic is split among all equal 

paths. The ECMP concept is explained in [1]. Let’s consider the topology in Fig. 19 (a) 

with six routers. For connection PE1 – PE2, there are 3 ECMP paths which are PE1 – P1 

– P2 – PE2, PE1 – P3 – P2 – PE2, and PE1 – P3 – P4 – PE2. If the SID label for egress 

router PE2 is pushed at the ingress router PE1, traffic will be split among all three 

ECMP paths. If four traffic units from PE1 to PE2 are sent, load balancing is performed 

efficiently only on links PE1 – P1 and PE1 – P3, as shown in Fig. 19 (b). When two traffic 

units arrive at P1, P1 will send two units of traffic to PE2 as there are no paths to split 

the traffic as in Fig. 19 (c). Another two traffic units from the link PE1 – P3 split one 

unit each again on P3, one unit traffic on link P3 – P2, and another one unit on P3 – 

P4 as in Fig. 19 (d). Finally, Fig. 19 (e) shows that three traffic units on link P2 – PE2 

and one traffic unit on link P4 – PE2 arrive at PE2. We can see that by exploiting ECMP, 

depending on specific topology and traffic demand, traffic on the network can be 

distributed in an unbalanced way, leading to excessive latency. In addition, some 
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network forwarding devices cannot guarantee per-flow forwarding and can result in 

out-of-sequence (OOS) packet delivery. In such a case, we should avoid SR ECMP paths 

and use explicit strict SR routes. 

 

P1 P2 PE2

PE1 P3 P4

                                                                                                                                                                          
(a) 

                                                                                

 

PE1 -> PE2 PE1 - P1 - P2 - PE2  

 PE1 – P3 - P2 - PE2 
 PE1 – P3 - P4 - PE2 

 

P1

PE1 P3

 
                             (b) 

P1

PE1

P2 PE2

P3

 
(c) 
 

P1

PE1

P2 PE2

P3 P4

 
(d) 

P1

PE1

P2 PE2

P3 P4

 
(e) 

                     

P1 P2 PE2

PE1 P3 P4

2

2

2

3

1

1

1

 

                                                        (f) 
Fig. 19. ECMP Demonstrations 
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The notations and constraints are referenced from [1]. The first model ECMP is 

used as a benchmark in [1] and exploits all possible shortest paths. Notations for the 

ECMP model can be seen in Table. 2. The following ILP formulations are referenced 

from [1], and we will learn details in this sub-section. 

 

Table. 2. Notations and Meaning of ECMP, SHP, SHP_EN 

Notation Meaning Notation Meaning 

G  Graph representing network ( )d c  The demand of a 
connection c  

N  Nodes 
cP  Shortest paths of 

connection c  

L  Links p  A path 
cp P  

lK  Maximum capacity of 

  l L  

( )s p  Source or ingress of p  

C  Set of connections ( )t p  Destination or egress of p  

( )s c  Source or ingress of a 
connection c  

p
cx  A variable describing the 

fraction of amount of traffic 
for c  through p , 

cp P ,

c C  
( )t c  Destination or egress of a 

connection c  
  Maximum utilization of the 

network 
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0 1 2

3 4 5
 

Fig. 20.  2 x 3 Topology for ECMP 
 

To explain the ECMP model, we will consider the topology in Fig. 20 and a 

connection from node 0 to 5, denoted as c = 0-5. Let’s assume that the maximum 

capacity of every link on the topology 
lK  is 1. We will explain the ECMP model with 

constraints generated from Python PuLP using the default CBC solver. In P  of 

connection c  = 0-5, there will be three ECMP paths, 

0. 0-1-2-5 and the fraction of traffic flow on this path denoted as 0

0 5x −  

1. 0-1-4-5 and the fraction of traffic flow on this path denoted as 1

0 5x −  

2. 0-3-4-5 and the fraction of traffic flow on this path denoted as 2

0 5x − . 

This ECMP ILP model discovers the paths utilized by each c C such that maximum 

utilization is minimized. 

min   (1) 
p

c

p Pc

x


  = 1  c C   (2) 

C1:  0 1 2

0 5 0 5 0 5x x x− − −+ +  = 1 

Constraint (2) implies that the demand of each connection c  has to send traffic 

totally on the shortest paths of connection c . As we can see the constraint in C1, the 

sum of fractions 0

0 5x −  for path 0-1-2-5, 1

0 5x −  for path 0-1-4-5, and 2

0 5x −  for 0-3-4-5 have 

to be equal to 1. 

:c

p

c c l

c C p P l p

d x K
  

    l L   (3) 
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C2: 0

0 5x −
 + 1

0 5x −
     1  

C3: 2

0 5x −
     1  

C4: 0

0 5x −
     1  

C5: 1

0 5x −
     1  

C6: 0

0 5x −
     1  

C7: 2

0 5x −      1  

C8: 1

0 5x −  + 2

0 5x −      1  

(3) specifies the amount of traffic over each link in the network to be equal or 

less to    times the maximum capacity of each link. The example topology has seven 

bi-directional links, 0-1, 0-3, 1-2, 1-4, 2-5, 3-4 and 4-5. C2 is a constraint for link 0-1, and 

two paths are flowing on that link: paths 0-1-2-5 and 0-1-4-5. C2 ensures the flow on 

the link 0-1 to be less or equal to   times the capacity on link 0-1, and the objective 

function (1) makes the maximum utilization   to be minimized. And this procedure 

proceeds for all reaming links, as we can see in C3 to C8. 

0 1p

cx   c C  , 
cp P   (4) 

0   (5) 

1 2: :c c

p p

c c

p P l p p P l p

x x


    

=  c C  , p , cp P , all outing links 1l , 2l  sharing 

same node 

(6) 

C9: 0

0 5x −  + 1

0 5x −  = 2

0 5x −    

C10: 0

0 5x −  = 1

0 5x −  

Constraint (6) is constructed to enable ECMP. To enable ECMP, we have to 

distribute traffic at node 0 and node 1. In the example topology, we can see that there 

will be three ECMP paths 0-1-2-5, 0-1-4-5, and 0-3-4-5. At node 0, there are two 

outgoing links, link 0-1 and link 0-3. On Link 0-1, shortest paths 0-1-2-5 and 0-1-4-5 are 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

used, and on link 0-3, the shortest path 0-3-4-5 is used. As we can see in C9, the traffic 

combined between 0-1-2-5 and 0-1-4-5 and the traffic on 0-3-4-5 are forced to equal. 

At node 1, 0-1-2-5 on link 1-2 and 0-1-4-5 on link 1-4 are forced to equal, as we can 

see in C10. In that way, constraint (6) forces split traffic among outgoing links on each 

node if the shortest paths belong to the link. In SR, we have to encode only the SID 

of the terminal node at the source node to perform ECMP if there is more than one 

shortest path. In our example topology, the SID of node 5 is enough to perform ECMP 

on 0-1-2-5, 0-1-4-5, and 0-3-4-5 for connection 0-5, as shown in Table. 3. In this case, 

the SLD value is 1. 

 

Table. 3. SID List for Connection 0-5 

SID List Paths 

5 0-1-2-5, 0-1-4-5, 0-3-4-5 

 

3.2 SHP ILP Model 

 

After the ECMP model is studied, we will review the second model of [1], the 

SHP model. SHP model forces to select only one route if there is more than one 

shortest path. For example, considering 2 x 3 topology, there are 3 ECMP paths for 

connection 0 – 5. SHP model will force to choose only one of them, such as 0-1-2-5, 

0-1-4-5, or 0-3-4-5, as shown in Fig. 21. Annotations for the SHP model are the same 

as the ECMP model, as shown in Table. 2. To build the SHP model, we will change to 

variable p
cx  to be 0 or 1 only. In addition, we will discard the ECMP model's constraint 

(6). and add constraint (7) [1] for consistency among connections that have the same 

terminal node. 

p p

c cx x


  for all c  and c C , cp P , cp P 
  such that ( )t c  = ( )t c  and 

p p  

(7)  
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C11: 0

1 5x −
 >= 0

0 5x −
 

C12:  1

1 5x −
 >= 1

0 5x −
 

C13: 0

3 5x −
 >= 2

0 5x −
 

 
0 1 2

3 4 5  
(a) 

                                                                               

 
0 - 5 0-1-2-5  

0-1-4-5 
0-3-4-5 

 

0 1 2

3 4 5  
                         (b) 

 

0 1 2

3 4 5  
                           (c) 

                            

0 1 2

3 4 5

 

                                                        (d) 
Fig. 21. SHP Demonstrations 

 

To explain constraint (7), let’s consider we have three connections, 0-5, 1-5, 

and 3-5. Connection 0-5 has three shortest paths which are 0-1-2-5, 0-1-4-5, and 0-3-

4-5. Connection 1-5 has two shortest paths, 1-2-5 and 1-4-5. Connection 3-5 has only 

one path, which is 3-4-5. As we see C11 and C12, if connection 0-5 chooses 0-1-2-5, 

connection 1-5 have to choose 1-2-5 and if connection 0-5 chooses 0-1-4-5, connection 

1-5 has to choose 1-4-5. However, as we can see C13, if connection 0-5 chooses 0-3-
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4-5, connection 1-5 can choose any of the shortest paths between 1-2-5 and 1-4-5, 

and connection 3-5 has to choose 3-4-5. In this way, the paths among connections 

that have the same terminal node maintain consistency. 

If ECMP is avoided and only one shortest path is forced to choose, we cannot 

encode only the SID of the terminal node as in the ECMP model. We have to encode 

more than one label in case there are ECMP paths. As shown in Table. 3, only one 

label is needed to encode in the ECMP model. Considering the same topology in Fig. 

21, we must encode more than one to use a strict path for connection 0-5. To use the 

explicit path 0-1-2-5, we can encode SID 1,2,5, or 2,5, but more SIDs in the packet 

header mean more packet overhead in the packet. So, we can encode SL 2,5 for 0-1-

2-5, 1,4,5 for 0-1-4-5 and 3,5 for 0-3-4-5 as shown in Table. 4. 

 

Table. 4. SID List 

SID List Paths 
2,5 0-1-2-5 

1,4,5 0-1-4-5 

3,5 0-3-4-5 

 

3.3 SHP_En ILP Model 

 

This sub-section proposes an enhanced version of the SHP model (explained 

in section 3.2). In the SHP model, we use only the shortest paths for cP  and force to 

select only one if there are one or more shortest paths. In our SHP_En ILP model, we 

will use k-shortest paths instead of shortest paths for cP . For example, considering the 

topology in Fig. 22, when we limit the possible shortest paths to have at most nine 

paths, connection 0 – 5 will have four possible paths, which are 0-1-2-5, 0-1-4-5, 0-3-

4-5, and 0-3-4-1-2-5. We limit to at most nine paths because it will take too much time 
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for computing every possible path in the network if the network becomes larger and 

SLD to form an explicit will be very big. All the constraints and objective function are 

the same as SHP except using the k-shortest paths for each connection and forcing to 

choose among them. In this way, we can minimize the maximum utilization among 

links to be nearly identical to the SEGMR model (the proposed model of the paper 

[1]), as we will explain in section 3.4.  

 
0 1 2

3 4 5
 

 
0 -> 5 0-1-2-5  

0-1-4-5 

0-3-4-5 
0-3-4-1-2-5 

 

Fig. 22. SHP_En Demonstrations 
 

As the SHP_En model can choose the longer paths among k-shortest paths, we 

cannot use the encoding algorithm in [1] to generate the SLD of the paths. The reason 

we cannot use is that the algorithm can only generate for the shortest paths. So, we 

make a program to encode every possible path. To encode every possible path, we 

first list every unique shortest path among every connection from larger to smaller 

hop counts. As shown in Fig. 23, there are 18 unique shortest paths in the 2 x 3 

topology. In segment routing, we can use the SID of the terminal node as the SID for 

the path if the path is unique. For example, we can refer to path 0-1-2 with SID 2 only. 

If the SHP_En model chooses path 2-1-0-3-4 for connection 2-4, we can use 1,0,3,4 as 

SID, but more SIDs mean more packet overhead. So, we will try to reduce SLD by the 

following procedure: we try to match the unique path from 1 to 18 until we get all 

the labels. For 2-1-0-3-4, 2-1-0 is first matched, so we put SID 0 for that segment and 

0-3 is matched, so we put SID 3, and lastly, 3-4 is matched, so we put SID 4. The final 

segment list is 0,3,4, and SLD (segment list depth) is 3. The illustrations for reducing 

SLD to path 2-1-0-3-4 can be seen in Fig. 23 (c). The same procedure is also applied to 
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encode the explicit path for the SHP model. If we want to encode for the path 0-1-2-

5 from the SHP model, the first 0-1-2 is matched. So, we put SID 2. 2-5 is matched, so 

we put 5, the final SL is 2,5, and SLD is 2. The SL procedure for SHP can be seen in Fig. 

23 (b). 

 

 
0 1 2

3 4 5  
 
 
 
 

 
                                                                      

(a)                                                                          

 

1. 0-1-2        10. 2-1 
2. 2-1-0        11. 2-5 

3. 3-4-5        12. 3-0 
4. 5-4-3        13. 3-4 

5. 0-1        14. 4-1 

6. 0-3        15. 4-3 
7. 1-0        16. 4-5 

8. 1-2        17. 5-2 

9. 1-4        18. 5-4 
 
 

2

  –   –   –   

5  
                                                                                  

(b) 

 

SL 2,5 
SLD 2 

 

0

  –   –   –   -  

3

4

 

(c) 

 

SL 0,3,4 

SLD 3 
 

Fig. 23. SL Computation 
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Table. 5. Notations and Meaning for SEGMR 

Notation Meaning Notation Meaning 

G  Graph representing 
network 

( )d c  Demand of a connection c  

N  Nodes   All unique shortest paths 
between node pairs 

L  Links p  A path p   

lK  Maximum capacity of l L  ( )s p  Source of p  

C  Set of connections ( )t p  Destination of p  

( )s c  Source node of a 
connection c  

p

cy  A binary variable represents 
the sub-path p  is used or 
not, c C  , p   

( )t c  Destination node of a 
connection c  

  Maximum utilization of the 
network 

 

3.4 SEGMR ILP Model 

 

 In this section, we will study the SEGMR model of the paper [1]. This paper 

proposed the SEGMR model to exploit the Segment Routing traffic engineering. In this 

model, there are a few changes in notations from previous ILP models as shown in 

notations as shown in Table. 5. Instead of cP , this paper uses  . In  , there will be 

all unique shortest paths between node pairs. As shown in Fig. 24, there are 18 unique 

shortest paths in  . Choosing a unique shortest path is that 0-5 has three paths which 

are 0-1-2-5, 0-1-4-5, and 0-3-4-5, and they are not selected. 0-2 has only one path (0-

1-2), and 0-1-2 is selected. If we choose unique shortest paths in  , we can use the 

SID of the terminal node to define a segment. For example, 0-1-2 path can be just 

defined by the SID of node 2.  
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 The notations and constraints are referenced from [1]. To explain the SEGMR 

model, we will consider the topology in Fig. 24 and three connections 0-5, 1-2, and 1-

5. Constraint (9) can be defined as flow conservation constraint. Constraint (9) makes 

sure every connection goes accurately through source, intermediate, and destination. 

For example, C1 and C6 ensure that connection 0-5 goes correctly through the source, 

intermediate, and destination. If segments 0-3 and 3-4-5 are chosen, C1 makes sure 

that segment 0-3 is chosen at node 0. C2, C3, and C5 ensure that no paths are starting 

at nodes 1,2, and 4. C4 ensures that segments 0-3 and 3-4-5 are chosen. C6 ensures 

that 3-4-5 ends at node 5. The same goes on for connections 1-2 from C7 to C12 and 

1-5 from C13 to C18. Constraint (10) is the same as a constraint (3) from the ECMP 

model (explained in detail in section 3.1). Constraint (11) ensures that segments are 

not chosen more than κ . Limiting the number of κ  can be considered as the 

maximum number of SLD. C20 limits the connection 0-5 to choose sub-paths less than 

or equal to κ . C21 and C22 limit the connection 1-2 and 1-5 respectively. Constraint 

(14) is for consistency. As we can see in C29 if connection 0-5 uses segment 1-2 as a 

subpath, connection 1-2 have to use segment 1-2, but if connection 0-5 doesn’t use 

the segment 1-2, connection 1-2 can or cannot use segment 1-2. Also, with the 

connection 1-5, if connection 1-5 uses segment 1-2, connection 1-2 have to use 

segment 1-2, and if connection 1-5 doesn’t use segment 1-2, connection 1-2 can or 

cannot use segment 1-2. 
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0 1 2

3 4 5
 

 
 
 

                                                                                                                     

  
0 0-1 9 3-0 
1 0-1-2 10 3-4 

2 0-3 11 3-4-5 

3 1-0 12 4-1 
4 1-2 13 4-3 

5 1-4 14 4-5 

6 2-1-0 15 5-2 
7 2-1 16 5-4-3 

8 2-5 17 5-4 
 

Fig. 24. Unique shortest paths 
 

min   (8) 

: ( )

p

c

p s p n

y
 =

 -
: ( )

p

c

p t p n

y
 =

 = ,c nb  c C  , n N  (9) 

where  

,

1     if ( )

1  if ( )

0  otherwise

c n

n s c

b n t c

=

= − =







 

C1: 0 1 2 3 6 9

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = 1      

C2: 3 4 5 0 7 12

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = 0 

C3: 6 7 8 1 4 15

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = 0  

C4: 9 10 11 2 13 16

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = 0  

C5: 12 13 14 5 10 17

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = 0  

C6: 15 16 17 8 11 14

0 5 0 5 0 5 0 5 0 5 0 5( )y y y y y y− − − − − −+ + − + +  = -1 

C7: 0 1 2 3 6 9

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = 0 
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C8: 3 4 5 0 7 12

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = 1 

C9: 6 7 8 1 4 15

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = -1 

C10: 9 10 11 2 13 16

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = 0 

C11: 12 13 14 5 10 17

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = 0  

C12: 15 16 17 8 11 14

1 2 1 2 1 2 1 2 1 2 1 2( )y y y y y y− − − − − −+ + − + +  = 0 

C13: 0 1 2 3 6 9

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = 0 

C14: 3 4 5 0 7 12

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = 1 

C15: 6 7 8 1 4 15

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = 0 

C16: 9 10 11 2 13 16

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = 0 

C17: 12 13 14 5 10 17

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = 0 

C18: 15 16 17 8 11 14

1 5 1 5 1 5 1 5 1 5 1 5( )y y y y y y− − − − − −+ + − + +  = -1 

:

p

c c l

c C p l p

d y K



  

    l L   (10) 

p

c

p

y





  c C   (11) 

C20: 0 17

0 5 0 5y y − −+ +   

C21: 0 17

1 2 1 2y y − −+ +   

C22: 0 17

1 5 1 5y y − −+ +   

 0,1p

cy   c C  , p   (12) 

0   (13) 

p p

c cy y   for all ,c c C , p   such that ( ) ( )s p s c= , ( ) ( )t p t c=  (14) 

C29: 4 4

1 2 0 5y y− −  

C30: 4 4

1 2 1 5y y− −  
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In the SEGMR model, the resulting segments from each connection can get the 

SLD. For example, if connection 0-5 chooses segment 0-3 and 3-4-5, segment list or SL 

will be 3 and 5, and SLD will be 2.  

  As the SEGMR ILP model can have multiple optimal solutions, the SEGMR 

model may choose some extra links for some connections as long as the maximum 

utilization is minimized. For example, the connection 1-2 may choose the sub-paths 

[1-2], [3-4], and [4-3] as long as the maximum utilization is minimized. We can see that 

[3-4] and [4-3] do not violate the constraints because connection 1-2 can reach with 

sub-path [1-2], and the total sub-paths are equal to  . But, when we measure the 

performance of the SEGMR model after completing the ILP model, we remove [3-4] 

and [4-3] to evaluate the performance of the SEGMR model.  

 

3.5 Results and Discussion  

 

This section will present the topologies we used to evaluate the four ILP 

models we discussed and the results by four ILP models. We use four grid topologies 

and seven real topologies to test and assess the performance of the four ILP models. 

Topologies can be seen in Fig. 26, and the number of nodes and links of topologies 

can be seen in Table. 6. This thesis uses Python PuLP [9]  and free default solver CBC 

to solve ILP models. We assume that every node pair or connection have traffic 

demand to send. We test with two kinds of traffic demands: same traffic demand and 

different traffic demand ranging from 1 to 10, including 10. The links in the topologies 

are bidirectional. We will set the parameters such as link capacity in a way that our 

main reference paper [1] conducts because we would like to compare results among 

them. The maximum capacity of each link is fixed to 1. Setting link capacity to 1 is not 

practical because the traffic demand cannot go through the link more than link 

capacity. But by limiting capacity 1, we will know the maximum utilization  on a link 
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or the maximum number of traffic on a link. For the SHP_En ILP model, we limit 

possible paths to 9, and for the SEGMR model, we use   = 3 and   = 8. According to 

paper [1], networking devices support maximum SLD between 5 and 8, but according 

to Cisco, Cisco ASR 1000 routers support up to maximum SLD 16 [36]. We measure 

maximum utilization (Table. 7 and Table. 8), mean utilization (Table. 9 and Table. 10), 

mean hop count (Table. 11 and Table. 12), maximum segment list depth (SLD)  (Table. 

13 and Table. 14), time (Table. 15, Table. 16, Table. 17, and Table. 18), and the number 

of constraints (Table. 19). All 4 ILP models are run on Ubuntu 18.04.4 LTS server 

version, and specifications can be seen in Fig. 25. 

 

Table. 6. Nodes and Links of Topology. 

Topology Node Link 

2 x 2 4 4 
3 x 3 9 12 

4 x 4 16 24 

5 x 5 25 40 
Eurocosre 11 25 

NFSNET 14 21 

EON 20 39 
UKNet 21 39 

ITALNet 21 36 
Arpanet 20 31 

30-Node European 30 48 
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Fig. 25. Specifications of Server 
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(e) 
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(k) 
Fig. 26. Topologies (a) Grid 2 x 2 (b) 3 x 3 (c) 4 x 4 (d) 5 x 5 (e) Eurocore (f) NFSNET 
(g) EON (h) UKNET (i) ITALNET (j) Arpanet (k) 30-Node European 

 
The maximum utilization is measured as the maximum number of traffic 

demands flowing among network topology links. For the same traffic demand of each 

connection = 1 or the same traffic demand, we can see the maximum utilization in 

Table. 7. We limit the ILP models to find the solution within 6 hours or 21600 seconds. 

Some topology such as UKNet in SHP takes a lot of time to find the optimal solution 

and denote with * for results at the maximum amount of time (21600 seconds). For 

maximum utilization results with the same traffic demand, ECMP always generates 

higher maximum utilization except 2 x 2 topology compared to SHP, SHP_En, and 

SEGMR. In 30 node European topology, maximum utilization is 42% higher than SHP_En 

and SEGMR. Comparing SHP to SHP_En and SEGMR for the same traffic demand, 

SHP_En and SEGMR generate 14% in average smaller maximum utilization in NFSNet, 

UKNET, ITALNET, and 30-node European topologies. Comparing SHP_En to SEGMR, by 

giving the 9-shortest paths to SHP to choose, we can achieve the maximum utilization 

as the same as SEGMR. In the SEGMR model, κ = 3 is enough to achieve the results in 

Table. 7. To test the ILP models with random traffic demand, we create traffic matrices 

ranging from 1 to 10 (including 10) for each topology and use them for each ILP model. 

In random traffic demand, ECMP generates less maximum utilization in only 2 x 2 
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topology. Compared to ECMP, SHP_En increases 2% maximum utilization while SHP 

and SEGMR increase by 6%. Except for 2 x 2 topology, ECMP generates higher maximum 

utilization in other topologies. Comparing ECMP to SHP_En and SEGMR, ECMP generates 

26% on average higher maximum utilization. SHP generates 16% on average higher 

maximum utilization than SHP_EN and SEGMR. SHP_En generates 4% less maximum 

utilization than SEGMR in 2 x 2 and other than that, generates the same as SEGMR. 

Although we set the maximum capacity of each link is set to 1, we can see that the 

maximum utilization results are more than 1. The reason the maximum utilization 

results are more than 1 is that as we explained in ECMP, SHP, SHP_En and SEGMR 

model, constraint (3) and (10) limits the capacity not to be more than   times the 

capacity but we set   to be greater than or equal to 0. As we explained, the maximum 

utilization more than the capacity of the link is not practical, but we can know   as 

the maximum number of demands flowing on a link.  

 The utilization of a link is the amount of traffic flowing on a link. Mean utilization 

for the same traffic demand can be seen in Table. 9. As SHP_En and SEGMR can choose 

longer paths than shortest paths, the mean utilization in SHP_En and SEGMR is higher 

than ECMP and SHP except 2 x 2 and 3 x 3 topologies. SHP_En produces 13% in average 

higher mean utilization than SHP and ECMP model while SEGMR produces 15% in 

average higher with   = 3. Table. 10 shows the mean utilization for random traffic 

demand. ECMP and SHP generate the same mean utilization. In 2 x 2 topology, SHP_En 

generates 2% higher than other models, but SHP_En’s maximum utilization is lower 

than SHP and SEGMR, as shown in Table. 8. In other topologies, SHP_En and SEGMR 

cause 12% in average higher mean utilization than ECMP and SHP. 

 The mean hop count for each ILP model can be seen in Tables. 11 and 12. 

Table. 11 shows that SHP_En and SEGMR have longer hop count than ECMP and SHP 

as SHP_En and SEGMR can travel longer paths for the same traffic demand. All ILP 

models generate the same mean hop count in 2 x 2 and 3 x 3 topologies. In other 

topologies except 2 x 2 and 3 x 3, we can see that SHP_En produces 13% in average 
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higher mean hop count and SEGMR produces 15% in average higher than SHP and 

ECMP. In topology 2 x 2 with random traffic demand, SHP_En generates 11% higher 

than other ILP models but SHP_En maximum utilization is lower than SHP and SEGMR. 

In other topologies except 2 x 2, SHP_En produces 11% on average higher for random 

traffic demand, and SEGMR produces 12% in average higher mean hop count than 

ECMP and SHP. 

 Tables. 13 and 14 show the maximum SLD results to be appended to form SR-

TE paths for each ILP model. Table. 13 indicates that ECMP only needs one label to 

encode to create a path for the same traffic demand. SHP uses up to five labels as 

SHP is forced to choose only one strict path. SHP_En uses up to a maximum of six 

labels to extend the SHP ILP model and provides lower maximum utilization in the 

network. We already tested six labels to form the SR-TE paths in Cisco XRV 6.1.3. The 

wonderful proposed SEGMR of [1] needs only three labels to provide efficient 

maximum utilization in the network. ECMP only needs one label, and SHP and SHP_En 

need up to a maximum of six labels for random traffic demand. SEGMR only needs 

three labels. 
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Table. 7. Maximum Utilization for Same Traffic Demand 

Topology Maximum utilization – Same Traffic Demand 
ECMP SHP SHP_En  

(9) 
SEGMR  
  = 8 

SEGMR  
  = 3 

2 x 2 4.0 4.0 4 4 4 

3 x 3 14.0 12.0 12 12 12 

4 x 4 37.25 32.0 32.0 32.0 32.0 
5 x 5 73.5 60.0 60.0 60.0 60.0 

Eurocore 9.67 8.0 8.0 8.0 8.0 

NFSNet 30.67 26.0 25 25.0 25.0 
EON 49.78 36.0 36.0 36.0 36.0 

UKNET 54.88 42* 37.0 37.0 37.0 
ITALNET 93.75 66.0 55 55.0 55.0 

Arpanet 71.29 66.0 66 66.0 66.0 

30-node European  194.38 146 112 112 112.0 

 * Result at 6 Hour 
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Table. 8. Maximum Utilization for Random Traffic Demand 

Topology Maximum utilization – Random Traffic Demand (1-10) 
ECMP SHP SHP_En 

(9) 
SEGMR  
  = 8 

SEGMR  
  = 3 

2 x 2 23.5 25.0 24 25.0 25.0 

3 x 3 84.25 65.0 65.0 65.0 65.0 

4 x 4 230.06 179* 179.0 179.0 179.0 
5 x 5  439 347* 347.0 347.0 347 

Eurocore 56.42 45.0 41.0 43* 41.0 

NFSNet 170.0 151 128.0 128.0 128 
EON 265.69 199 199.0 199 199.0 

UKNET 295.17 235.0* 198.0 198.0 198.0 
ITALNET 525.67 387.0 325.0 325.0 325.0 

Arpanet 401.71 363.0 363.0 363.0 363.0 

30-node European 969.27 754.0 584.0 584.0 584.0 

   * Result at 6 Hour 
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Table. 9. Mean Utilization for Same Traffic Demand 

Topology Mean utilization – Same Traffic Demand 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR  
  = 3 

2 x 2 4.0 4.0 4.0 4 4 

3 x 3 12.0 12.0 12 12 12 

4 x 4 26.67 26.67 29.08 31.17 29 
5 x 5 50 50.0 52.65 58.7 53.85 

Eurocore 6.96 6.96 7.28 7.56 7.52 

NFSNet 18.57 18.57 22.95 22.62 22.29 
EON 23.03 23.03 27.03 32.26 27.64 

UKNET 26.97 26.97* 30.67 34.49 31.92 
ITALNET 34.06 34.06 40.28 48.36 41.25 

Arpanet 34.38 34.39 46.23 49.26 44.13 

30-node European 61.38 61.38 73.90 98.42 80.02 

  * Result at 6 Hour 
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Table. 10. Mean Utilization for Random Traffic Demand 

Topology Mean utilization – Random Traffic Demand (1-10) 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR  
  = 3 

2 x 2 22.5 22.5 23 22.5 22.5 

3 x 3 60.42 60.42 62.25 61.92 62.25 

4 x 4 145.21 145.21* 151.54 161.96 156.63 
5 x 5 274.83 274.83* 292.78 310.18 298.18 

Eurocore 38.24 38.24 40.32 40.76 40.56 

NFSNet 98.10 98.10 122.38 110.81 110.57 
EON 117.21 117.21 142.28 155.85 143.38 

UKNET 137.97 137.97* 155.44 171.28 162.05 
ITALNET 199.58 199.58 233.69 261.86 230.03 

Arpanet 187.81 187.81 240.90 233.35 221.58 

30-node European 322.13 322.13 380.19 481.06 410.27 

  * Result at 6 Hour 
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Table. 11. Mean Hop Count for Same Traffic Demand 

Topology Mean Hop Count – Same Traffic Demand 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR  
  = 3 

2 x 2 1.33 1.33 1.33 1.33 1.33 

3 x 3 2.0 2.0 2.0 2.0 2.0 

4 x 4 2.67 2.67 2.91 3.12 2.9 
5 x 5 3.33 3.33 3.51 3.91 3.59 

Eurocore 1.58 1.58 1.65 1.72 1.71 

NFSNet 2.14 2.14 2.65 2.61 2.57 
EON 2.36 2.36 2.77 3.31 2.84 

UKNET 2.50 2.50* 2.85 3.20 2.96 
ITALNET 2.92 2.92 3.45 4.15 3.54 

Arpanet 2.81 2.81 3.77 4.02 3.6 

30-node European 3.39 3.39 4.08 5.43 4.41 

* Result at 6 Hour 
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Table. 12. Mean Hop Count for Random Traffic Demand 

Topology Mean Hop Count – Random Traffic Demand (1-10) 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR  
  = 3 

2 x 2 1.33 1.33 1.5 1.33 1.33 

3 x 3 2.0 2.0 2.06 2.08 2.06 

4 x 4 2.67 2.67* 2.78 2.97 2.89 
5 x 5 3.33 3.33* 3.54 3.83 3.66 

Eurocore 1.58 1.58 1.65 1.74* 1.69 

NFSNet 2.14 2.14 2.65 2.51 2.41 
EON 2.36 2.36 2.79 3.24 2.86 

UKNET 2.50 2.50* 2.78 3.26 2.96 
ITALNET 2.92 2.92 3.41 3.91 3.39 

Arpanet 2.81 2.81 3.56 3.54 3.36 

30-node European 3.39 3.39 3.97 5.16 4.29 

* Result at 6 Hour 
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Table. 13. Maximum SLD for Same Traffic Demand 

Topology Maximum SLD – Same Traffic Demand 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR 
   = 3 

2 x 2 1 2 3 2 2 

3 x 3 1 2 3 4 3 

4 x 4 1 5 5 7 3 
5 x 5 1 5 6 8 3 

Eurocore 1 3 3 5 3 

NFSNet 1 2 4 7 3 
EON 1 4 4 8 3 

UKNET 1 4* 5 8 3 
ITALNET 1 4 5 8 3 

Arpanet 1 3 5 8 3 

30-node European 1 4 5 8 3 

  * Result at 6 Hour 
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Table. 14.  Maximum SLD for Random Traffic Demand 

Topology Maximum SLD – Random Traffic Demand (1-10) 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR 
  = 3 

2 x 2 1 2 2 2 2 

3 x 3 1 2 4 5 3 

4 x 4 1 4* 5 5 3 
5 x 5 1 6* 6 7 3 

Eurocore 1 3 3 6* 3 

NFSNet 1 2 4 7 3 
EON 1 4 4 8 3 

UKNET 1 4* 5 7 3 
ITALNET 1 4 5 8 3 

Arpanet 1 3 5 8 3 

30-node European 1 4 5 8 3 

  * Result at 6 Hour 

 

 Tables. 15, 16, 17 and 18 discuss the program running time and ILP problem-

solving time. Program running time is the time to finish the whole program, including 

ILP problem-solving time, and ILP problem-solving time is the time to solve the ILP 

problem only. ECMP takes the shortest time to find an optimal solution among the 4 

ILP models for both traffic demands as ECMP requires fewer constraints than other ILP 

models. Tables. 15 and 16 show the results for the same traffic demand. We limit the 

time for UKNET in the SHP model to get the result at 21600 seconds as it takes too 

long to find the optimal solution. SHP_En requires more time compared to SHP except 

for UKNet topology. In UKNET topology, SHP can find an optimal solution in 8.60 

seconds. Comparing SHP_En and SEGMR, SHP_En takes less time to find the optimal 

solution except 3 x 3 topology requires 0.08 seconds. For random traffic demand as 
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shown in Tables. 17 and 18, three topologies, namely, 4 x 4, 5 x 5, and UKNET in SHP, 

take a long time to find the solution and are limited to 6 hours. Comparing SHP_En 

and SEGMR, SHP_En takes less time to find the optimal solution than SEGMR. Table. 

19 shows the number of constraints for 4 ILP models. We can see that SEGMR requires 

the most number of constraints compared to the three other models. The enhanced 

version of the SHP model, SHP_En, requires more than the SHP model but less than 

the SEGMR model. 

 

Table. 15. Program Running Time for Same Traffic Demand 

Topology Program Running Time(s) – Same Traffic Demand 

ECMP SHP SHP_En SEGMR  
  = 8 

SEGMR 
   = 3 

2 x 2 0.04 0.05 0.05 0.07 0.06 
3 x 3 0.08 0.10 0.70 0.96 0.95 

4 x 4 0.42 0.65 4.41 14.82 16.53 

5 x 5 2.85 16.06 55.06 231.29 262.94 
Eurocore 0.12 0.34 0.76 3.95 3.85 

NFSNet 0.14 0.17 2.63 14.53 15.11 

EON 0.57 0.70 6.87 89.66 89.33 
UKNET 0.63 21675.49* 11.31 144.91 381.25 

ITALNET 0.55 0.74 12.64 117.83 239 

Arpanet 0.39 0.51 10.05 96.08 115.14 
30-node European 1.64 2.06 40.33 1828.01 7045.61 

 * Result at 6 Hour 
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Table. 16. PuLP Time for Same Traffic Demand 

Topology PuLP Time (s) – Same Traffic Demand 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR 
   = 3 

2 x 2 0.01 0.01 0.01 0.02 0.02 

3 x 3 0.01 0.03 0.45 0.39 0.37 

4 x 4 0.04 0.26 3.16 5.79 7.48 
5 x 5 0.30 13.46 50.46 151.71 180.65 

Eurocore 0.01 0.22 0.31 1.23 1.16 

NFSNet 0.02 0.03 1.79 5.62 5.99 
EON 0.04 0.13 4.52 46.67 45.77 

UKNET 0.04 21674.86* 8.60 84.30 320.81 
ITALNET 0.04 0.14 9.92 60.88 182.23 

Arpanet 0.03 0.07 7.67 39.88 59.51 

30-node European 0.07 0.26 32.65 1505.92 6722.77 

 * Result at 6 Hour 
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Table. 17. Program Running Time for Random Traffic Demand 

Topology Program Running Time (s) – Random Traffic Demand (1-10) 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR 
   = 3 

2 x 2 0.04 0.05 0.06 0.06 0.06 

3 x 3 0.08 0.12 1.45 3.85 4.20 

4 x 4 0.41 22317.51* 13.83 68.57 59.42 
5 x 5 2.89 21637.17* 31.14 571.53 543.01 

Eurocore 0.13 1.47 1919.10 21702.89* 2554.95 

NFSNet 0.14 0.17 11.45 43.23 36.56 
EON 0.58 0.71 6.78 61.65 80.18 

UKNET 0.62 21674.15* 28.60 335.08 534.95 
ITALNET 0.59 0.72 50.54 139.86 328.79 

Arpanet 0.38 0.54 7.30 170.67 85.32 

30-node European 1.56 2.10 23.60 786.31 966.50 

  * Result at 6 Hour 
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Table. 18. PuLP Time for Random Traffic Demand 

Topology PuLP Time (s) – Random Traffic Demand (1-10) 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR 
   = 3 

2 x 2 0.01 0.02 0.02 0.04 0.04 

3 x 3 0.01 0.05 1.19 3.28 3.66 

4 x 4 0.04 22317.13* 12.62 59.31 50.25 
5 x 5 0.27 21634.52* 26.76 491.15 461.53 

Eurocore 0.01 1.36 1918.63 21700.14* 2552.30 

NFSNet 0.01 0.03 10.61 33.96 27.44 
EON 0.03 0.14 4.42 17.44 35.88 

UKNET 0.04 21673.52* 25.88 273.53 472.90 
ITALNET 0.04 0.12 47.83 82.24 271.80 

Arpanet 0.03 0.09 4.92 114.69 28.51 

30-node European 0.07 0.27 15.97 464.83 635.97 

 * Result at 6 Hour 
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Table. 19. Number of Constraints 

Topology Number of constraints 
ECMP SHP SHP_En SEGMR  

  = 8 
SEGMR  
  = 3 

2 x 2 20 24 40 152 152 

3 x 3 148 296 2340 3288 3288 

4 x 4 664 2304 8314 27048 27048 
5 x 5 2240 14240 21954 135440 135440 

Eurocore 211 299 2039 8539 8539 

NFSNet 255 505 6107 28091 28091 
EON 767 1887 9520 79271 79271 

UKNET 823 2121 11589 107325 107325 
ITALNET 764 2438 13376 105646 105646 

Arpanet 593 1659 14341 112615 112615 

30-node European 1648 5878 33220 412854 412854 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4  

Implementation of Segment Routing network on Emulated Virtual 

Environment - Next Generation (EVE-NG) 
 

4.1: Emulated Virtual Environment - Next Generation (EVE-NG) 

 

Implementation and testing the traffic engineering algorithms and changes in a 

real production network are complex and challenging in terms of costs. In this thesis, 

the EVE-NG community edition [5]  is used as a tool to emulate the network. EVE-NG 

is an emulated virtual environment - the next generation. EVE-NG supports the real-

life scenario by using virtual devices by connecting to real devices or physical devices. 

In this thesis, Cisco IOS XRV 6.1.3 routers and a Cisco switch are implemented in EVE-

NG as routers and switch.  

 We created an experimental testbed in Emulated Virtual Environment Next 

Generation (EVE-NG) community edition [5]. Firstly, the EVE-NG is installed on the VM 

with specifications  

Memory: 16 GB 
Processors: 4 
Hard Disk: 50 GB 
Network Adapter: one for NAT and another one to connect to ODL with VMware 
workstation 16 Pro [37]. EVE-NG is a web-based application and very light to use. Three 
parts in this testbed are network devices, the SDN controller, and the SHP_En Traffic 
Engineering application running on top of the SDN controller. The author uses two VMs. 
The first one is for EVE-NG to implement network topology, and the latter one is to 
implement OpenDaylight controller [6] (SDN controller) and SHP_En Traffic Engineering 
application with Postman [7] on top of the controller as shown in Fig. 27. A network 
adapter in a VMware workstation connects two VMs. 
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OpenDaylight Controller

PCEP BGPLS

RESTCONF

SHP_EN Traffic Engineering
+

Postman

PE1
PE2

P1 P2

P3

P4 P5 P6

S1 SR-Enabled
IS-IS Network 

PCEP + BGP_LS PCEP 

EVE-NG 
Network 
Simulator

 

Fig. 27. Experimental Topology 
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4.2: Cisco IOS XRV 

 

 The Cisco IOS XRV is a router based on Virtual Machine based platform with 

32-bit IOS XR software [10]. This VM includes the forwarding and routing functionality, 

manageability, and control-plane features. Cisco IOS XRV does not represent an 

emulation of any hardware component or any physical router. In a demonstration 

environment, this VM supports up to eight CPUs on a single VM. This VM is also 

hardware-independent, and it runs on x86 hardware supported by the virtualization 

platform.  

 

4.3 Creating a network topology 

 

 To create an experimental network topology, routers and a switch are added 

to the EVE-NG. Cisco IOS XRV 6.1.3 image is added to the EVE-NG as a router, and l2-

adventure is added as layer two switch. The system design of the experimental 

topology is shown in Fig. 28. PE1 (Provider Edge) and PE2 are edge routers, and P1 

(Provider), P2, P3, P4, P5, and P6 are core routers. A switch connects between the SDN 

controller and PE routers. We can connect to the actual internet or another VM in EVE-

NG, as shown in Fig. 27. As seen in Fig. 27, PE1 and PE2 are connected to the SDN 

controller (Net) via a switch (s1).  
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Host Machine

Vmware Workstation Player

EVE-NG

SHP_EN Traffic 
Engineering

+
SDN Controller

 

Fig. 28. System Design 
 

4.4 Setting up SDN Controller 

 

 OpenDaylight [6] is used as an SDN controller. OpenDaylight controller is 

installed on Ubuntu 18.04.5 LTS Desktop Version [38] with memory 4 GB, 1 Processor, 

20 GB Hard Disk, and two network adapters. OpenDaylight can be downloaded on [6]. 

After installing and starting OpenDaylight in our VM machine, we must enable the 

essential features that we will use in our topology using the odl command line: install 

odl-bgpcep-bgp-all, install odl-restconf-noauth, install odl-bgpcep-pcep-pcep-all. 

 

4.5 Connecting the topology and the SDN controller 

 

 Connecting the SDN controller to the routers can be done in EVE-NG. We 

connect two VM with the same virtual network interface at the VMware workstation. 

Moreover, we choose the network cloud in the EVE-NG and connect via a switch, as 

shown in Fig. 29. We have to set the required IP address (172.16.1.128) to the controller. 
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Fig. 29. Experimental Topology in EVE-NG emulator 
 

4.6 Installing SR, PCEP and BGP-LS 

 

 We will demonstrate provisioning the segment routing in our network. As seen 

in our topology in Fig. 29, there are eight routers, which are PE1, PE2, P1, P2, P3, P4, 

P5, and P6. All the routers are using the Cisco XRV 6.1.3 version and support the 

Segment Routing feature. The EVE emulator can connect the router to the internet or 

another VM by choosing Management Cloud. Edge routers PE1 and PE2 are connected 

to the SDN controller by the management interface. PE nodes and P nodes are 

connected by a gigabit Ethernet interface which supports a maximum bandwidth of 1 

Gbps. First, we give IP addresses of loopback, management, and interface to each 

router. IP address information can be found in Table. 20. After IP addresses are correctly 

configured, we install IGP protocol (in this thesis, we use ISIS) on each router. As we 

explained in background theories, SR uses IGP extensions instead of LDP or RSVP-TE. 

So, we enabled segment routing under ISIS configuration, and we configure node-SID 
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on each loopback interface. Node-SID of each router can be seen in Table. 20. After 

we configured IGP, we will enable MPLS on all routers. For PCEP, the SDN controller is 

PCE, and PE1 and PE2 are PCC. As PE1 and PE2 are PCC, the SDN controller can only 

install the SR-TE path to PE1 and PE2. In PE1 and PE2, we configure them to refer to 

the SDN controller as PCE. The next step is to configure BGP-LS. To configure BGP-LS, 

we choose PE1 to form BGP peer with the SDN controller, OpenDaylight.  

 

Table. 20. IP address and Node-SID Information of Routers 

Router IP Address Node-SID 
PE1 Mgmt - 172.16.1.82 

Loopback - 10.10.1.100 
17001 

PE2 Mgmt - 172.16.2.82 
Loopback - 10.10.2.100 

17002 

P1 Loopback - 10.10.10.100 17010 

P2 Loopback - 10.10.20.100 17020 

P3 Loopback - 10.10.30.100 17030 
P4 Loopback - 10.10.40.100 17040 

P5 Loopback - 10.10.50.100 17050 

P6 Loopback - 10.10.60.100 17060 

 

4.7 Configuration in OpenDaylight 

 

 After installing the required features in ODL as described in section 4.4, the ODL 

will generate configuration files. In our thesis, we will configure ODL to form a BGP 

neighbor with PE1. We will change the default configurations of 41-bgp-example. xml 

located in "/usr/local/karaf/distribution-karaf-0.5.2-Boron-SR2/etc/opendaylight/karaf". 

Configurations can be seen in Fig. 30. 172.16.1.82 is the management interface of PE1 

that is connected to the ODL controller.  
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Fig. 30. BGP Configuration at ODL 
 

4.8 Implementation of SR-TE 

 

 After we finished the configuration of segment routing control and data plane, 

Segment Routing Traffic Engineering (SR-TE) can be implemented in two different ways: 

centralized and distributed. As this thesis focuses on a centralized approach using an 

SDN controller, we implement SR-TE with a centralized system. The controller obtains 

the network topology information for the centralized approach, such as the network 

device’s maximum link bandwidth, IP addresses, metrics, and SIDs using the 

southbound protocol - BGP-LS and PCEP. 

We will use the SHP_En ILP model to implement SR-TE for the topology in Fig. 

29. We develop a Python GUI application called “SHP_En Traffic Engineering” for 

network administrators to visualize the topology, input the required traffic demand, 

compute the SR-TE paths for the given traffic demand and implement SR-TE tunnels 

with Postman.   

 

4.8.1 SHP_En Traffic Engineering Application 

 

 SHP_En Traffic Engineering Application is written in Python programming 

language. The application is on the same VM with the ODL controller. The application 

use RESTCONF to connect to the ODL and the httplib2 library [39] to request a JSON  

file from ODL and use JSON library [40] to load the JSON file. The URL we use to get 

name, IP address, router-id, connectivity among routers, bandwidth from the ODL is 
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http://172.16.1.128:8181/restconf/operational/network-topology:networktopology/top 

/ology/example-linkstate-topology. 172.16.1.128 is the IP address of the ODL 

controller, and the URL to get the SID from the SDN controller is http://172.16.1.128: 

8181/restconf/operational/bgp-rib:bgp-rib/rib/example-bgprib/loc-rib/. We use URL 

http://172.16.1.128:8181/restconf/operational/network-topology:network-topology/to 

pology/pcep-topology to know which nodes are installed for pcep.  

 SHP_En Traffic Engineering Application GUI can be seen in Fig. 31. As shown in 

Fig. 31, the application allows the network administrator to visualize the topology 

instead of reading the complicated XML files and visualizing them. We use networkx 

[41] python library to draw the topology in the application. The network topology 

provided by using the information from the ODL controller can be seen as in Fig. 31. 

There are two buttons on the right side of the application. The button “Traffic 

Demand” allows the network administrator to enter the traffic demand. As shown in 

Fig. 32, the application only allows the network administrator to put traffic demand 

from PE1 and PE2 because we only configure PE1 and PE2 as PCC in our experimental 

topology. PCE can only configure the network devices configured as PCC. After entering 

traffic demand, we can press the button “Finish” and send the traffic demand to the 

SHP_En ILP model. After traffic demand is set, we can press “Implement” to generate 

the SR-TE paths for the assigned traffic. 
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Fig. 31. SHP_En Traffic Engineering Application GUI 
 

 

Fig. 32. Traffic Demand 
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To use the SHP_En ILP model (explained detail in section 3.3), we must change 

some parameters. We must change the maximum utilization value   to be within 0 

and 1. Please note that in this emulation, the maximum bandwidth on each router’s 

port is 1 Gbps, and we assume that each link can carry up to 1 Gbps traffic. So, we 

keep the maximum utilization value   to be within maximum bandwidth on the link 

0 to 1 Gbps. When the traffic demand more than the topology can route is put, the 

status will show as “Infeasible” and show the message “Select Traffic Again”, as shown 

in Fig. 33. For example, in Fig. 33, we assume that PE1 to PE2, P4, P6, and P5 have 1 

Gb of traffic demand each and PE2 to P3, P4 and P5 have 1 Gb traffic demand each. 

The example network infrastructure cannot handle the traffic we input, and the 

application asks the user to select the traffic again. 

 

 

Fig. 33. Infeasible Traffic 
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Fig. 34. Optimal Traffic Demand 
 

When the traffic demand can be routed on the topology, the status will show 

as “Optimal”, and the application shows the maximum utilization on the network as 

shown in Fig. 34. Let’s assume we want to send 0.5 Gb (500 Mb) traffic demand from 

PE1 to P3, PE2, P2, and P4 and 0.5 Gb (500 Mb) traffic demand from PE2 to PE1, P3, 

and P2. When the user implements the traffic demand, the application will show the 

status: “Optimal” and the maximum utilization of 1 Gb in the network. After the traffic 

demand is set and the status is optimal, the application will show the “Generate” 

button. When the “Generate” button is pressed, the application will show SR-TE paths 

information and generate the XML files to set up the SR-TE tunnel via Postman. As 

shown in Fig. 35, the application shows the number of SR-TE tunnels, source to 

destination, and the path. For example, path No.2 is from PE1 to PE2, and the path 

will be PE1-P3-P6-PE2. XML files generated to set up SR-TE tunnels can be seen in Fig. 

36. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 81 

 

Fig. 35. SR-TE Paths Information 
 

 

Fig. 36. XML Files Generated by Application 
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4.8.2 Implementation of SR-TE tunnels via Postman  

 

 To implement SR-TE tunnels, we will use the REST API from Postman [7] 

application. We will send the REST command to the ODL PCEP module and add the 

SR-TE tunnels from the Postman application. As we demonstrated in section 4.8.1, the 

application will generate the XML configuration files to implement SR-TE tunnels via 

Postman. As we will send the ERO to ODL, we will choose the POST method and 

configure the URL with the controller IP address, as shown in Fig. 37. The three headers 

type is used, such as Content-type, Accept, and Authorization. XML configuration for 

PE1-PE2 SR-TE tunnel generated by the application can be seen in Fig. 38. In the XML 

configuration generated by the application, we will see the PCC node, which is 

10.10.1.100, IP address of PE1 and PE2, which are 10.10.1.100 and 10.10.2.100. For ERO, 

as the traffic has to go to P6 and then PE2, there will be two SIDs which are 17060 and 

17002. 

 

 

Fig. 37. SR-TE Tunnel Setup from Postman 
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Fig. 38. XML Configuration for PE1-PE2 SR-TE tunnel 
 

After we configured SR-TE tunnels from the Postman application, we have to 

configure the static route for each tunnel at PE1 and PE2 as ODL does not support 

PCEP protocol to configure a static route. We also have to use a static route or 

“autoreroute announce” in the tunnel’s source in the distributed approach. The 

configurations of the static route on PE1 and PE2 can be seen in Fig. 39. 
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(b) 

Fig. 39. Static Route Configuration for SR-TE tunnel at (a) PE1 and (b) PE2 
 

According to the author’s best knowledge, Pathman-SR [8] is the only open-

source application available to implement SR-TE tunnels. This thesis is not using 

Pathman-SR because we cannot control the segment lists to describe an SR-TE path. 

For example, the path from PE1 to PE2 should go through the path PE1–P3–P6–PE2. 

We can use segment list [17030,17060,17002] or [17060,17002] to form a PE1 to PE2 

path. If we use Pathman-SR, Pathman-SR will use SL [17030,17060,17002]. Our 

application, SHP_En Traffic Engineering, will use [17060, 17002] as seen in Fig. 38. In 

segment routing, the labels to be appended to the packet introduces packet overhead. 

So, we should reduce the labels to reduce the packet overhead. SHP_En Traffic 

Engineering use less labels to configure compared to Pathman-SR. 

 

4.9 Results and Discussion of segment routing traffic engineering (SR-TE) tunnel 

implementation  

 

We can verify whether the SR-TE tunnel is up using commands “show mpls 

traffic-eng tunnels” and “show mpls traffic-eng tunnels brief”, as shown in Fig. 40. To 

verify briefly, we can use “show mpls traffic-eng tunnels brief” to verify whether the 

tunnel is up or down, as shown in Fig. 40 (b) and (c) for PE1 and PE2, respectively. We 

can see four tunnels up from PE1 and three tunnels up from PE2 as the application 

generated.  
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To verify details of the SR-TE tunnel, we can use the command “show mpls 

traffic-eng tunnels”, as shown in Fig. 40 (a). As we can see in Fig. 40 (a), at the auto PCC 

section, the tunnel for PE1 to PE2 is delegated to and created by 172.16.1.128, ODL 

controller, which means SDN controller creates the tunnel. The SR-TE tunnel we set 

up is for PE1-PE2 through PE1 (SID – 17001) – P3 (SID - 17030) – P6 (SID - 17060) – PE2 

(SID - 17002). We can reduce one SID, P3 (SID - 17030), to form a path. As shown in the 

results in Fig. 40 (a), we can see segment routing path info, which includes segment 

list, which is 17060 and 17002.  

 To verify whether the packet routes through SR-TE path and segment routing 

data plane operations, the traceroute result is shown in Fig. 41. The segment lists and 

segment routing data plane operations went through the SR-TE tunnel for each 

connection. To verify whether the intermediate nodes maintain the tunnel created, 

we will see every intermediate router, P1, P2, P3, P4, P5, and P6. As shown in Fig. 42, 

intermediate routers do not maintain any path or tunnel states that we created for 

PE1 and PE2.  
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(a) 

 

(b) 

 

(c) 

Fig. 40. Verifying SR-TE tunnels 
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(a) 
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(c) 
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(e) 

 

(f) 

 

(g) 

Fig. 41. Traceroute results (a) PE1 to P3 (b) PE1 to PE2 (c) PE1 to P2 (d) PE1 to P4 (e) 
PE2 to PE1 (f) PE2 to P3 and (g) PE2 to P2 
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 (c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 42. Verifying intermediate routers (a) P1 (b) P2 (c) P3 (d) P4 (e) P5 and (f) P6 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5  

Conclusion 
 

5.1 Conclusion 

 

This thesis studied the ILP models of the primary reference paper [1], namely 

ECMP, SHP, SEGMR, and proposed the enhanced version of SHP, SHP_En, to evaluate 

TE performance in SR networks. We can conclude from the obtained results that 

depending on the traffic demands and topologies, the default SR behavior ECMP 

generally leads to higher maximum utilization of links in the network than SHP, SHP_En, 

and SEGMR. In addition to higher maximum utilization, we should also avoid ECMP 

because ECMP may cause packet mis-reordering at the destination, and some hardware 

capabilities cannot support per-flow granularity. SHP_En can achieve the maximum 

utilization as the same as SEGMR by extending shortest paths to k-shortest paths. As 

SHP and SHP_En are forced to choose only one shortest path, the SLD to be appended 

to form an SR-TE path can be larger. We also proposed how to reduce SLD, and we 

can see that we have to use only up to labels that can be deployed to the commercial 

routers for the considered topologies. SEGMR requires only three labels to achieve 

effective utilization, but SEGMR takes longer to provide the results than the SHP_En 

model. SHP_En model can be applied to low to medium size networks because ILP 

can take a long time to provide optimal results, and we may need to provide more k-

shortest paths and higher SLD in large networks. 

This thesis also implements the SHP_En ILP models to the emulated 

environment. This thesis developed an application called “SHP_En Traffic Engineering 

Application” to visualize the network infrastructure, take the traffic demand, 

implement the SHP_En, and generates XML files to configure the SR-TE tunnels to 

Cisco IOS XRV through SDN controller. We can see that “SHP_En Traffic Engineering 
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Application” can provide the network administrator with the forwarding abstraction 

and give the effective TE solution to apply traffic demand. In addition, the application 

can reduce SLDs compared to Cisco Pathman-SR. From the traceroute results of the 

routers, we can see that the intermediate nodes do not maintain any tunnel state that 

we created, which improves the scalability of the traditional MPLS network. 
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