EFFECT OF POLYELECTROLYTES ON THE SYNTHESIS OF CERIUM OXIDE FOR PHOTO-CATALYTIC APPLICATION

.

0

2

Jadsada Chavalitkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University

2015

I28368976

580068

.

Thesis Title:	Effect of Polyelectrolytes on Synthesis of Cerium oxide for
	Photo-catalytic Application
By:	Jadsada Chavalitkul
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Stephan Thierry Dubas

Accepted by the Petroleum and Petrochemical College. Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

.

(Asst. Prof. Stephan Thierry Dubas)

Thanyalde Chaisuan

(Asst. Prof. Thanyalak Chaisuwan)

.

(Dr. Chularat Iamsamai)

ABSTRACT

5672034063: Polymer Science

Jadsada Chavalitkul: Effect of Polyelectrolytes on the Synthesis of
Cerium oxide for Photo-catalytic Application.
Thesis Advisor/ Asst. Prof. Stephan Thierry Dubas 77 pp.Keywords:Cerium oxide/ Photo-catalyst/ Silver nanoparticles

Photo-catalysis is a method to treat wastewater drained from apparel industries. Cerium oxide (CeO_2) or Ceria is a photo-catalyst which could be used to treat dyes in wastewaters. Ag nanoparticles were synthesized by chemical reduction using Poly(styrene sulfonate-co-maleic acid) (COPSS) and Sodium borohydride (NaBH₄) as a capping agent and a reducing agent, respectively. Furthermore, CeO₂ nanoparticles were synthesized at the surface of Ag nanoparticles by precipitation technique using Cerium(III)nitrate hexahydrate (Ce(NO₃)₃·6H₂O), and Sodium carbonate (Na₂CO₃) as precursors and undergoes calcination at 550°C in order to increase the photo-catalytic activity. In this study, many factors were varied i.e. effect of CeO2 on Ag nanoparticle for photocatalytic activity, effect of dosage of Silver nitrate (AgNO₃) and COPSS on photo-catalytic activity, and effect of concentrations and types of polyelectrolyte on synthesis of CeO₂. This work consists of two parts which are the synthesis of CeO₂ using polyelectrolytes and the synthesis of CeO₂ at the surface of Ag nanoparticles. Firstly, polyelectrolytes can control the size of CeO₂ and showed better photo-catalytic activity than pure CeO₂ due to the smaller particles size. The best to least polyelectrolytes used in this work is Poly(acrylic acid) (PAA), COPSS, Poly(styrene sulfonate) (PSS) and Poly(diallyl dimethyl ammonium chloride) (PDADMAC). Secondly, CeO2 with Ag nanoparticles were successfully synthesized and the particles are smaller and finer than pure CeO₂. Additionally, it also improves the photo-catalytic activity of CeO₂ under UV irradiation because Ag nanoparticles can prevent the recombination reaction and enhanced photon harvest.

σ

บทคัดย่อ

เจษฎา ชวลิตกุล : การสังเคราะห์ซีเรียมออกไซค์โดยใช้พอลิเมอร์ หรืออนุภาคซิลเวอร์ ขนาดนาโนเพื่อใช้ในการบำบัดน้ำเสีย (Effect of Polyelectrolytes on Synthesis of CeO₂ for Photo-catalytic Application) อ. ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร. สเตฟาน เธียร์รี่ ดูบาส 77 หน้า

โฟโด้กะตะไลซิส ถือ กระบวนการในการบำบัดน้ำเสียจากโรงงานอุตสาหกรรมเสื้อผ้า ให้สามารถนำกลับมาใช้ไหม่ได้อีกครั้งโดยใช้แสงเป็นดัวช่วยกระดุ้น และสารที่ใช้ในการบำบัดน้ำ เสียนั้นจะเรียกกว่า โฟโด้กะตะลิส ชนิดของโฟโด้กะตะลิสมีหลายชนิด แต่ในงานชิ้นนี้จะเลือกใช้ ซีเรียมออกไซด์เป็นกะตะลิสในการบำบัดน้ำเสีย ในงานวิจัยนี้จะหาวิธีในการสังเคราะห์ซีเรียม ออกไซด์ และวิธีในการเพิ่มประสิทธิภาพของซีเรียมออกไซด์ในการบำบัดน้ำเสีย โดยจะทำการ สังเคราะห์ซีเรียมออกไซด์ 2 วิธี ได้แก่ สังเคราะห์ซีเรียมออกไซด์ในการบำบัดน้ำเสีย โดยจะทำการ สังเคราะห์ซีเรียมออกไซด์ 2 วิธี ได้แก่ สังเกราะห์ซีเรียมออกไซด์โดยใช้พอลิเมอร์ช่วยในการ สังเคราะห์ และสังเกราะห์ซีเรียมออกไซด์บนพื้นผิวของอนุภาคเงินระดับนาโน ในส่วนของการใช้ พอลิเมอร์ช่วยในการสังเกราะห์ซีเรียมออกไซด์บนพื้นผิวของอนุภาคเงินระดับนาโน ในส่วนของการใช้ พอลิเมอร์ช่วยในการสังเกราะห์ซีเรียมออกไซด์บนพื้นผิวของอนุภาคเงินระดับนาโน ในส่วนของการใช้ พอลิเมอร์ช่วยในการสังเคราะห์ซีเรียมออกไซด์บนพื้นผิวของอนุภาคเงินระดับนาโน ในส่วนของการใช้ แอร์ที่ใช้ในการเพิ่มประสิทธิภาพการบำบัดน้ำเสีย เรียงลำดับจากมากไปน้อยดังนี้ พอลิอะคลิลิก แอซิด พอลิสไตรีนซัลโฟเนตโคมาเลอิกเอซิด พอลิสไตรีนซัลโฟเนต และพอลิไดเอริลไดเมทธิล แอมโมเนียมกลอไรด์ตามลำดับ สำหรับการสังเคราะห์ซีเรียมออกไซด์บนอนุภาคซิลเวอร์จานาดนา โนนั้นพบว่า อนุภาคของซีเรียมออกไซด์ที่ได้มีขนาดที่เล็กกว่าสังเคราะห์ซีเรียมออกไซด์แบบปกดิ และยังสามารถเพิ่มประสิทธิภาพในการบำบัดน้ำเสียได้ภายใด้แสงยูวี

o

Acknowledgements

v

I would like to thank Asst. Prof. Dr. Stephan Dubas for his advice. Also, I would like to thank SD lab group for their support during the lab hours. Finally, I thank my family for their support and encouragement.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Thailand. This research was also partially supported by the Ratchadapisek Somphoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG 5780012).

0

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	le of Contents	vi
List	of Tables	ix
List	of Figures	xii
СНАРТЕ	R	
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	14
	3.1 Equipment	14
	3.2 Chemical	14
	3.3 Methodology	15
	3.3.1 Synthesis of Cerium oxide (CeO_2)	14
	3.3.2 Synthesis of Cerium oxide with Ag Nanoparticles	
	3.3.2.1 Synthesis of Ag Nanoparticles	16
	3.3.2.2 Synthesis of CeO_2 on Ag Nanoparticles	17
	3.3.3 Photo-catalytic Experiment	18
	3.3.4 Primer Preparation	19
	3.3.5 Preparation of CeO ₂ Monolayer	20
	3.3.6 Characterization	21

Ø

CHAPTER

PAGE

IV	RES	ULT AND DISCUSSION	22	
	4.1 5	Synthesis of Cerium oxide (CeO ₂)	22	
	2	4.1.1 The Best Condition for Synthesis of CeO ₂	23	
	۷	4.1.2 The Morphology of $Ce(OH)CO_3$ and CeO_2	27	
	۷	4.1.3 Study the Charges on the Surface of Ce(OH)CO ₃		
		and CeO ₂	27	
		4.1.3.1 Effect of pH on Ce(OH)CO ₃	28	
		4.1.3.2 Effect of PDADMAC on Ce(OH)CO ₃	30	
		4.1.3.3 Effect of pH on the Surface of CeO_2	32	
	۷	4.1.4 Compare the Photo-catalytic Activity between		
		Ce(OH)CO ₃ and CeO ₂	35	÷
	4.2 H	Effect of Ag Nanoparticles on the Synthesis of CeO_2	36	
	2	4.2.1 Effect of AgNO ₃ Concentration on Synthesis of		
		CeO ₂ with Ag Nanoparticles	37	
	2	4.2.2 Photo-catalytic Activity of CeO ₂ with Ag Nanoparticles	s 38	
	4.3 H	Effect of Polyelectrolyte on Synthesis of CeO_2	38	
	۷	4.3.1 Photo-catalytic Activity of CeO ₂ with Polyelectrolytes	43	
	4.4 2	X-Ray Diffraction (XRD)	48	÷
	Z	4.4.1 XRD Graphs of CeO ₂ Nanoparticles Synthesized by		
		using Polyelectrolytes and without Polyelectrolytes	48	
	2	4.4.2 XRD Graphs of CeO_2 with Ag Nanoparticles	49	
V	CON	ICLUSIONS AND RECOMMENDATIONS	50	
	REF	ERENCES	51	÷.

-

-

.

APPENDIX		54
Appendix A	Absorbance of Methyl Violet	54
Appendix B	The Best Condition to Synthesize CeO_2	55
Appendix C	Compare the Photo-catalytic of Ce(OH)CO ₃	
	and CeO ₂	57
Appendix D	Study the Charge on the Surface of Ce(OH)CO ₃	
	and CeO ₂	58
Appendix E	Effect of Ag Nanoparticles on CeO ₂	59
Appendix F	Effect of Polyelectrolyte on the Synthesis of \mbox{CeO}_2	63
Appendix G	XRD Graph of the Photo-catalyst	70
Appendix H	SEM Image of Photo-catalyst	72

CURRICULUM VITAE

77

.

LIST OF TABLES

·

TABLE		PAGE
Al	The result from measurement the absorbance of	
	pure MV under UV irradiation for 5 hours.	54
B1	The absorbance of MV in the presence of CeO_2	
	which synthesized by quick added and drop wise	
	of Na ₂ CO ₃ at wavelength 582.557 cm ⁻¹ .	55
B2	The absorbance of MV in the presence of CeO_2	
	which synthesized by sonicated and stirred	
	condition at wavelength 582.557 cm ⁻¹ .	55
B3	The absorbance of MV in the presence of CeO_2	
	which synthesized at 60 C and room temperature	
	at wavelength 582.557 cm ⁻¹ .	55
C1	Show the absorbance of MV in the presence of	
	Ce(OH)CO ₃ , CeO ₂ and also pure MV under UV	
	irradiation for 5 hours at wavelength 582.557 cm ⁻¹ .	57
DI	Show the absorbance of primer dipped into the	
	Ce(OH)CO ₃ at pH 3-10.	58
D2	Show the absorbance of primer dipped into the	
	CeO ₂ at pH 3-10.	58
El	Show the absorbance of MV in the presence of	
	CeO ₂ with Ag nanoparticles which synthesized by	
	various concentrations of COPSS.	59
E2	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO_2 with Ag	
	nanoparticles synthesized by various	
	concentrations of COPSS.	60

LIST OF TABLES

TABLE	TABLE	
		i.
E3	Show the absorbance of MV in the presence of	
	CeO ₂ with Ag nanoparticles which synthesized by	
	various concentrations of AgNO ₃ .	60
E4	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO ₂ with Ag	
	nanoparticles synthesized by various	
	concentrations of AgNO ₃ .	61
Fl	Show the absorbance of MV in the presence of	
	CeO ₂ synthesize with PAA at any concentration.	63
F2	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO_2 synthesize with	
	PAA at any concentration.	63
F3	Show the absorbance of MV in the presence of	
	CeO ₂ synthesize with PDADMAC at any	
	concentration.	64
F4	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO2 synthesize with	
	PDADMAC at any concentration.	65
F5	Show the absorbance of MV in the presence of	ř.
	CeO ₂ synthesize with COPSS at any concentration.	66

o

.

LIST OF TABLES

TABLE

σ

.

F6	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO_2 synthesize with	
	COPSS at any concentration.	66
F7	Compare the photo-catalytic activity of CeO ₂	
	synthesized by various types of 20 mM	
	polyelectrolyte and also Ag nanoparticles.	67
F8	Show the absorbance of MV after exposure to UV	
	compare to the absorbance of MV before exposure	
	to UV in the presence of CeO_2 synthesize with	
	various types of polyelectrolytes and also Ag	
	nanoparticles.	68
F9	Show the absorbance at various concentration of	
	MV in the presence of CeO_2 synthesized by using	
	20 mM PAA as capping agent.	68
F10	Show the absorbance at various concentrations of	
	MV after exposure to UV compare to the	
	absorbance of MV before exposure to ${ m UV}$ in the	
	presence of CeO_2 synthesized by 20 mM PAA.	69

1.4

•

PAGE

FIGURE

σ

-

PAGE ·

2.1	Show the schematic diagram of photo-catalytic.	7
2.2	An experimental of layer by layer technique.	11
3.1	Flow chart for synthesis of CeO ₂ .	15
3.2	Flow chart for synthesis of Ag nanoparticles.	15
3.3	Flow chart for synthesis of CeO ₂ with Ag	17
	nanoparticles.	
3.4	Flow chart for photo-catalytic experiment.	17
3.5	Flow chart of primer preparation.	18
3.6	Flow chart of CeO ₂ monolayer preparation.	18
4.1	Flow chart of synthesis of CeO ₂ nanoparticles.	20
4.2	Compare the photo-catalytic activity between CeO_2	
	synthesized at room temperature and at 60 °C.	21
4.3	Picture of methyl violet in the presence of CeO_2	
	synthesized at room temperature and at 60 °C.	22
4.4	Compare the photo-catalytic activity between CeO ₂	
	synthesized by adding Na ₂ CO ₃ quickly and adding	
	Na ₂ CO ₃ slowly.	23
4.5	Picture of methyl violet in the presence of CeO_2	
	synthesized synthesized by adding Na ₂ CO ₃ quickly	
	and adding Na ₂ CO ₃ slowly.	23
4.6	Compare the photo-catalytic activity between CeO ₂	
	synthesized by sonication and stirred.	24

- ÷

FIGURE

o

PAGE

4.7	Picture of methyl violet in the presence of CeO ₂	
	synthesized synthesized by sonication and stirred.	24
4.8	Show FESEM image of Ce(OH)CO ₃ and CeO ₂ .	25
4.9	Comparison the absorbance between 5 and 6 layers	
	of primer after dipped into Ce(OH)CO ₃ at any pH.	26
4.10	Show the picture of monolayer of Ce(OH)CO ₃	
	deposit on 5 layers of primers.	27
4.11	Show the picture of monolayer of Ce(OH)CO ₃	
	deposit on 6 layers of primers.	27
4.12	Effect of PDADMAC on Ce(OH)CO ₃ with 5 and 6	
	layers of primer at any pH.	28
4.13	Picture of monolayer of Ce(OH)CO3 mixed with	
	PDADMAC deposit on 5 layers of primers.	29
4.14	Picture of monolayer of Ce(OH)CO3 mixed with	
	PDADMAC deposit on 6 layers of primers.	29
4.15	Show the effect of pH on the surface's charges of	
	CeO ₂ .	31
4.16	Show the picture of 5 and 6 layers of primer	
	dipped into CeO2 at pH 3-10.	31
4.17	Compare the photo-catalytic activity between	
	$Ce(OH)CO_3$ and CeO_2 .	32
4.18	Images of methyl violet in the presence of	
	$Ce(OH)CO_3$ and CeO_2 .	33
4.19	Diagram for Ag nanoparticle synthesis.	34

.

FIGURE PAGE 4.20 Diagram for the synthesis CeO₂ with Ag nanoparticles. 34 4.21 FESEM images of CeO₂ with Ag nanoparticles at various concentration of AgNO₃. 35 4.22 Plot comparing the change in methyl violet absorbance at wavelength 577.97 cm⁻¹ and exposure time of Methyl violet in the presence of CeO₂, and CeO₂ with Ag nanoparticles by using many concentration of AgNO₃. 36 4.23 Plot comparing the change in methyl violet absorbance at wavelength 577.97 cm⁻¹ and exposure time of Methyl violet in the presence of CeO₂ and CeO₂ with Ag nanoparticles by using many concentrations of COPSS. 37 4.24 Show the diagram to synthesize CeO2 by using polyelectrolytes. 38 4.25 Show FESEM image of CeO₂ nanoparticles with various types of polyelectrolytes. 39 4.26 Show FESEM image of CeO₂ nanoparticles with PAA at varies concentration. 40 4.27 Show photo-catalytic activity of CeO₂ synthesized by using PDADMAC as capping agent at various concentrations. 41 Show photo-catalytic activity of CeO₂ synthesized 4.28 by using COPSS as capping agent at various concentrations. 41

xiv

FIGURE		PAGE
4.29	Show photo-catalytic activity of CeO ₂ synthesized	
	by using PAA as capping agent at various	
	concentrations.	42
4.30	Plot comparing the change in methyl violet	
	absorbance at wavelength 577.97 cm ⁻¹ and	
- C.	exposure time of MV in the presence of pure	
	CeO_2 , CeO_2 with varies types of polymer and	
	CeO_2 with Ag nanoparticles in the presence of 10	
	ppm MV.	43
4.32	Show photo-catalytic activity of CeO_2 with 20 mM	
	of PAA in the presence of MV under UV	
	irradiation at various concentration of MV.	44
4.33	Show XRD graphs of CeO ₂ , and CeO ₂ synthesized	
	by using polyelectrolytes.	45
4.34	Show XRD graphs of CeO ₂ with Ag nanoparticles;	
	ratio between Ce(NO ₃) ₃ and AgNO ₃ is 1:1 and 2:1.	46
Al	Show the absorbance of MV under UV irradiation	
	for 5 hours.	54
Bl	Show the absorbance of CeO_2 synthesized by the	
	best condition which is synthesize at room	
	temperature, pH 8.0 and quick added Na_2CO_3	
	under stirred condition.	56
E1	Show the degradation of MV in the presence of	
	pure Ag nanoparticles.	61
E2	Show the degradation of MV in the presence of	
~	AgNO ₃ .	62

σ

FIGURE		PAGE	
Fl	Show the degradation of MV in the presence of		
	CeO ₂ synthesized with PAA at any concentration		
	and also showed the picture of best condition at 20		
	mM PAA.	64	
F2	Show the degradation of MV in the presence of		
	CeO_2 synthesized with PDADMAC at any		
	concentration and also showed the picture of best		
	condition at 20 mM PDADMAC.	65	
F3	Show the degradation of MV in the presence of		
	CeO_2 synthesized with COPSS at any		
	concentration and also showed the picture of best		
	condition at 20 mM COPSS.	67	
Gl	Show the XRD graph of Ce(OH)CO ₃ before		
	calcination.	70	
G2	Show the XRD graph of CeO_2 , CeO_2 with Ag		
	nanoparticles and CeO_2 synthesized by using 20		
	mM PAA.	70 •	
G3	Show the XRD graph of CeO_2 with Ag		
	nanoparticles with ratio between CeO ₂ :Ag		
	nanoparticles is 1:1.	71	
G4	Show the standard XRD graph of Ag nanoparticles		
	(Wong, C.P., 2003).	71	
HI	Show the SEM image of pure CeO ₂ synthesized		
	without polyelectrolytes at 8,000X and 80,000X.	72	
H2	Show the SEM image of pure CeO ₂ synthesized		
	with PAA at 8,000X and 80,000X	72	

σ

-

FIGURE		PAGE
H3	Show the SEM image of pure CeO_2 synthesized	
	with PDADMAC at 8,000X and 80,000X.	73
H4	Show the SEM image of pure CeO ₂ synthesized	
	with COPSS at 8,000X and 80,000X.	73
H5	Show the SEM image of pure CeO ₂ synthesized	
	with PSS at 8,000X and 80,000X.	74
H6	Show the SEM image of Ce(OH)CO ₃ synthesized	
	without polyelectrolytes at 8,000X and 80,000X.	74
H7	Show the SEM image of CeO_2 synthesized at the	
	surface of Ag nanoparticles (1 mM AgNO ₃) at	
	8,000X and 80,000X.	75
H8	Show the SEM image of CeO ₂ synthesized at the	
	surface of Ag nanoparticles (5 mM AgNO ₃) at	
	8,000X and 80,000X.	75
H9	Show the SEM image of CeO ₂ synthesized at the	
	surface of Ag nanoparticles (10 mM AgNO ₃) at	
	8,000X and 80,000X.	76

-

•

σ

.