STUDY OF CARBON-DIOXIDE CAPTURE PROCESS USING AQUEOUS AMMONIA

Akrawin Jongpitisub

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

I28369488 ° 580080

0

Thesis Title:	Study of CO ₂ Capture Process using Aqueous Ammonia	3
By:	Akrawin Jongpitisub	
Program:	Petroleum Technology	
Thesis Advisors:	Asst. Prof. Kitipat Siemanond	
	Prof. Amr Henni	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

D

Kitipat Siemanand

(Asst. Prof. Kitipat Siemanond)

.

(Prof. Amr Henni)

KK

(Dr. Uthaiporn Suriyapraphadilok)

Apinya Duangchan

(Assoc. Prof. Apinya Duangchan)

ABSTRACT

5673001063: Petroleum Technology Program

Akrawin Jongpitisub: Study of CO₂ capture process using aqueous ammonia.

Thesis Advisors: Asst. Prof. Kitipat Siemanond and Prof. Amr Henni 95 pp.

Keywords: Post combustion CO₂ capture/ MEA scrubbing process/ Ammonia scrubbing process/ Simulation modelling/ Heat exchanger network.

Carbon dioxide (CO₂) emissions to the atmosphere have become an issue for many industries, especially coal-fired power plants, due to their contribution to global warming. Many research projects are presently involved the development of effective solvents to combat these severe environmental problems. Aqueous ammonia is a solvent that has been proposed as a replacement to conventional aqueous monoethanolamine (MEA) in post-combustion CO₂ capture. In this study, an aqueous ammonia based CO₂ capture process was simulated by Aspen Plus simulator for capturing about 90 % by weight of CO₂ with a purity of 98 % by weight from a post-combustion flue gas based on a 180 MWe coal-fired power plant. The simulation of this process was performed to meet the ammonia emission standard. An ammonia-based simulation process consists of two parts: the CO₂ absorption process and the ammonia abatement process. To minimize the energy consumption of the process, heat integration was applied by adding a Heat Exchanger Network (HEN). HEN was designed using stage-wise model (Yee and Grossmann, 1990) and validated using the Aspen Plus simulator. Furthermore, capital investment and annual costs were investigated using Aspen Plus Cost Estimator, and some economic parameters (Hassan et al., 2007) to assess the feasibility of this process based on standard environmental regulations. The results showed that the performance of actual aqueous ammonia plants using process integration reduced the energy requirement from a "non-integrated process by 58 % on the heaters, coolers and

electrical units, resulting in a theoretical decrease of 47 % in the annual cost of utilities, compared to the cost without process heat integration.

.

0

•

บทคัดย่อ

อัครวินท์ จงปีติทรัพย์: การศึกษากระบวนการดักจับแก๊สคาร์บอนไคออกไซด์โดยใช้ตัว ดักจับสารละลายแอมโมเนีย (Study of CO2 capture process using aqueous ammonia) ผศ.คร. กิตติพัฒน์ สีมานนท์ ศ.คร. อามาร์ เฮนนี่ 95 หน้า

้ปัจจุบันการปลดปล่อยแก๊สคาร์บอนไดออกไซด์จากโรงงานอุตสาหกรรมออกสู่บรรยา-้กาศเป็นปัญหาอย่างมากที่ส่งผลต่อสภาวะโลกร้อนโคยเฉพาะอย่างยิ่งแก๊สที่ปล่อยออกมาจาก โรงงานไฟฟ้าถ่านหิน คังนั้นจึงมีการพัฒนาประสิทธิภาพของตัวทำละลายเพื่อแก้ปัญหา ้สิ่งแวคล้อมที่มีเพิ่มมากขึ้นในปัจจุบัน สารละลายแอมโมเนียถือเป็นสารละลายทางเลือกหนึ่งที่ สามารถใช้ทคแทนสารละลายมอนอเอทาโนลามีนในการคักจับแก๊สคาร์บอนไคออกไซค์จาก เทคโนโลยีถ่านหินสะอาคหลังการเผาใหม้ ในการศึกษานี้ใช้แอสเพนพลัส (Aspen Plus) ในการ ้จำลองการคักจับ 90 เปอร์เซ็นต์ ของแก๊สคาร์บอนออกไซค์จากแก๊ส ไอเสียในโรงงานไฟฟ้าถ่าน หินขนาค 180 เมกกะวัตต์และ ความบริสุทธิ์ 98 เปอร์เซ็นต์โคยน้ำหนักของแก๊สคาร์บอนไค-้ออกไซด์ก่อนการจัดเก็บโดยใช้สารละลายแอมโมเนีย การออกแบบกระบวนการดักจับแก๊ส ้คาร์บอนไคออกไซค์มีมาตรฐานของการปล่อยแก๊สแอมโมเนียออกสู่สิ่งแวคล้อมน้อยกว่า 2 กิโลกรัมต่อชั่วโมง โดยกระบวนการคักจับแก๊สคาร์บอนไคออกไซค์โดยใช้สารละลายแอมโมเนีย แบ่งเป็น 2 ส่วนย่อย ได้แก่ กระบวนการดูดซับแก๊สการ์บอน ใคออกไซด์และกระบวนการลดการ ปลคปล่อยแอมโมเนียสู่บรรยากาศ การแลกเปลี่ยนพลังงานความร้อนโครงร่างตาข่าย (Heat integration network) ใช้ในการลดการใช้พลังงานของการกระบวนการดักจับแก๊สคาร์บอนได-ออกไซด์ซึ่งโมเดลที่ใช้ได้แก่ Stage-wise model (Yee and Grossman, 1990) อีกทั้งได้มีการตรวจ-สอบข้อมูลที่ได้จากการแลกเปลี่ยนพลังงานความร้อนโครงร่างตาข่ายกับแอสเพนพัส (Aspen Plus) เพื่อหาความไม่แน่นอนในเชิงตัวเลขของกระบวนการคักจับ มากไปกว่านั้นก่าใช้จ่ายในการลงทุน และต้นทุนการคำเนินงานประจำปีคำนวณจากแอสเพนพลัส (Aspen Plus) และตัวแปรบางตัวเพื่อ ้บ่งบอกถึงความเป็นไปได้ของกระบวนการคักจับแก๊สคาร์บอนไคออกไซด์นี้ ผลการทคลองนี้ แสดงให้เห็นว่าประสิทธิภาพโรงงานคักจับแก๊สคาร์บอนไดออกไซค์โดยใช้สารละลายแอมโมเนีย ที่ผ่านการแถกเปลี่ยนพลังงานความร้อนโครงร่างตาข่ายสามารถลดความต้องการทางด้านพลังงาน ้ได้ถึง 58 เปอร์เซ็นต์เมื่อเทียบกับกระบวนการที่ไม่ผ่านการแลกเปลี่ยนความร้อน โครงร่างตาง่าย อีกทั้งในเชิงทฤษฎียังสามารถลดต้นทุนการคำเนินงานประจำปีได้ถึง 47 เปอร์เซ็นต์

σ

ν

ACKNOWLEDGEMENTS

This thesis was successfully completed not only due to my dedication but also with the extended support by a number of people and organizations. I really appreciate all who have supported me to get this work done.

First of all, I would like to express my sincere gratitude to Asst. Prof. Kitipat Siemanond, my advisor for this work, whose insight, expertise and encouragement helps me to develop an understanding of this thesis. I greatly appreciate the time and effort he provided me for this thesis. Without his supervision, I might not have completed this thesis.

I greatly appreciate Prof. Amr Henni, my co-advisor from University of Regina, Canada. He provided me encouragement, great advice and guidance through this thesis. His willingness to devote his time to give me his valuable suggestions and to correct my works is very much appreciated. I greatly appreciate him for spending time to answer my email, and for significant comments on my thesis results.

I would like to thank Dr. Uthaiporn Suriyapraphadilok and Assoc. Prof. Apinya Duangchan for their nice suggestions and for being my thesis committees.

I am grateful for the scholarship and funding provided by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would like to extend my gratitude to all faculty members and staffs of the Petroleum and Petrochemical College, for their support and guidance given to me throughout my study here.

Finally, I wish to thank my family and friends for their endless love and support, especially my mother for her contribution to the success of my graduate study here. Their encouragement and support from the beginning to the end have helped make this thesis possible.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	x
List of Figures	xiii
Abbreviations	xvi
List of Symbols	xvii

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Motivation for Carbon Dioxide Capture	3
	2.2 Carbon Dioxide Capture Systems	4
	2.2.1 Post-Combustion Carbon Dioxide Capture System	4
	2.2.2 Pre-Combustion Carbon Dioxide Capture System	9
	2.2.3 Oxy-Combustion Carbon Dioxide Capture System	10
	2.3 Solvents for Chemical Absorption Systems	10
	2.4 Carbon dioxide capture process by monoethanolamine	12
	2.5 Carbon dioxide capture process by aqueous ammonia	13
	2.6 Carbon dioxide capture process by Ionic Liquids	14
	2.7 Carbon dioxide capture process by aqueous MEA	16
	and Ionic liquids solution	
	2.8 Literature Review	16

CHAPTER		PAGE	
III	METHODOLOGY		27
	3.1 Materials and Equipment		27
	3.1.1 Equipment •		27
	3.1.2 Software		27
	3.2 Experimental Procedures		27
	3.2.1 Literature Survey		27
	3.3 Process Simulation		27
	3.3.1 MEA Flow sheet Development		27
	3.3.2 Ammonia Flow sheet Development		29
	3.3.3 IL Flow sheet Development		31
	3.4 Process Heat Integration		32
	3.5 Economic Evaluation		33
	3.5.1 Capital Investment Cost		33
	3.5.2 Estimation of Total Product Cost		36
IV	RESULTS AND DISCUSSION		39
1.1	4.1 MEA-based CO ₂ Capture Process		39
o	4.1.1 Process Description and Optimization		39
	4.1.2 Process Heat Integration		41
	4.1.3 Key Process Simulation Specifications		48
	4.1.4 Economic Evaluation		50
	4.2 Aqueous ammonia based CO ₂ Capture Process		55
	4.2.1 Process Description and Optimization		55
	4.2.2 Process Heat Integration		60
	4.2.3 Key Process Simulation Specifications		66
	4.2.4 Economic Evaluation		69
	4.3 Ionic Liquid EmimAc based CO ₂ Capture Process		73
	4.3.1 Process Description and Optimization		73
	4.3.2 Process Heat Integration		76

1

CHAPTEI	R	PAGE
	4.3.3 Key Process Simulation Specifications	80
	4.3.4 Economic Evaluation	82
	4.4 Comparative investment evaluation	86
	4.4.1 Energy requirement	86
	4.4.2 Investment cost	87
V	CONCLUSIONS AND RECOMMENDATIONS	89
	5.1 Conclusions	89
	5.2 Recommendations	89
	REFERENCES	91
	APPENDIX	94
	CURRICULUM VITAE	95

•

•

σ

.

LIST OF TABLES

TABLE		PAGE
2.1	Global warming potential of primary greenhouse gases	4
2.2	Advantages and disadvantages of each technologies for	
	carbon dioxide separation	8
2.3	Comparison among the four units as function of feed and	
	product conditions	9
2.4	Property comparison among primary, secondary and tertiary	
	alkanolamine	12
2.5	Density, viscosity and surface tension of varied MDEA-IL	
	solution	20
2.6	Comparison wih other literature data with aqueous mixtures	
	of present ILs+MEA at pressure with highest CO ₂ loading	24
2.7	Optimal condition using ammonia aqueous for CO ₂ capture	
	process	25
2.8	Energy consumption comparison among different processes	26
3.1	Design specification of MEA flow sheet	29
3.2	Design specification of aqueous ammonia flow sheet	
	development	30
3.3	Design specification of IL (EmimAc) flow sheet	
	development	32
3.4	Total Capital Investment (TCI) Summary table of economic	
	evaluation factor	38
4.1	Flue gas composition from post-combustion	41
4.2	Stream summary of MEA-based CO2 capture process	45
4.3	MEA-based CO ₂ capture plant key process simulation	
	specifications	48

σ

0

.

σ

4.4	Summary of equipment cost estimation of MEA-based	
	process (Aspen Plus)	52
4.5	Total capital investment cost of MEA-based process	53
4.6	Utilities consumption summary of MEA based process	54
4.7	Annual operating cost for MEA based process	54
4.8	The parameters of the DZ-II-750Y structure packing	57
4.9	Optimal operating parameters of main streams in overall	
	CO ₂ capture process	60
4.10	Stream summary of aqueous ammonia based CO2 capture	
	process	62
4.11	Aqueous ammonia based CO2 capture plant key process	
	simulation specifications	66
4.12	Summary of equipment cost estimation of aqueous	
	ammonia-based process (Aspen Plus)	70
4.13	Total capital investment cost of aqueous ammonia-based .	
	process	71
4.14	Utilities consumption summary of aqueous ammonia based	
	process	72
4.15	Annual operating cost for aqueous ammonia based process	73
4.16	Stream summary of IL based CO ₂ capture process	78
4.17	IL based CO ₂ capture plant key process simulation	
	specifications	80
4.18	Summary of equipment cost estimation of IL-based process	
	(Aspen Plus)	83
4.19	Total capital investment cost of IL-based process	84
4.20	Utilities consumption summary of aqueous ammonia based	85
4.21	Annual operating cost for aqueous ammonia based process	85

TABLE

•

PAGE

4.22	Pros and Cons for CO ₂ capturing by absorbents Utilities	88

÷

LIST OF FIGURES

FIGURE		PAGE	
2.1	Emissions of carbon dioxide, methane, nitrous oxide, and		
	several fluorinated gases in the United States from 1990 to		
	2011.	3	
2.2	Overview of CO ₂ capture processes and systems.	5	
2.3	Conventional pressure swing adsorption schematic chart.	6	
2.4	Simple schematic diagram of the cryogenic carbon capture		
	(CCC) process.	7	
2.5	Simple schematic of membrane separation.	8	
2.6	Chemical structures of amine commonly used in carbon		
	dioxide capture.	1-1	
2.7	Simple process flow diagram of an amine absorption		
	process.	12	
2.8	Simplified process flow diagram of aqueous ammonia-based		
	scrubbing system.	14	
2.9	Commonly used anions and cations of ionic liquids.	15	
2 ° 10	Henry's law constant of CO2 in imidazolium based ionic		
	liquids at 60°C [OAc] ⁻ in comparison to [BF ₄] ⁻ , [NTf ₂] ⁻ ,		
	$[B(CN)4]^{-}$, $[CF_3SO_3]^{-}$ and $[FAP]^{-}$.	17	
2.11	Carbon dioxide capture mechanism by carboxylate		
	formation.	17	
2.12	Mechanism of MDEA solution for CO ₂ capture system.	19	
2.13	CO ₂ absorption capacity vs. time for the mixed solutions of		
	30 wt% MDEA and [N1111][Gly].	21	
2.14	Absorption capacity of CO ₂ varied by using different		
	concentration of IL and MDEA under $P_0 = 97$ kPa.	21	
	Apparent absorption rate (K_0) and viscosity (η) of mixed		

-

FIGURE

o

•

2.15	Apparent absorption rate (K_0) and viscosity (n) of mixed	
	solutions of 30 wt% MDEA and [N1111][Gly].	• 22
2.16	Apparent absorption rate (K_0) and viscosity (n) of mixed	
	solutions of 40 wt% MDEA and [N1111][Gly].	22
3.1	Simplified process flow diagram of MEA-based scrubbing	
	system (Aspen plus).	28
3.2	Simplified process flow diagram of aqueous ammonia-based	
	scrubbing system (Aspen plus).	30
3.3	Simplified process flow diagram of IL-based scrubbing	
	system (Aspen plus).	31
3.4	Stage-wise model for HEN.	32
4.1	Influence of MEA concentration and lean loading on the	
	circulation rate usage in LEANIN steam.	40
4.2	Influence of MEA concentration and lean loading on MEA	
	loss in VENT GAS stream.	40
4.3	Validated process flow diagram of improved MEA-based	42
	scrubbing system (Aspen plus) with process heat	
	integration.scrubbing system.	
4.4	MEA based conceptual process integration from GAMS.	42
4.5	Simplified process flow diagram of MEA-based scrubbing	
	system (Aspen plus).	44
4.6	Simplified process flow diagram of aqueous ammonia-based	
	scrubbing system (Aspen plus).	58
4.7	Effect of ammonia concentration and CO ₂ loading on	
	LEANIN stream to solvent flow rate in LEANIN stream	57

-

xiv

FIGURE

xv

4.8	Effect of ammonia concentration and CO2 loading on		
	LEANIN stream to fraction of ammonia loss in TREATGAS		
	stream.		58
4.9	Aqueous ammonia based conceptual process integration		
	from GAMS.		61
4.10	Validated process flow diagram of improved Aqueous		
	ammonia-based scrubbing system (Aspen plus) with process		
	heat integration.		61
4.11	Flowchart of defining ionic liquid into Aspen Plus		74
4.12	Simplified process flow diagram of IL-based scrubbing		
	system (Aspen plus)		75
4.13	MEA based conceptual process integration from GAMS.		76
4.14	Validated process flow diagram of improved IL-based		
	scrubbing system (Aspen plus) with process heat integration.		77
4.15	Energy consumption among absorbents for CO ₂ capture		
	process.		86
4.16	Capital investment and annual operating costs.	o	87
A1	Ammonia heat capacity at operating condition		95

σ

LIST OF ABBREVIATIONS

CCC	Cryogenic carbon capture
CPIG	Ideal gas heat capacity
DHVLDP	Heat of vaporization
DNLDIP	Liquid density
EPA	Environmental protection agency
GAMS	The general algebraic modeling system
GWP	Global warming potential
HEN	Heat integration network
HFCs	Hydrofluorocarbons
IPCC	Intergovernmental panel on climate change
KLDIP	Liquid thermal conductivity
KVDIP	Vapour thermal conductivity
MULDIP	Liquid viscosity
MUVDIP	Vapour viscosity
MUVDIP	Liquid vapour pressure
NETL	National energy technology laboratory
NRTL	Non-random two liquid model
PFCs	Perfluorocarbon
PCC	Post combustion capture
PC	Post combustion
RCSTR	Continuous stirred-tank reactor
RTIL	Room-temperature ionic liquid
SIGDIP	Liquid surface tension
TCI	Total capital investment

LIST OF SYMBOLS

K₀ Apparent absorption rate

n_{CO2} mol of CO₂

P₀ Partial pressure

 α_{CO2} CO₂ loading

η Viscosity