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CHAPTER 1

Introduction

1.1 Research background

Nowadays, carbon dioxide (CO,) emission is the main factor affecting the environment
because CO, emissions from industrial activities and the burning of fossil fuels will pump an
estimated 36.8 billion metric tons of carbon dioxide into the atmosphere. And total carbon
emissions from all human activities, including agriculture and land use, will likely cap off at about
43.1 billion tons in 2019 [1, 2]. Therefore, mitigation of carbon dioxide (CO,) emission has been a
worldwide concern due to CO, emissions is a key contributing factor to the high emissions of
green-house gases (GHG) globally. The report was presented that 76.7% of GHG emissions
emanate from emissions of CO, [3-5].

The decreasing of CO, emission into the atmosphere is arguably the most challenging.
One of the strategies for minimizing anthropogenic CO, emission is utilization or conversion of
CO, [6]. The CO, utilization as a raw material in the synthesis of the important chemicals such as
synthesis of cyclic carbonate from CO, and epoxide, reaction of CO, and propylene glycol, CO,

dehydrogenation to methanol [7, 8].

Methanol is a versatile chemical. It is important intermediate in manufacturing many
other chemicals such as formaldehyde and acetic acid, both of which are important feed stocks
for the polymer industry [9, 10]. Moreover, methanol can be converted into dimethyl ether (DME)
which serves as a replacement for liquefied petroleum gas (LPG) or compressed natural gas (CNG)
[11-14]. However, for each ton of methanol produced from syngas generates 0.6 -1 tons of CO.,.
CO, can react with hydrogen (H,) to form methanol [15]. Therefore, conversion of CO, into
methanol can be a promising way to mitigate CO, emission. For conventional H, production,
steam reforming of methane, which is non-renewable source, is the most widely used technique
and covers over 50% of the world's H, production. Steam reforming of methane requires high
operating temperatures (700-1100 °C) and still promotes CO, emission [16-19]. Therefore, H,
source and availability is one among barriers of CO, conversion. For CO, conversion to higher-

valued produce, H, must be obtained from renewable sources. This H, is normally relatively



more expensive. It was reported that the H, fed methanol production from CO, plant is still
uneconomically feasible [16, 20]. Therefore, the renewable sources were considered for H,
production. Bio-based chemicals e.g. bioethanol as renewable source for H, production process
has become interesting. The use of ethanol for this purpose represents an opportunity to
produce H, from renewable sources.

Bioethanol takes the widest slice of the production of biofuels worldwide. It is derived
from the fermentation of polysaccharides, obtained from the processing of certain agricultural
products, almost exclusively from sugar cane and corn [21]. In 2018, bioethanol is becoming over
supply in Thailand. Ethanol consumption growth is expected to slow down due to increasing of
electricity’s involvement in the transport. To maintain bioethanol consumption, bioethanol can
be used to produce H, through ethanol steam reforming process [22, 23].

The steam reforming of ethanol:

C,HsOH + 3H,0 <= 6H, + 2CO, AH, = +174 kJ/mol (1)
As presented in Eqg. (1), although steam reforming of ethanol generates CO,, it was
reported that biomass energy and carbon capture and storage (CSS) lead to a net removal of
atmospheric CO, [23, 24]. Alternative to steam reforming of ethanol was ethanol dehydrogenation
for H, production. Dehydrogenation of ethanol not only generates H, without CO, emission but
also ethyl acetate or acetaldehyde [25, 26], which are valued chemicals, as presented in Egs. (2)-
(3) respectively.

The dehydrogenation of ethanol to acetaldehyde:

C,HsOH — CH,CHO + H, AH, = +16.45 kcal/mol  (2)

The dehydrogenation of ethanol to ethyl acetate:

2C,HsOH — CH;COOCH,CH5 + 2H, AH, = +5.98 kcal/mol  (3)
In this study, different methods of hydrogen productions from ethanol for supplying to
methanol plants. Steam reforming of ethanol is compared with dehydrogenation of ethanol.
Techno-economic analysis of the H, production process combined methanol production process
is carried out in term of H, productivity, net CO, emission, energy consumption and cost. Capital

investment and operating cost are estimated as well as process profitability index is reported.



The study was based on the amount of H, available to convert CO, to methanol on conventional

process of methanol synthesis.
1.2 Research objective

To compare H, production from ethanol processes in terms of process performance and

cost analysis.

1.3 Research scopes

1.3.1 A comparative study on hydrogen production processes between ethanol steam
reforming reaction and ethanol dehydrogenation reaction was performed using Aspen PLUS V10.

1.3.2 The H, production from ethanol processes is divided into 3 cases:

- Ethanol steam reforming (Case 1)
- Ethanol dehydrogenation to ethyl acetate (Case II)
- Ethanol dehydrogenation to acetaldehyde (Case IIl)

1.3.3 The capacity of the H, synthesis unit is based on the amount of H, (approximately
1,665.47 t/y) which is available for CO, conversion to methanol in conventional process of
methanol synthesis (7,427 t/y methanol productivity based on medium scale methanol
production). This capacity is correlated to the work of Khunathorncharoenwong et al. [27].

1.3.4 The process performance is reported in term of H, productivity, net CO, emission,
and energy consumption, respectively.

1.3.5 The process cost analysis is reported in term of fixed capital investment and

manufacturing cost of the process.



CHAPTER 2

Theory and literature review

2.1 Process for H, production

Hydrogen (H,) is a flammable, odorless, tasteless, colorless and very clean chemical fuel.
The H, is an energy carrier in the stationary power, transportation, industrial, and commercial
chemical for conversion with other chemicals to value products [19]. The global demand of H,
energy has been grown in 2020 with 8% of global energy demand (GED). The demand of H, being
widely used for 51% of ammonia production, 31% of oil refining, 10% of methanol production

and 8% of other uses [28] as shown in Figure 2.1.
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Figure 2.1 Demand of H, with share on various applications [28]

The H, economy can help the significantly reduce greenhouse gases emission if H, is
produced from renewable energy resources [29, 30]. Although H, can be generated from both
renewable energy and non-renewable source as shown in Figure 2.2. At present, the largest
market for H, production process is in the refining of petroleum from using the current steam

methane reforming (SMR) as non-renewable source. Even though the H, can be produced from



various technologies [18]. Currently, the major H, production processes are steam methane
reforming and electrolysis. On the other hand, the other technologies are developed as new
methods from alternative renewable energy resources to be a long term solution to reduce a
major source of greenhouse gases emission (i.e. CO,, CH, and CO) which affect climate change
and global warming [31]. Up to date, Department of Energy (DOE) is focused on developing H,
production methods from renewable energy sources with significantly reduce greenhouse gases
emission aiming to produce H, at the target cost of <4 USD/kg of H, [32] while conventional
methods retain their dominant role in H, production with costs in the range of 1.34-2.27 USD/kg

of H, [33].

Figure 2.2 H, production methods [33]

The major of conventional technology which is steam reforming of methane for H,

production as a hydrocarbon reforming as shown in figure 2.3.

Heat
Recovery
Steam CO,
Reformer Shift PSA
CH, —>| Desulfurization 850-9000c [—>| Conversion —>| System —> H,
—>
Fuel

Figure 2.3 Steam reforming of methane to H, production [33]



This process involves a catalytic conversion to H, and CO, and consist of 2 main

reactions as shown in Egs.(4)-(5) of steam reforming and water gas shift.

CH, + H,0 <> CO + 3H, AH, = +203 kJ/mol (4)

CO + H,0 <> CO, + H, AH, = -41.2 kJ/mol (5)
The steam reforming of methane requires high operating temperature (at 850-900 °C).
After steam reformer, the mixed gas fed into a water gas shift reactor due to CO out of the steam

reforming reaction reacts with steam to H, addition [33]. For purification of H,, the residual CO

and CO, in the H, stream fed into a CO, removal and methanation, or into a pressure swing

adsorption. The H, purity is approximately 97-98% [34] .

Table 2.1 Various H, production methods based on non-renewable energy sources

Technology Advantages Disadvantage Ref.
Hydrocarbon ® The energy requirement ® H, separation (19, 33, 35]
pyrolysis per mole of H, produced weakness due to the

(37.6 kJ/mol) less than
that for hydrocarbon
reforming as the steam
methane reforming
method (63.3 kJ/mol)
Hydrocarbon pyrolysis
does not include water
gas shift (WGS) and CO,

removal step

low H, partial
pressures in the
reaction mixture and
membrane durability
is affected by high
temperatures needed
for the de-
carbonization
equilibrium

Catalyst deactivation

will occur




Table 2.2 Various H, production methods based on non-renewable energy sources (continue)

Technology Advantages Disadvantage Ref.
Hydrocarbon
reforming
o Steam ® Most developed industrial @ Highest CO, emission (18, 33,
methane sector ® This process is sensitive to 36> 371
reforming o No 0, requirement natural gas qualities
® | owest manufacturing
cost per kg of H,
o Partial ® Low methane slip ® Very high operating
oxidation e No catalyst requirement temperature
® Reduction of ® | ow H, to CO ratio
desulfurization ® Pure O, requirement
requirement
o Auto- ® | ow methane slip ® | imited commercial
thermal ® Requirement of O, less experience
reforming than partial oxidation
Coal gasification @ No catalyst requirement ® A large amount of [35]

byproduct ash

Cost of manufacturing
more expensive than
hydrocarbon reforming due
to additional handing of

un-reacted solid feedstock

High operating temperature




The H, production methods from non-renewable sources uses hydrocarbon as current

main feedstock such as fossil fuel that leads to greenhouse emission. So, the alternative method

for long term solution is introduced to shift towards carbon free technology to dominate over

the traditional method of H, production. There are many processes for H, production from

renewable sources by following the biomass and water spitting processes as presented in Table

2.2. For biomass process, H, can be produced by thermochemical and biological technologies.

The following water spitting method is accompanied by passage of an electric current. This

method is a cleaner and relatively more environmentally friendly.

Table 2.3 Various H, production methods based on renewable energy sources [17]

Technology

Advantages

Disadvantage

Biomass

o Thermochemical

o Biological

® Higher conversion can

be achieved
® | ow energy intensive

® Normal operating

conditions

® (as conditioning and tar

removal is to be done
The requirement of large
surface area to collect sufficient

light

Water splitting

o Electrolysis

o Thermochemical

o Photo-electrolysis

® (leanest technology

® (Good H, yield

® This technology is

uncomplicated.

This technology costs around
80% of the operating cost of H,
production that is very
expensive cost of
manufacturing per ton of H,
High temperature water splitting
process in the range of 500-
2000 °C.

This method is limited visible
light absorption efficiency of

the semiconductor electrode




The electrolysis can be used to produce H, with the cleanest technology but it needs
most power sources [38]. Thus, H, production from electrolysis technology still presents
relatively highest the H, production cost (see section 2.4). Nowadays, most research on the H,
production from biomass sources focus on catalytic reforming of alcohol for a future H, economy
and renewable way which have less environmental impact than non-renewable source. The
alcohol such as ethanol is used as feedstock because ethanol as the reforming fuel has its
potential in large availability, low-cost and low toxicity [39-41]. Moreover, ethanol has no sulfur
containing thus it will not cause catalyst poisoning [42]. H, can be produced from steam

reforming reaction and has been widely studied by following in the next section [43, 44].

2.2 Steam reforming of ethanol to H, synthesis model

The steam reforming method basically involves a catalytic conversion and consists of the
main steps of steam reforming and water gas shift, respectively. Steam reforming was favored by
high temperature, while water gas shift reactor is favored at low temperature. In general, H, is
produced from a variety of feedstocks which are fossil fuel and non-fossil fuel [45]. Recently
most of the developed research widely focus on the ethanol steam reforming.

The steam reforming of feedstock to produce H, is hormally done in 3 steps as shown in
Figure 2.4. Moreover, Tripodi et al. [46] simulated the H, production by steam reforming of
ethanol. The system was constituted by 3 reactors connected in series for H, production with
share on chemical applications i.e. steam reformer, high-temperature water gas shift reactor and
low-temperature water gas shift reactor. For steam reformer, modelled as a multitubular reactor
with catalyst packed inside the tubes. The catalyst of the steam reformer affected the conversion
of ethanol, the H, yield and the undesirable products. Then, water gas shift reactors consisted of
high-temperature and low-temperature water gas shift reactor, were operated at 350 °C and 280
°C at atmospheric pressure, respectively. The water gas shift reaction was an exothermic for the
reaction between CO and steam to produce CO, and H,. Decreasing temperatures in both

reactors helped improving the CO, concentration [47].
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Figure 2.4 Diagram showing the multiple stages for H, production with steam reforming [47]

In addition, Hajjaji et al. [48] investigated the H, production via ethanol steam reforming.
They simulated the process of reforming section coupled with the CO clean-up section as shown
in figure 2.5. The first section of H, production was ethanol steam reforming process involving
reaction between ethanol and steam. The simulation of this work was performed under condition
as follows: water and ethanol fed to the process at temperature of 25 °C and pressure of 1 bar;
and, the operating temperature of high-temperature and low-temperature water gas shift
operated at 300 °C and 200 °C, respectively. The product out of the water gas shift was fed to
the CO preferential oxidation reactors since this work was adjusted to obtain a molar CO

concentration lower than 10 ppm at which improved the conversion of ethanol at 1%.

Synthesis gas generation CO clean-up section

| Water Gas Shift (WGS) COPROX
'HTS(300-400 °C) LTS(200-300 °C)

Figure 2.5 A simplified flow diagram of H, production process [48]

Vita et al. [49] analyzed the energy requirements and the efficiencies of steam reforming
of ethanol. The simulation was performed in Aspen HYSYS using the Non-Random Two Liquid
(NRTL) properties, partial oxidation and autothermal reforming of ethanol to produce high-grade
H, following ISO FDIS 14687-2. They found that the performance of steam reforming of ethanol
process provided the lowest thermal efficiency. For ethanol steam reforming, they assumed that
the feed in and the product out of the process was under the standard state (at 25 °C, 1 ban

and the steam to ethanol molar ratio was 1.5. Thus, they explained the ethanol steam reforming
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as shown in Figure 2.6 that showed a first steam reformer of process aims with conversion of
ethanol to increasing H, yield under operating at 706.85 °C, followed by high-temperature water
gas shift reactor (at 350-400 °C) was exothermic reaction which converted CO to CO, and higher
H, yield. For the third reactor, low-temperature water gas shift reactor (at 170-200 °C) worked at
decreasing temperature to abate CO concentration for specifications of the fuel cell below 20

ppm [23]. Next, the final step separated H, from the synthesis gas thought the purification unit.

PURIFICATION LTWGS HTWGS Air to furnace|
o —y,
hydrogene——— — -
= i —
-
Furnace
Off Gas Off Gas
H-ex 2 l 1 H-ex 3
Cool Cool
LTWGS HTWGS -
| S—
Ethanol - water—— J J J J J J —
Pum H-ex 1 H-ex 4 H-ex 5
P Cool Cool HT
PROX syngas heater Steam
Reformer
PROX ™
+——Air to PROX|
Compressor

Figure 2.6 Detailed flow sheet of ethanol steam reforming process [49]

The H, production from ethanol through ethanol steam reforming has been widely
reported in terms of the technical and economic feasibility of production by using different
catalysts. In the application to catalysts, the catalysts that use in H, production from ethanol
steam reforming must be capable of breaking down the C-C and C-H bonds efficiently [43, 50,
51]. Thus, the noble metal catalysts are Rh, Ru, Pd, Pt and Ir catalyst and the non-noble metal
catalysts is Ni, and Co with different metallic oxide as supports (i.e. Al,05;, CeO,, MgO, ZnO, SiO,)
in ethanol steam reforming for H, production [52]. For the non-noble catalyst, Ni is the best
choice for H, production by catalytic steam reforming of ethanol [51]. From the noble metal
catalysts, the Rh catalysts are the most active. Nevertheless, expensive noble metal catalysts are
unsuitable for industrial H, production [52]. Ni is widely used in industry because of low cost and
high activity of breaking C-C bond, although it is known to has coke formation and sintering
problem, leading to low catalyst performance [53]. Additionally, Aupretre et al. [54] compared
the conversion of ethanol steam reforming at 600 °C between using Rh and Ni supported on

ALOs,. In case of Rh/ALO,, they found that the selectivity of H, was 73.5% Rh/AlL,Osfor while the
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selectivity of H, over the Ni/ALO; catalyst was 76% with 100% conversion at the same
temperature. Although, Rh and Ni were the best catalytic performance in steam reforming of
ethanol but it was more selectivity of CO than selectivity of CO,. Platinum (Pt) is considered for
ethanol steam reforming because the activity of Pt increased in water gas shift reaction.
Moreover, Pt provided the higher H, productivity and less coke formation [55].

Palma et al. [56] studied a kinetic rate by using bimetallic catalyst based on Pt and Ni
with supported on CeO, which was prepared by impregnation. For the activity test, steam to
ethanol molar ratio of 6 was introduced. Moreover, they studied the operating temperature for

ethanol steam reforming as shown in Figure 2.7.

X EtOH Y H2 0SS CH4 @sco gscoz

- _

238 286 48 394 445 486 529 574
Temperature, °C

Figure 2.7 Ethanol conversion (Xc,,01); Ha yield (Yy,) and product selectivity (Scyy,, Sco, Sco,) as a

function of temperature for Pt/Ni supported on CeO, catalyst [56]

In Figure 2.7, it was found that the results in term of ethanol conversion was completely
converted at 348 °C, but the undesirable CH, showed the highest of selectivity. Additionally, the
H, yield increased with operating temperature and the trend of CO and CO, selectivity increased
while the trend of CH, selectivity decreased with operating temperature. Moreover, Palma et al.
[57] studied the ethanol steam reforming to H, production via bimetallic Pt-Ni/CeO,-ZrO, catalyst
as shown in Figure 2.8. They investigated the effect of different operative temperature in the
range of 400-500 °C via steam to ethanol ratio in feed at 6, and it was found that the results of
temperature that showed conversion of steam was decreased with temperatures. On the

contrary, the selectivity of H,, CO, CO, and CH, increased with temperatures.
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Figure 2.8 Influence of temperature on water conversion (circle) and products selectivities

(triangle CO, diamond CO,, filled square H,, empty square CH,) [57]

2.3 Dehydrogenation of ethanol to H, synthesis model

Nowadays, alternative technologies for H,, requires minimization of CO, emission while
conventional technology for H, production, which is steam reforming of natural gas feedstock,
promotes relative higher CO, emission [58, 59]. Ethanol could be one of the future feedstocks of
the chemical industry because the annual amount of ethanol produced exceeds 50 million tons
[60]. In recent year that, electric vehicle is significantly increasing. Therefore, ethanol
consumption mixing fuel application is likely to decrease. Catalytic ethanol dehydrogenation has
been proposed as an alternative method to produce H, without CO and CO, emission from
reaction [61]. Moreover, it not only generates H, but by-product such as ethyl acetate,
acetaldehyde and others. Dehydrogenation of ethanol reaction is presented in Egs. (2)-(3).

The dehydrogenation of ethanol to acetaldehyde:

C,HsOH — CH5CHO + H, AH, = +16.45 kcal/mol  (2)

The dehydrogenation of ethanol to ethyl acetate:

2C,HsOH — CH;COOCH,CH; + 2H, AH, = +5.98 kcal/mol ~ (3)
For Egs. (2)((3), ethanol can be converted to acetaldehyde and ethyl acetate formation by an

exothermic process [61, 62].
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2.3.1 Dehydrogenation of ethanol to H, and ethyl acetate

The synthesis route of ethyl acetate from ethanol dehydrogenation became an attractive
process due to this process needs only ethanol for feedstock without steam. Several catalytic
processes have been developed in recent years to convert ethanol to H, by different routes, The
commercial catalyst for ethanol dehydrogenation is Cu-based catalysts due to their basic
characteristics, which favor ethanol dehydrogenation but inhibit dehydration. Cu metal can be
supported by different oxides such as AlL,Os;, Cr,05; ZnO, ZrO, and SiO,. Cu-Cr,05 containing
catalysts has been deeply investigated by several researchers.

Carotenuto et al. [25] explained the formation of ethyl acetate as Egs. (6)«(7) with the
production of acetaldehyde as an intermediate step.

CH5CH,OH — CH,CHO + H, (6)

CHACH,OH + CHyCHO —> CH,COOCH,CH, + H, (7)

Franckaerts et. al. [63] studied the ethanol conversion to ethyl acetate which was the
dehydrogenation pathway with Cu/Cr,O; catalyst in the catalyst conversion reactor as shown in
Eq. (3). In this study, they used the operating temperature in range of 225 - 285 °C and pressure
at 10 atm and it was found that the temperature of 250 °C can be used to convert ethanol to
higher H, and ethyl acetate selectivity than other temperatures. In addition, Santacesaria et al.
[64] investigated the ethanol dehydrogenation by using Cu/Cu-Cr,O; catalyst in packed-bed
tubular reactor to convert ethanol to form ethyl acetate in one step reaction as shown in Figure
2.9. The reaction was operated at 200, 220, 240 and 260 °C with a pressure range of 10, 20 and
30 bars. In this study, the results demonstrated that the best performance of ethanol
dehydrogenation to form ethyl acetate and H, was operated at 240 °C and 20 bars. In this
condition, they found that a conversion at 64.83% with a selectivity of ethyl acetate and H, of

99.58%.
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Pure H,
Recycled H,

CH,COOC,H,

Fresh CH;CH,0H

Recycled CH;CH,OH

Purge

Figure 2.9 A simplified scheme of the process based on the use of a new Cu/Cu-Cr,0,

commercial catalyst [64]

2.3.2 Dehydrogenation of ethanol to H, and acetaldehyde

Acetaldehyde was widely used as the intermediate for synthesis of many industrial
chemicals [65]. The selection of catalysts affected the activity of the reaction in term of
conversion and selectivity as shown in Table 2.3 thus the Cu-based catalyst promoted high
activity and selectivity for ethanol dehydrogenation to acetaldehyde and H,. For the support
catalysts, Sato et al. [66] found that SiO, was more suitable supports for Cu for dehydrogenation
of ethanol to form acetaldehyde and H, than ZrO, since Cu/ZrO, tended to promote ethyl

acetate formation.

Table 2.4 Summary of previous experimental studies of ESR

Catalyst Temp. (°C)  Conv. % Sel. % Deactivation Ref.
Cu-Ni alloy 250 26 100 Sintering [65]
Cu/Zr0O, 300 56.9 54.1 Sintering [67]
Cu/Rice husk ash 275 77 100 Sintering [68]
(Si0,)

CUO-Cr,05/ALO; 300 50 55 Sintering [69]
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Table 2.5 Summary of previous experimental studies of ESR (continue)

Catalyst Temp. (°C) Conv. % Sel. % Deactivation Ref.
Cu/MgAlOx 300 75 99 Coke deposition [70]
(hydrotalcite)

Cu/Zr0O, 275 80.7 15 Sintering [60]
Cu/Sio, 280 90 98 Sintering [71]

2.4 Cost estimate and CO, emission of various H, production methods

Different technologies for H, production with varying cost of H, and CO, emission are
widely investigated by extensive researchers. Consequently, the challenge of H, production is to
reduce the price of H, with significantly reduce greenhouse gases emission form the process.
There has extensive research to show the relationship between environmental issue in term of
CO, emission and economical issue in term of cost of manufacturing per ton of H.,.

Numerous studies have demonstrated the cost estimate of H, with different alternative
H, production technologies. Konda et al. [72] investigated the production technologies that could
be operated on commercial scale. They studied capital cost of different H, production
technologies which included steam methane reforming, coal gasification, biomass gasification and

water electrolysis as shown in the capital cost in Table 2.4.

Table 2.6 H, production capital cost as a function of plant capacity (ton/d) [72]

Production technology Capital cost (x10° USD)
Steam methane reforming 134 X (Capacity/150)*"
Coal gasification 352 X (Capacity/150)""
Biomass gasification 360 X (Capacity/150)*"
Water electrolysis 598 X (Capacity/150)"%

The results from Table 2.4 demonstrated that steam methane reforming has the lowest
capital cost compared to other technologies. In contrast, water electrolysis gave the highest

capital cost at the same plant capacity. In addition, Simbeck et al. [73] showed the capital and
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variable costs for H, production in Table 2.5 with four different technologies, which are steam
methane reforming, electrolysis, methanol steam reforming and gasoline reforming. They

assumed that each unit that was designed to produce 329 keg/d of H,.

Table 2.7 The capital and variable cost of alternative H, production methods [73]

Production technology Capital costs ($ millions) Variable cost ($/kg of H,)
Steam methane reforming 1.63 1.28
Electrolysis 4.15 4.18
Methanol steam reforming 1.57 1.51
Gasoline reforming 1.78 1.59

Table 2.5 listed the capital and variable cost including raw material and utility used in H,
production plants. It was found that the electrolysis process promoted the highest capital,
followed by gasoline reforming, steam methane reforming and methanol steam reforming,
respectively. For the variable cost, electrolysis still promoted the highest variable cost per kg of
H,. In contrast, the steam reforming of methane provided the lowest the variable cost per kg of
H,. Thus, the H, production from electrolysis exhibited the highest cost of manufacturing per kg
of H,.

Currently, steam reforming of methane and electrolysis are major H, production
technology. Although steam reforming of methane gave the lowest production cost, it promoted
the high CO, emission [74]. Electrolysis technologies generated H, production from renewable
sources and is stated as a clean technology. The cost of electrolysis technology is strongly
dependent on the electrolyzer capital cost and extensive electrical energy requirement (40
kWh/kg of H,) [75]. However, in term of global warming potential (GWP) as shown in Figure 2.10,

the electrolysis with grid can has negative impact [76].
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Figure 2.10 GWP values of different hydrogen production technologies [76]

Moreover, Acar et. al. [77] presented eight of H, production methods from renewable
and non-renewable sources with comparative environmental impact in term of global warming
potential (GWP) and acidification potential (AP), and they compared the ranking range with ideal
case (0 emissions, 0 cost, 100% efficiency) as shown in Figure 2.11. They found all of electrolysis
methods had close to ideal case ranking because the electrolysis method for H, production
promoted lower emissions. Moreover, Dincer et. al. [78] demonstrated that the electrolysis

method promoted the highest H, generation efficiency.
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Figure 2.11 Overall comparison of selected H, production processes [77]

Numerous research have interested to produce H, via ethanol steam reforming. Thus,
ethanol steam reforming is widely reported as the cost of manufacturing and CO, emission.
Lorena Mosca and her team [79] compared the CO, emission in function of utility and reforming
reaction between steam methane reforming and ethanol steam reforming. They found the
results as shown in Table 2.6 that promoted lower CO, emission of ethanol steam reforming than

steam methane reforming method.

Table 2.8 Comparative process utility and CO, emissions [79]

Production technology

Feedstock Unit Steam reforming of  Steam reforming of
methane ethanol

Fuel (Natural gas) MW 176.2 46.8

HP steam Ton/hr 35.4 38.6

Electric power MW 2.15 0.74

CO, emission kg/ Nm” of H, 0.869 0.228
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In addition, Noureddine Hajjaji et. al. [48] compared various H, production process
including steam methane reforming, ethanol steam reforming and the other processes in term of
GWP impact as a CO, emission in Figure 2.12. As observed in the figure, ethanol steam reforming

method was found to emit the CO, about half of steam methane reforming.

14000 —
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. Biomass based electrolysis
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// Solar based electrolysis
10000 — // 7 [ |Biomass gasification

— l ///// [-]] Thermochemical water decomp. Cu-Cl cycle
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Figure 2.12 Relative comparison of the GWP impact of the bioethanol steam reforming system

and other alternative routes for H, production [48]

Currently, one of the most challenges for H, production was the process with low
production cost and environmentally friendly with minimum CO, emission. There had extensive

research to promoted cost of H, and CO, emission in Table 2.7.
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CHAPTER 3

Experiments

3.1 Process modelling and simulation

A comparative study on hydrogen production from ethanol processes (ethanol steam
reforming and ethanol dehydrogenation) was performed using Aspen PLUS V10. The ethanol
dehydrogenation was divided into 2 processes. Two different processes of ethanol
dehydrogenation reaction were described in 2 main products as follows: ethanol
dehydrogenation to acetaldehyde with hydrogen production and ethanol dehydrogenation to
ethyl acetate with hydrogen production. The modelling for simulation using properties database
was used along with the Non-Random Two Liquid (NRTL) fluid package and henry’s law involved
in supercritical components. This model has been applied to a full set of experimental data with
a good accuracy for ethanol steam reforming process (case 1) [23, 56]. However, NRTL model
could not suitable predict high pressure (P >10 bar) in ethanol dehydrogenation processes (case |l
and case lll). The Predictive Redlich-Kwong-Soave (PSRK) equation of state provides very

satisfactory predictions of the ethanol dehydrogenation at high temperature and pressure [25].

3.2 Process chemistry

3.2.1 Ethanol steam reforming (Case 1)

For H, production process through ethanol steam reforming, the kinetic models used in
the reformer was based on power-rate law expression (Eqg. (8)). The ethanol steam reforming on
CeO,-supported Pt/Ni catalyst in a fixed bed reactor has been proposed by Vincenzo Palma et
al. [56]. Table 3.1 presents the main possible reactions to describe the steam reforming of
ethanol, suggesting a set of reactions as in Egs. (1), (9)-(11) with an activation of energy and

kinetic constant.

k = Aexp (— E) (8)

The rate expression was reported at constant temperature of 527 °C under atmospheric

pressure for use in case |.
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Table 3.1 Parameters for equilibrium constant using in the ethanol steam reforming reaction [56]

Activation energy, Kinetic constant,
Reaction
E, (kJ mol™) k (m®>kmol™ s™)
C,HsOH + 3H,0 <= 6H, + 2CO, (1) 17 21.2
C,HsOH <= C,H,0 + H, 9 74 45,231
C,H,O = CH, + CO (10) 181 6,781
CO + H,0 <= H, + CO, (11) 74 5,132

The product out of the steam reforming reactor was purified in a high temperature water
gas shift reactor following a low temperature water gas shift reactor. The water gas shift reactor
was operated at 350 and 280 °C respectively. All these reactors were modelled as equilibrium

reactors.

3.2.2 Ethanol dehydrogenation to ethyl acetate (Case )

In this study, the results from Carotenuto et al. [25] was used to describe the ethanol
dehydrogenation to ethyl acetate on a copper/copper-chromite based catalyst with isothermal
conditions. The involving reactions are reported as presented in Egs. (6)-(7),(12). The endothermic
reaction (AH, = +5.98 kJ/mol) in gas phase was based on a constant temperature of 240 °C and
a pressure of 20 bar. All the kinetic constants and adsorption constants determined by regression

analysis was reported on table 3.2-3, respectively.

Table 3.2 Kinetic parameter of Langmuir Hinshelwood Hougen Watson dual site model using in

the ethanol dehydrogenation to ethyl acetate reaction [25]

Kinetic constant, Activation energy,
Reaction
k; (mol g, " h™ atm™) E, (kcalVmol)
C,HsOH — CH,CHO + H, (6) 97.100 32.25
C,HsOH + CH,CHO
0.089 12.95

—> CH;COOCH,CH; + H, (7)

2CH,CHO — Other products (12) 0.001 1.60 x 10"
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Table 3.3 Adsorption parameters using in the ethanol dehydrogenation to ethyl acetate Reaction

[25]

Adsorption parameter Adsorption constant, (atm™)  Adsorption enthalpy, (J mol™)

be s 0 10.4 -25.53
bCHSCHO 98.4 -7.02
bCHSCOOCHZCHS 41.2 -13.91
by 2.5x10™ -13.34

2

Based on a Langmuir Hinshelwood Hougen Watson dual site model approach, described
mechanisms of ethanol dehydrogenation to ethyl acetate. The following kinetic rate laws can be
derived on Egs.(13)-(15).

K6 Dc,Hs0H [PczHSOH] 1

A [pCH3CHo] [sz]]

Ko

PCoH50H

- P (13)

r6 =
[1+bc2H5OH [pC2H5OH] +berico [PCH3CHO] +oy, [sz] +bcizcoocHycHs [pCH3COOCH2CH3]]

1 [pCH3COOCH2CH3][pHn]]

k7bcysonbenscro [pCZHsoH] [pCH3CHO] [1K
€7 | PCoHs0H | |PcH3CHO

r7 = 2
[1+bc2H5OH [pC2H5OH] +berico [PCH3CHO] +oy, [sz] +bcizcoocHycHs [pCH3COOCH2CH3]]

2 (15)

"12=K12Peyy ey
The separation of ethyl acetate and ethanol with azeotropic mixture, as boiling points at
7831 and 77.20 °C respectively. The technology in the separation of azeotropic mixture is

extractive distillation by addition of a dimethyl sulfoxide as a solvent [86].

3.2.3 Ethanol dehydrogenation to acetaldehyde (Case IIl)

At present, there are not the study about the reaction rate of the ethanol
dehydrogenation to acetaldehyde. Therefore, the conversion data of this case was related with
the experimental data of Hongwei Zhang et. al. [71]. who reported the conversion and the
selectivity of the ethanol dehydrogenation to acetaldehyde and H,. The reaction was done over
10 wt% Cu/SiO, catalyst with the isothermal condition. The conversion of ethanol was reported
at 90% while the selectivity of ethanol to acetaldehyde and H, was reported at 98%. Ethanol

dehydrogenation proceeded at reaction temperature of 280 °C and atmospheric pressure.
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3.3 Process description

3.3.1 Ethanol steam reforming (Case 1)

oecon |

H2+C02

Pl
S
N

UL

2]

Figure 3. 1 Process flow diagram of ethanol steam reforming

As presented in Figure 3.1, the ethanol feed stream and the H,0 feed stream were mixed
with the recycled gas (M-100) and preheated to 200 °C by the heat exchanger (E-100) using high
pressure (HP) steam. Before entering reactor, the feed stream was preheated by exchanging heat
duty with the product stream from the reactor. The feed gas was fed to the isothermal fixed-bed
reactor operated at 527 °C (R-100). The product stream was then further cooled (E-101) to 250
°C by cooling water. After that, the stream was fed to the high-temperature water gas shift
reactor (R-101) and the low-temperature water gas shift reactor (R-102) which was operated at
250 and 180 °C, respectively. The stream outlet of the low-temperature water gas shift reactor
was condensed for phase splitting at the flash vessel (V-100). The vapor product from the top of
the flash vessel was H, mixed with other products (mainly CO, and trace amount of CO and CH,).

This stream of the H, product had 82.73% purity.
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3.3.2 Ethanol dehydrogenation to ethyl acetate (Case II)

o1

201 MAKE-UP

DMSO . . - !

17

Figure 3.2 Process flow diagram of ethanol dehydrogenation to ethyl acetate

As presented in Figure 3.2, the ethanol feed was pumped to 20 bar and preheated to
161.58 °C (E-200) by exchanging heat duty with the product stream from the reactor. After that,
the steam was preheated to 240 °C by HP steam before the stream was fed to isothermal fixed
bed reactor (R-200). The operating condition inside the reactor was maintained at 240 °C and 20
bar. The unreacted ethanol together with H, and ethyl acetate were removed from the reactor
to cooler (E-202). The product stream was cooled to 35 °C (E-202) by cooling water. The majority
of the ethyl acetate and unreacted ethanol were then separated from H, product in flash vessel
(V-200). The stream of H, production had 98.87 % purity. Ethyl acetate mixed with unreacted
ethanol from the bottom stage. Ethyl acetate and ethanol are azeotrope mixture and can be
separated using the extractive distillation column. Dimethyl sulfoxide (DMSO), the solvent
currently used in the extractive distillation, was fed at the molar flowrate ratio of solvent to feed
(ETOH+EA) at 1.25. The extractive distillation with 48 theoretical trays (T-200) was done to
separate 99.64 wt% of ethyl acetate from ethanol, based on industrial purity requirement (ethyl
acetate > 99.5 wt% with ethanol < 0.2 wt%). After that, the stream outlet of the reboiler was fed
to simple distillation with 10 theoretical trays (T-201). This distillation column was used to
separate ethanol and dimethyl sulfoxide solvent for recycle purpose. The dimethyl sulfoxide

solvent make-up stream was 0.078 kg/h.
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3.3.3 Ethanol dehydrogenation to acetaldehyde (Case IIl)
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Figure 3. 3 Process flow diagram of ethanol dehydrogenation to acetaldehyde

As presented in Figure 3.3, the ethanol feed was mixed with the recycle ethanol in mixer
(M-300). The mixed feed was pumped to 37.42 bar and was preheated to 201.89 by exchanging
heat duty with the product stream from the reactor. After, the steam out of heat exchanger was
preheated to 280 °C by heat exchanger (E-300) with HP steam. The feed was fed to conversion
reactor operated at 280 °C and 37.42 bar. Product stream was cooled to 50 °C (E-301) with
cooling water and the pressure was reduced to 2 bar through the valve (VLV-300). After that, the
H, product was separated from acetaldehyde and unreacted ethanol by the flash vessel (V-300).
H, was removed from the top of the column, while acetaldehyde and unreacted ethanol were
removed from the bottom. The mixture of acetaldehyde and unreacted ethanol from the
bottom stage was fed to a distillation column. The atmospheric column with 17 theoretical trays

(T-300) was used to separate 99.46 wt% acetaldehyde from ethanol.

3.3.4 Methanol process

For case I-ll, the H, product (approximately 1,600 t/y) was fed to methanol synthesis
through the CO, hydrogenation process. As presented in Figure 4.2, the H, product was
compressed to 50 bar and preheat to 250 °C before feeding to the methanol reactor. The
conditions was based on the work of Khunathorncharoenwong et.al [40].

In case |, the H, product stream was mixed with CO,. The mixed-gas stream was

compressed to 50 bar through 3 stages of compressors (K-101, K-102, K-103) at 6, 17.5, 50 bar,
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respectively, with 2 intercoolers at 60 °C. After that, the feed stream was mixed (M-101) with the
recycle stream and preheat to 250 °C.

In case Il, the H, stream from the ethanol dehydrogenation was at rather high pressure of
20 bar. The H, stream was further compressed to 50 bar through 1 stage compressor (K-204).
Case Il and Il required external CO, feedstock. Therefore the CO, feed in case Il and Il were
compressed to 50 bar through 3 stages with 2 intercoolers, in similar manner to case I. In case |ll,

H, stream was compressed to 50 bar and preheat to 250 °C, in similar manner to case .

3.4 Economic analysis

The following section shows the cost analysis related to H, production processes. The

cost of the processes was estimated based on the capital and the operating costs.

3.4.1 Total capital investment (TCI)

The capital cost of H, production process was estimated by using the Module costing
technique. The sizing of equipment for the estimation was obtained the simulation data from
Aspen Plus V10 software. The bare module cost (Cgy,) was calculated from the purchased
equipment and installation costs. The chemical engineering plant cost index (CEPCI) was used to
accommodate inflation rate. Working capital was assumed at 15% of total capital investment
[87]. Fixed cost investment and total capital investment are presented in Egs. (16) and (17),
respectively.

Fixed cost investment (FCI):

FCl = 1.18 )7, Cu, (16)
Total capital investment (TCI):
100
TCl = —FCl an
85

3.4.2 Cost of manufacturing (COM)

The overall of H, production process, including the cost of manufacturing without
depreciation (COMy) was calculated by fixed cost investment, operating labor cost (Cy), utility
cost (Cyy), waste treatment (Cy,7) and raw material cost (Cg,) by using Egs. (18).

COMy = 0.180FCl + 2.73Co, + 1.23(Cyr + Cyr +Cans) (18)
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The raw material cost of ethanol anhydrous was in 0.431 USD/l [88]. This price was
based on 99.5 wt% of ethanol. Other raw material cost of solvent for purification of azeotropic
mixture was used dimethyl sulfoxide in case 2 was 3069.4 USD/l [88]. The utility cost was

presented in Table 3.4.

Table 3.4 Utility cost [87]

Utility Unit Cost of utility
Cooling Water USD/t 0.0148

LP steam (5 bar, 160 °C) USD/t 29.29

MP steam (10 bar, 184 °C) USD/t 29.59

HP steam (41 bar, 254 °C) USD/t 29.97
Electricity USD/kwh 0.06

The CO, emission factor for electricity production plants was listed in table for using in
the H, production processes. Electricity was generated in a power plant based on different fuel:
natural gas and coal which releases different amount of CO, during electricity generation. For
natural gas, the CO, emission was estimated at 0.450 kg/kWh during electricity generation
process. On the contrary, for electricity generation using coal as fuel, CO, was released at 1.142

ke/kWh as shown in table 3.5.

Table 3.5 CO, emission factor for electricity production with different fuels

Fuel CO, emission factor (kg-CO,/kWh) Reference
Coal 1.142 [89]
Natural gas 0.450 [90]

The operating labor cost was assumed at 5,700 USD/y with a single operator works 49
weeks/y, 6 shifts/week and 8 h/shift. The operating labor rate was the rate in Thailand. It should
be noted that the labor rate can be significantly different in other countries. The number of

operating labors (N ) can be determined using Eq. (19) :

Nou = (6.29 + 0.23N,))°° (19)
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where N, is the number of equipment such as compressors, reactors, heat exchangers

and towers.

3.4.3 Revenues

H, price of 4,872.88 USD/t (1.15 USD/ 100 SCF) [88] was assumed in the cost. This
revenues of H, can reduce the cost of raw materials for methanol synthesis. For the value
product, acetaldehyde price was 1,005.30 USD/t and ethyl acetate price was 1,110.00 USD/t [88]
on industrial requirement (Ethyl acetate > 99.5 wt% and ethanol < 0.2 wt%). The value product

can sell to decrease the cost of manufacturing per ton of H,.

3.4.4 H, production cost and sensitivity analysis

Based on process simulation results, economic analysis was performed in term itemized
cost estimation and sensitivity analysis of net present value (NPV). For itemized cost estimation
per unit of H, production, the calculation was done by the total annual costs and the annual H,

production as shown in Eq. (20):

. Total annual cost (USD/y)
H, production cost (USD/kg of H,) = (20)
Annual H, production (kg of Hz/y)

The total annual costs were summation of the annualized capital costs and the annual
operating costs.

The sensitivity analysis was used to study the effect of uncertainties on input parameters
which were raw material cost, utility cost, total capital investment and selling price of H,. The
input parameters impacted on the output NPV of the processes. Each input parameter was varied
from +£10% to +40% while other parameters were kept at constant values. The NPV is cumulative
discounted cash flow at the end of the project. In this study the NPV was based on a 10-year

plant life and internal rate of return of 10%. The NPV was calculated using Eq. (21):

10 net cash flow at year n
NPy= 30—

N (21)
n=0 (1+0.10)"



CHAPTER 4

Results and discussion

The techno-economic analysis of the proposed H, production processes from ethanol
were performed in term of performance and economic analysis with simulation models
developed in Aspen PLUS. The process for comparison study mainly consists of 2 process: H,
production process from ethanol and CO, hydrogenation to methanol process. The conventional
CO, hydrogenation process have been described clearly in the work of Khunathorncharoenwong

et.al [40].

4.1 Performance analysis

The performance of the proposed H, production processes were compared amount of
ethanol requirement and CO, emission from both of reaction and utility (low-pressure steam (LP),
medium-pressure steam (MP), high-pressure steam (HP) and electricity).

4.1.1 Comparison of required ethanol feed

The difference of H, production reaction contributed a significant amount of required
ethanol feed due to the conversion of reaction. The amount of ethanol affected mainly the
operating cost which provided cost of H, production.

Based on mass balance, ethanol feed was determined in order to produce H, at 1,663-
1,693 t/y which was available for CO, conversion to methanol at 7,427 t/y. The ethanol feed to
each process is shown in Figure 4.1. The result can be showed that dehydrogenation required
much more ethanol feed than the steam reforming process since the steam reforming reaction

provides the highest stoichiometric H, as presented on Egs. (1)-(3).
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Figure 4.1 Required ethanol feed for ethanol steam reforming and ethanol dehydrogenation

Then, H, production for all cases was fed to CO, hydrogenation to methanol process as
presented in Fig. 4.2. In Case |, the H, production from ethanol steam reforming promoted CO,
emission from reaction at 4,784 kg/h, which was equivalent to 7,392 ton of CO,/ton of H,.
Produced H, and CO, in the H, plant were fed to the methanol plant. Although CO, produced in
the reaction of case | can be converted with produced H, to methanol, the H, production
through ethanol steam reforming was not suitable for CO, conversion to methanol process since
the process did not consume CO, from external source but rather utilized CO, produced from
ethanol steam reforming. In other word, it was a conversion from ethanol to methanol. On the

other hand, case Il and case Ill consumed CO, from external feedstock about 28.640 kg of CO,/h

and 28.058 kg of CO,/h, respectively.
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Figure 4.2 Schematic diagram of hydrogen production processes: (a) ethanol steam reforming
process (case ); (b) ethanol dehydrogenation process to ethyl acetate (case II); and,
(c) ethanol dehydrogenation process to acetaldehyde (case Ill), for used in CO,

conversion to methanol

4.1.2 Comparison of net CO, emission

For the table 2.7, the results showed the H, production cost and CO, emission that the
CO, emission from H, production process decreased with increasing the H, production cost.
However, the range of both objective functions were limited the H, production cost via the DOE
[32] aims at the target cost below 4 USD/kg of H,, which indicated that the net CO, emission as
less as possible.

Figure 4.3 presents the net CO, emission in H, production process and CO, conversion to
methanol process. The CO, emission was divided into 2 sections: CO, emission from the reaction
and utility (low-pressure steam (LP), medium-pressure steam (MP), high-pressure steam (HP) and

electricity). It is known that reforming of bio-based raw material can counted as carbon natural.
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However, CO, produced in ethanol steam reforming reaction was used as feedstock for methanol
synthesis in this study. In case |, the stream of H, production was mixed with CO, which was
byproduct from the reaction at the H,/CO, molar ratio of 2.54. The remaining CO, in case | was
separated by three-stage hybrid hydrate-membrane separation process [91] before fed to
methanol synthesis. Then, product stream of ethanol steam reforming contained H, with
12,515.90 t/y of CO, which further reacted with the H, for methanol synthesis. Consequently, H,
from ethanol steam reforming presented net positive CO, emission from the reaction and the
utility at 2,792.79 kg CO, per ton of methanol. In contrast, the ethanol dehydrogenation in case |l
and lll can produce H, without CO, releasing from the reactions and consumed CO, from external
sources in methanol synthesis. Although the CO, emission was promoted by utility in the ethanol
dehydrogenation processes, case Il and Il presented net negative CO, emission of -253.33 and -

5.55 kg per ton of methanol, respectively - case Il provided the highest CO, consumption.

3000.00

] @ © ® e ®
Case 1 Case 1* Case 2 Case 2% Case 3 Case 3%
steam reforming Methanal synthesis Dehydrogenation Wethancl synthesis Dehydrogenation Methancl synthesic
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W VP steam
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CO, converted
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-1000.00

-1500.00

-2000.00

Figure 4.3 Net CO, emission of H, production combined CO, hydrogenation to methanol process
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4.2 Economic analysis

The overall cost of H, production process was consisted of capital investment and the
annualized cost of manufacturing. The capital investment of different processes is shown in Table
4.1 while the cost of manufacturing without depreciation (COMy) is shown in Table 4.2.

As presented in Table 4.1 and 4.2, case | presented the lowest FCI and cost of
manufacturing while case Il was relatively most expensive. Ethyl acetate and ethanol are
azeotrope and cannot be easily separated using a simple distillation column. Ethyl acetate and
ethanol can be separated by an extractive distillation, requiring addition of the solvent which was
dimethyl sulfoxide in this study. For case lll, although acetaldehyde could be separated, the price
of acetaldehyde is relative cheaper than ethyl acetate in case Il. Acetaldehyde price is 1,005.30
USD/t [88] while ethyl acetate price is 1,110.00 USD/t [88]). The cost of manufacturing was
deducted from the revenue of selling byproducts (ethyl acetate and acetaldehyde) is shown in

Table 4.2.

Table 4.1 Capital investment costs of ethanol steam reforming and ethanol dehydrogenation

process
Parameters Unit case | case |l case lll
H, Productivity ty 1,693.04 1,664.77 1,663.85
Fixed capital investment (FCI) usb 1,536,656.87 5,438,713.20 1,691,695.97
Total capital investment (TCI) usb 1,807,831.61 6,398,486.12 1,990,230.55

Table 4.2 Cost of manufacturing (COMg) of H, production from ethanol steam reforming and

ethanol dehydrogenation process

Parameters Unit case | case |l case lll

Raw material:

Ethanol UsDry 1,557,740.82 6,278,719.25 5,732,954.30
Process water UsD/y 197.13 - -
Dimethyl sulfoxide usD/y - 1,924.51 -

Total raw materials costs 1,557,937.95 6,280,643.76 5,732,954.30
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Table 4.2 Cost of manufacturing (COMy) of H, production from ethanol steam reforming and

ethanol dehydrogenation process (continue)

Parameters Unit case | case I case |l
Utility:
Cooling Water UsD/y 10,325.00 93,728.80 110,408.00
LP steam UsD/y 28,501.07 33,363.33 459,191.05
MP steam UsSD/y - 740,457.20 -
HP steam USD/y 1,327,044.63 1,702,649.65 2,360,590.05
Electricity UsD/y - 8,923.92 19,037.28
Total utility costs USD/y 1,365,870.70 2,579,122.89 2,949,226.38
Operating labor USD/y 74,100.00 79,800.00 79,800.00
Total cost of

UsD/y 4,077,621.19 11,119,810.99 9,543,516.92
manufacturing
Cost of manufacturing per

USD/t 2,408.46 6,679.49 5,735.80
ton of Hydrogen
Revenue of selling value
products per ton of UsD/t - 2,278.22 2,014.18
Hydrogen
Total cost of
manufacturing per ton of
Hydrogen (Deduct from USD/t 2,408.46 4,401.27 3,721.63

Revenue of selling value

products)

As presented in Table 4.2, case | presents the lowest cost of manufacturing per ton of H,.

However, CO, emission in case | was relatively highest and must be handled. The carbon capture

and storage (CCS) with post-combustion amine scrubbing technology using monoethanolamine

(MEA) can capture CO, with the cost of 164.6 USD/t of CO, avoided [92]. Therefore, if taken
carbon capture into account, CO, emission in case | increased the cost of manufacturing per ton

of H, at 2,606.38 USD with CCS.
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As presented in Table 4.3, the itemized cost estimation of H, production for each case
was calculated from the annual capital cost, the annual operating cost and the annual revenue
of selling byproducts. The results showed the lowest unit H, production cost of 1.90 USD/kg of H,
in case I. In case |, the lowest amount of ethanol was consumed as the raw material. Moreover,
case | was operated at atmospheric pressure while case Il and Ill were operated at the higher
pressure, affecting the energy consumption. Ethanol dehydrogenation in case Il and Il presented

the H, production cost of 3.57 USD/kg of H, and 3.40 USD/kg of H,, respectively.

Table 4.3 Itemized cost estimation for a unit H, production cost of (a) case |, (b) case Il and (c)

case |l
(@) case | (b) case Il (c) case Il
ltems Annual cost Annual cost Annual cost
(USD/y) (USD/y) (USD/y)
1.Capital cost 180,783.16 639,848.61 199,023.06
2.Operating cost
Raw materials 1,557,937.95 6,280,643.76 5,732,954.30
Utility 1,365,870.70 2,579,122.89 2,949,226.38
Labor 74,100.00 79,800.00 79,800.00
Maintenance* 30,733.14 108,774.26 33,833.92
Other costs** 15,366.57 54,387.13 16,916.96
3.Revenue of selling
0.00 -3,792,714.60 -3,351,290.24
byproducts
Total costs 3,224,791.52 5,949,862.06 5,660,464.38
H, production cost
1.90 3.57 3.40
(USD/ke)
H, production cost
2.10 3.62 3.47

(USD/kg) with CCS

*2% of FCl, **1% of FCl
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For methanol synthesis based on H, stream from case I-lll were compared with the work
of Khunathorncharoenwong et.al [40] as presented on Table 4.4. The raw material of CO, price in
case | was determined. In case |, CO, was released from H, production process and the cost of
carbon capture and storage (CCS) with post-combustion amine scrubbing technology using MEA
was applied. The captured CO, costs 164.6 USD/t of CO, avoided [92]. In case Il and Ill, CO, feed
was required and the price was 9.53 USD/t. In addition, H, price for case I-lll was shown in Table
4.3. For the work of Khunathorncharoenwong et.al [40], the H, price was 4.20 USD/kg (produced
using renewable source). The results showed the highest the CO, cost in case | corresponding to
high the CCS cost for captured CO,. On the contrary, Case | was presented lowest the COM per
case Il and the work of

ton of methanol at 959 USD/t followed by case |,

Khunathorncharoenwong et.al.

Table 4.4 Cost of manufacturing (COMy) of CO, conversion with H, from ethanol steam reforming

and ethanol dehydrogenation process steam reforming and ethanol dehydrogenation

process
Parameters Unit Case | Case Il Case lll [40]
Raw material:
- CO, USD/y  300,153.04 105,225.02 103,087.92 110,221
+ H, (cost of H,
USD/y  3,224,791.52 5,949,862.06 5,660,464.38 6,342,000
based on table 4.3)
Total raw materials
USD/y  3,524,944.55 6,055,087.08 5,763,552.29 6,452,221
costs
Total utility costs usD/y 1,519,800.80  1,343,445.09 1,483,815.09 2,177,582
Operating labor uUsD/y  85,500.00 85,500.00 85,500.00 85,500.00
Total cost of
usD/y 6,879,180.18  9,746,838.49 9,693,739.37 13,112,669
manufacturing
Cost of manufacturing
uSsD/t 959.41 1,296.49 1,346.99 1,756

per ton of Methanol
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NPV as shown in Figure 4.4 for all case presented 21,470, 3,779 and 6,662 (x10° USD),
respectively. Although, the economic analysis of H, production in case | presents best alternative
for conversion of CO, to methanol due to low H, price and high NPV, in part of desire to reduce
CO, emission case | is not require CO, feedstock for feed into methanol synthesis

Sensitivity analysis (SA) was performed to investigate the impact of input parameters on
the NPV of the H, production processes, as shown in Figure 4.4. The SA showed the selling price
of H, as the most significantly sensitive parameter for all cases. In case |, Il and Ill, the selling price
of H, presented the NPV in the range of 3,993 to 38,947; -13,407 to 20,964; and, -10,514 to 23,838
(x10° USD), respectively. In case |, the utility presented NPV in the range of 18,113 to 24,827 (x10°
USD) The sensitive parameters of case Il and lll was in the order of H, selling price, raw material
cost, utility cost and TCl. It should be noted that the NPV was negative in case Il and Ill when the

selling price of H, decreased lower than 10%.

NPV (x10° USD) NPV (x10° USD)
50,00000 - o )

2500000 -

it
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10,000.00
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-20,000.00 J

Figure 4.4 Sensitivity analysis (SA) in terms of net present value (NPV) of the H, production

process: (a) case |, (b) case Il and (c) case lll



CHAPTER 5

Conclusion

5.1 Conclusion

Techno-economic analysis of H, production from ethanol was performed, comparing
between ethanol steam reforming and ethanol dehydrogenation. Performance analysis included
required ethanol feed and net CO, emission. Cost analysis included capital investment, product
cost and sensitivity analysis. For the performance analysis, the required amount of ethanol feed
was compared to achieve H, production at 1,663-1,693 t/y which was available for CO,
conversion to methanol at 7,427 t/y. Ethanol steam reforming process (case 1) required the
lowest ethanol feed, followed by ethanol dehydrogenation to ethyl acetate process (case I) and
ethanol dehydrogenation to acetaldehyde process (case Ill), respectively.

The steam reforming of ethanol process also showed that the lowest fixed capital
investment and cost of manufacturing. However, the process presented significant amount of CO,
emission from the reaction and the utility usage. In contrast, dehydrogenation of ethanol not
only generated H, without CO, emission from the reaction but also ethyl acetate or
acetaldehyde which were valued chemicals.

Net CO, emission from the H, production process combined methanol production
process was also negative at -253.33 and -5.55 kg per ton of methanol produced in case Il and Il
respectively. The cost of H, production was 1.90, 3.57 and 3.40 USD per kg for case |, Il and Il
respectively. However, if carbon capture was considered, the cost of manufacturing per ton of H,
was 2.10 USD per kg in case |. Dehydrogenation of ethanol to H, and acetaldehyde showed the
best potential in term of the H, cost competitiveness to steam reforming process while
dehydrogenation of ethanol to H, and ethyl acetate consumed relative largest amount of CO, in
overall processes of H, production and CO, conversion to methanol. The results of this study
showed that although the cost of H, produced by steam reforming of ethanol was relatively
lowest and CO, emitted from H, process could be utilized as a raw material in methanol

synthesis, CO, emission was still net positive.
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5.2 Suggestion for future work

5.2.1 Due to the lowest cost of H, via ethanol steam reforming as case |, the ethanol
steam reforming can be further developed to mitigate CO, emission. For example, catalyst
development for this reaction can be done.

5.2.2 The type of ethanol as a raw material used in this study was based on anhydrous
ethanol with 99.5 wt% of ethanol (the price at 0.431 USD/L [88]). The cost of ethanol is
fluctuated and can be decreased in hydrous ethanol. Using hydrous ethanol may not affect the

steam reforming reaction.
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Utility and CO, consumption

APPENDIX B

Table B.1 Utility and CO, usage from ethanol steam reforming for CO, conversion
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CO,
Utility
Process Symbol Equipment Utility Unit emission
consumption
(kg/h)
E-100 HP steam ty 44,279.10 518.02
E-101 Process exchanger - -
H, Heat exchanger
E-102 Cooling water ty 697,635.00 -
process
E-103 LP steam ty 973.07 14.52
(case 1)
R-101 58,527.00 -
Reactor Cooling water ty
R-102 89,121.00 -
K-100 254.63 88.33
K-101 Compressor Electricity kw 159.67 55.39
K-102 156.18 54.18
E-104 113,837.00 -
Cooling water ty
E-105 88,738.30 -
Methanol
E-106 Process exchanger - -
process Heat exchanger
E-107 HP steam t/y 4,901.86 57.35
E-108 393,382.00 -
Cooling water ty
E-109 13,542.00 -
Condenser Cooling water ty 1,103,710.00 -
T-100
Reboiler MP steam ty 35,406.90 490.24
Total water consumption t/y 2,558,492.30 -
Total LP steam consumption ty 973.07 14.52
Total MP steam consumption t/y 35,406.90 490.24
Total HP steam consumption ty 49,180.96 575.36
Total electricity consumption kWh 4,997,439.84 197.90
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Table B.2 Utility and CO, usage from ethanol dehydrogenation to ethyl acetate for CO, conversion

CO,
Sym Utility
Process Equipment Utility Unit emission
bol consumption
(kg/h)
K-200 12.40 4.30
K-201 Pump Electricity kw 1.59 0.55
K-202 2.98 1.03
E-200 Process exchanger - -
E-201 HP steam ty 25,931.60 303.37
H, E-202 Heat Cooling water ty 1,314,690.00 -
process E-203 exchanger 159.07 2.37
LP steam ty
(case II) E-204 980.00 14.62
E-205 Cooling water ty 1,921,166.00 -
Condenser Cooling water t/y 1,153,746.00 -
T-200
Reboiler HP steam t/y 15,696.69 183.63
Condenser Cooling water ty 1,943,425.00 -
T-201
Reboiler HP steam t/y 15,183.46 177.63
K-203 95.32 33.07
K-204 59.45 20.62
Compressor Electricity kw
K-205 36.02 12.50
K-206 34.04 11.81
E-206 83,611.00 -
Cooling water ty
Methanol ~ E-207 65,598.00 -
process E-208 Heat Process exchanger - -
E-209 exchanger HP steam ty 5,795.40 67.80
E-210 1,104,224.00 -
Cooling water ty
E-211 20,636.50 -
Condenser Cooling water t/y 3,141,719.00 -
T-202
Reboiler MP steam ty 33,329.90 461.48
Total water consumption t/y 10,748,815.50 -
Total LP steam consumption ty 1,139.07 17.00
Total MP steam consumption ty 49,026.59 645.11
Total HP steam consumption t/y 46,910.46 548.80
Total electricity consumption kWh 2,118,257.61 83.88
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Table B.3 Utility and CO, usage from ethanol dehydrogenation to acetaldehyde for CO, conversion

co,
Utility
Process Symbol Equipment Utility Unit emission
consumption
(kg/h)
K-300 33.60 11.66
Pump Electricity kw
K-301 2.69 0.93
E-300 Process exchanger - -
H, E-301 HP steam ty 18,908.02 221.22
process E-302 Heat exchanger  Cooling water t/y 3,935,010.00 -
(case IIl) E-303 15,768.10 235.18
LP steam ty
E-304 524.94 7.83
Condenser Cooling water ty 1,671,519.00 -
T-300
Reboiler HP steam ty 18,640.58 218.10
K-302 106.87 37.07
K-303 116.61 40.45
K-304 114.02 39.56
Compressor Electricity kW
K-305 58.49 20.29
K-306 35.94 12.47
K-307 35.17 12.20
E-305 136,535.00 -
Methanol  E-306 194,319.00 -
Cooling water ty
process E-307 80,140.40 -
E-308 59,888.60 -
Heat exchanger
E-309 Process exchanger - -
E-310 HP steam ty 4,520.58 52.89
E-311 Cooling water t/y 1,179,144.00 -
E-312 LP steam t/y 203.00 3.03
Condenser Cooling water t/y 3,295,921.00 -
T-301
Reboiler MP steam t/y 34,595.30 479.00
Total water consumption t/y 10,552,477.00 -
Total LP steam consumption ty 16,496.04 1,135.31
Total MP steam consumption t/y 34,595.30 97.79
Total HP steam consumption t/y 42,069.17 1,507.66
Total electricity consumption kWh 503.41 611.36




Table B.4 Net CO, consumption from different H, production processes
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Scenario 1 1* 2 2* 3 3*
Reaction
CO, emission from H,
1505.94 0 0 0 0 0
plant
CO, conversion to
0 -1295.26 0 -1260.44 0 -1234.84
methanol plant
Utilities
Electricity 0 276.37 5.89 98.64 12.59 210.25
LP steam 14.52 0 17.00 0 243.01 3.03
MP steam 0 478.80 0.00 461.48 0 479.00
HP steam 518.02 57.35 481.00 67.80 439.32 52.89
Ton of methanol per h 1.00 1.00 0.90 0.90 0.90 0.90
CO, emitted (kg/ton of
2034.98 0 561.67 0.00 77237 0.00
methanol)
CO, avoided (kg/ton of
0 -757.81 0 -815.01 0 -777.92
methanol)
Net CO, emitted (kg/ton of
2792.79 -253.33 555

methanol)




APPENDIX C

Cost estimation

Table C.1 Total COM from ethanol steam reforming (case ) to methanol
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Process Symbol Equipment Specifications (A) | Unit Cgm (USD)
E-100 18.43 94,015.29
E-101 45.82 101,286.90
Heat exchanger m?
E-102 52.75 104,584.76
E-103 0.60 556,843.50
H, Process (case I)
R-100 3.79 147,871.12
Reactor
R-101 3.50 136,473.55
(Fixed bed) m?
R-102 3.50 136,473.55
V-100 Flash vessel 2.403 24,702.90
K-100 183.33 293,058.62
K-101 Compressor 114.96 kw 191,089.61
K-102 112.45 187,168.27
E-104 11.68 98,730.25
E-105 6.85 112,483.72
E-106 3.00 107,665.66
Heat exchanger m?
E-107 46.20 101,462.35
Methanol Process E-108 29.60 94,970.37
E-109 0.90 379,509.73
R-103 Reactor 0.15 5,848.87
V-101 Flash vessel 0.98 m> 15,940.20
Vessel 16.93 103,090.42
Sieve tray 0.95(21) 95,682.14
T-100
Condenser 17.49 m? 94,532.34
Reboiler 33.20 193,759.87
Fixed capital H, process 1,536,656.87
investment (FCI) Methanol process 2,448,491.05
Total capital H, process 1,807,831.61
investment (TCl) Methanol process 2,880,577.70
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Table C.2 Total COM from ethanol dehydrogenation to ethyl acetate (case I) to methanol

Process Symbol Equipment Specifications (A) Unit Cam
K-200 12.40 21,680.21
K-201 Pump 1.59 kw 12,663.10
K-202 2.98 13,979.30
E-200 12.67 98,943.45
E-201 31.49 96,977.29
E-202 Heat exchanger 10.41 m? 102,411.58
E-203 0.18 2,306,176.95
E-204 1.48 257,121.48
R-200 Reactor (Fixed bed) 3.27 81,764.89
H, Process (case II)

V-200 Flash vessel 3.27 m> 29,661.78
Vessel 67.52 301,983.17
Sieve tray 1.37(49) 114,633.59

T-200
Condenser 28.57 m? 94,958.16
Reboiler 56.42 290,928.29
Vessel 14.94 m’ 94,362.53
Sieve tray 1.37(10) 114,633.59

T-201
Condenser 25.17 m? 94,245.50
Reboiler 96.03 481,954.09
K-203 68.63 116,446.56
K-204 42.80 72,477.34

Compressor kw
K-205 25.94 42,883.79
K-206 24.51 40,351.62
E-206 2.15 195,769.70
E-207 1.27 285,131.32
E-208 794 107,665.66
Heat exchanger m?
E-209 46.20 101,462.35
Methanol Process

E-210 29.60 94,970.37
E-211 0.90 379,509.73
R-201 Reactor (Fixed bed) 0.15 5,848.87
V-201 Flash vessel 0.98 m? 15,940.20
Vessel 16.93 103,090.42
Sieve tray 0.95(21) 95,682.14

T-202
Condenser 17.49 m? 94,532.34
Reboiler 33.20 193,759.87
Fixed capital H, process 5,438,713.20
investment (FCI) Methanol process 2,295,716.26
Total capital H, process 6,398,486.12
investment (TCl) Methanol process 2,700,842.66
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Table C.3 Total COM from ethanol dehydrogenation to acetaldehyde (case Ill) to methanol

Process Symbol Equipment Specifications (A) | Unit Cam
K-300 33.60 34,075.74
Pump kw
K-301 2.69 15,589.68
E-300 97.59 128,640.43
E-301 95.30 128,948.02
E-302 Heat exchanger 42.05 m? 101,103.89
E-303 14.85 95,795.24
H, Process (case IIl) E-304 1.97 208,274.50
R-300 Reactor (Fixed bed) 5.41 210,994.61
V-300 Flash vessel 4.27 m? 34,275.48
Vessel 11.72 79,812.95
Sieve tray 2.06 147,883.59
T-300
Condenser 74.08 m? 115,880.28
Reboiler 16.78 132,366.25
K-302 76.95 130,224.54
K-303 83.96 141,716.46
K-304 82.10 138,674.34
K-305 TR 42.11 KW 71,279.34
K-306 25.88 42,776.58
K-307 25.32 41,797.78
E-305 4.00 138,953.25
E-306 3.17 156,104.80
E-307 2.07 200,943.27
Methanol Process £ Heat exchanger +8 m? 21558340
E-309 7.94 107,665.66
E-310 46.20 101,462.35
E-311 29.60 94,970.37
E-312 0.90 379,509.73
R-301 Reactor (Fixed bed) 0.15 5,848.87
V-301 Flash vessel 0.98 m?> 15,940.20
Vessel 16.93 103,090.42
Sieve tray 0.95(21) 95,682.14
T-301
Condenser 17.49 m? 94,532.34
Reboiler 33.20 193,759.87
Fixed capital H, process 1,691,695.97
investment (FCI) Methanol process 3,033,680.53
Total capital H, process 1,990,230.55
investment (TC) Methanol process 3,569,035.92
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