CHAPTER IV RESULTS AND DISCUSSION

CeO₂ nanoparticles are metal oxides which can be used in various applications, and is commonly used in catalytic converters. This project will emphasize on using CeO₂ as a photo-catalyst for waste water treatment. However, to further improve CeO₂ for photo-catalytic activity, materials such as polyelectrolytes and Ag nanoparticles were used to enhance the photo-catalytic activity. This work consists of three parts. First, is the synthesis of cerium oxide which involves the study of the best conditions to synthesize CeO₂. Second, Ag nanoparticles were incorporated with CeO₂. Ag nanoparticles were added to prevent the recombination reaction and enhanced photon harvest of CeO₂. Finally, the CeO₂ was synthesized with polyelectrolytes. The addition of polyelectrolytes will help control the size of CeO₂ by electrostatic interaction between polyelectrolyte and the cerium ions; since it can prevent the agglomeration between cerium ions via Van der Waals interaction.

4.1 Synthesis of Cerium Oxide (CeO₂)

CeO₂ can be synthesized by 3 techniques i.e. hydrothermal, sol-gel, and precipitation technique. In this work, CeO₂ nanoparticles were prepared by precipitation technique by using Ce(NO₃)₃·6H₂O as precursor. Na₂CO₃ was added into Ce(NO₃)₃·6H₂O to adjust the pH to 8.0 and induces precipitation of Ce(NO₃)₃·6H₂O to Ce(OH)CO₃ while stirring. Then, Ce(OH)CO₃ powder was calcined at 550 °C for 6 hours to convert it into CeO₂ nanoparticles.

Figure 4.1 Flow chart of the synthesis of CeO₂ nanoparticles.

ø

4.1.1 Find the Best Condition to Synthesize CeO₂ for Photo-catalytic Application

There are various conditions to synthesize CeO₂ but the parameters studied in this research are aging temperature (at 60 °C and at room temperature), speed of adding Na₂CO₃ (quickly and slowly) and mixing method (stirred and sonication). The best conditions will be chosen from the product that produces the most efficient photo-catalytic activity. The photo-catalytic activity was studied by mixing 5 ppm methyl violet dye (MV) and 0.1 g CeO₂ then put it under UV irradiation for 5 hours. Photo-catalysis is when CeO₂ received enough energy from the UV light, the electrons from the valence band will be excited to the conduction band which produces positively charged holes and negatively charged electrons. Both charges can produce radicals which can react with double bond in the MV structure dye into smaller molecules. Therefore, the absorbance intensity of MV will be decreased with time.

Figure 4.2 Compare the photo-catalytic activity between CeO_2 synthesized at room temperature and heated at 60 °C (H=heat, R=room temperature, 8=pH, S=stirred and Q=adding Na₂CO₃ quickly).

Figure 4.3 Compare the photo-catalytic activity of CeO₂ which synthesized at 60 C and room temperature; (A) R, 8, S, Q (B) H, 8, S, Q.

The result from Fig.4.2-4.3 was showed the comparison between photo-catalytic activities of CeO₂ between CeO₂ synthesized at room temperature and at 60 °C. It is shown that CeO₂ synthesized at room temperature is slightly better than that at 60 °C due to higher photo-catalytic activity because at 60 °C heating does not produce enough energy to separate the Ce(OH)CO₃ which can agglomerate by Van der Waals force. Also, the heat energy at 60 °C caused the Ce(OH)CO₃ particles to move faster which increase the opportunity to be in contact with other Ce(OH)CO₃ and induce the agglomeration. Therefore, after calcination of Ce(OH)CO₃, CeO₂ nanoparticles will be bigger. Thus, reduces specific surface area which decreases the photo-catalytic activity of CeO₂.

0

Figure 4.4 Compare the photo-catalytic activity between CeO₂ synthesized by adding Na₂CO₃ slowly and quickly (R=room temperature, 8=pH, S=stirred, Slo=adding Na₂CO₃ slowly and Q=adding Na₂CO₃ quickly).

Figure 4.5 Picture of methyl violet in the presence of CeO₂ which synthesized by quickly and slowly added Na₂CO₃ at 0 to 5 hours; (A) R, 8, S, Q (B) R, 8, S, Slo.

Fig.4.4-4.5 shows the comparison between the photo-catalytic activities of CeO_2 synthesized by adding Na_2CO_3 slowly and adding Na_2CO_3 quickly. The photo-catalytic of CeO_2 synthesized by adding Na_2CO_3 quickly is

better than CeO_2 synthesized by adding Na_2CO_3 slowly due to the different between sizes of CeO_2 nanoparticles. Furthermore, CeO_2 synthesized by adding Na_2CO_3 slowly are bigger than CeO_2 synthesized by adding Na_2CO_3 quickly because it has more time for $Ce(OH)CO_3$ to grow.

Figure 4.6 Compare the photo-catalytic activity between CeO_2 synthesized by sonication and stirring (R=room temperature, 8=pH, S=stirred, sonic=sonication and Q=adding Na₂CO₃ quickly).

Figure 4.7 Compare the photo-catalytic activity of CeO_2 which synthesized by sonicated and stirred condition; (A) R, 8, S, Q (B) R, 8, sonic, Q.

Results from Fig.4.6-4.7 show the comparison of the photo-catalytic activities between stirring and sonication of CeO_2 during synthesis. It can be seen that the photo-catalytic activity of both condition are alike. However, this research will use stirring condition to synthesize CeO_2 due to using less energy. From the result of various conditions, CeO_2 synthesized at room temperature by adding Na₂CO₃ quickly while stirring is the best condition due to the highest in photo-catalytic activity.

4.1.2 The Morphology of Ce(OH)CO₃ and CeO₂ Nanoparticles

The morphology and size of $Ce(OH)CO_3$ and CeO_2 nanoparticles was investigated by using FE-SEM.

Figure 4.8 Show FE-SEM image of; (A) Ce(OH)CO₃ and (B) CeO₂ nanoparticles.

Fig. 4.8(A) shows that $Ce(OH)CO_3$ has a flake-like morphology and has smooth surface. The CeO_2 nanoparticles agglomerates and have smooth surface with average size 84.7 nm as shown in Fig. 4.8(B).

4.1.3 <u>Study the Charges on the Surface of Ce(OH)CO₃ for Synthesis of</u> <u>CeO₂</u>

4.1.3.1 Effect of pH on Cerium Hydroxy Carbonate (Ce(OH)CO₃)

Charges on the surface of Ce(OH)CO₃ was studied using thin film coated glass-slides (primer) by the layer-by-layer deposition. The number of layers on primer which used in this experiment is 5 and 6 layers (5 and 6 layers of primer is positive charge on top and negative charge on top, respectively). Ce(OH)CO₃ was dispersed in distilled water by sonication. Afterwards, the pH was adjusted using HCl and NaOH to pH 7 to 10. Then, dip 5 and 6 layers of primer into Ce(HO)CO₃ solution. The amount of Ce(OH)CO₃ which can attach with primer was measured by UV-visible spectroscopy.

Figure 4.9 Comparison the absorbance between 5 and 6 layers of primer after dipped into Ce(OH)CO₃ solution in varying pH solution.

Figure 4.10 Show the picture of monolayer of Ce(OH)CO₃ deposit on 5 layers of primers.

Figure 4.11 Show the picture of monolayer of Ce(OH)CO₃ deposit on 6 layers of primers.

Fig 4.9-4.11 shows that more $Ce(OH)CO_3$ can be deposited on 5 layers of primer more than 6 layers of primers which indicated that

Ø

 $Ce(OH)CO_3$ has negative charges on the surface. Therefore, it can electrostatically interact with the positively charged PDADMAC.

4.1.3.2 Effect of PDADMAC on Ce(OH)CO3

As mentioned previously, Ce(OH)CO₃ has negative charges on the surface; accordingly, Ce(OH)CO₃ can be attached with positive charges. In this research, poly(diallyl dimethyl ammonium chloride) (PDADMAC) was used to encapsulate Ce(OH)CO₃ particles for synthesis of CeO₂, since PDADMAC is a polycation. In this experiment, Ce(OH)CO₃ was dispersed in distilled water PDADMAC added and the pH of the solution was adjusted by using HCl and NaOH to pH 5 to 10. After that, 5 and 6 layers of primers were dipped into the solution. The results are showed in Fig.4.12-4.14.

Figure 4.12 Effect of PDADMAC on Ce(OH)CO₃ with 5 and 6 layers of primer by varing pH.

0

Figure 4.13 Show the monolayer of Ce(OH)CO₃ mixed with PDADMAC deposit on 5 layers of primers.

Figure 4.14 Show the monolayer of Ce(OH)CO₃ mixed with PDADMAC deposit on 6 layers of primers.

To prove that the negatively charged $Ce(OH)CO_3$ can be encapsulated by the positively PDADMAC, PDADMAC was added during the synthesis. Later, the primers were immersed in the $Ce(OH)CO_3$ produced to observe the charge effect. It is shown in Fig 4.12-4.14 that, unlike Fig 4.9-4.11, the $Ce(OH)CO_3$ are deposited on the 6 layered primers. This confirms that $Ce(OH)CO_3$ is negative which can be encapsulated with PDADMAC to alter the charge surface.

4.1.3.3 The Effect of pH on the Surface's Charge of CeO_2

Every metal oxide has ions on the surface. The type of ion on the surface of metal oxide is depends on the pH of solution. However, the pH which has equal in amount of positive charges and negative charges called point of zero charges (PZC). At the PZC, the surface of metal oxide will be neutral. When the pH of solution is higher than PZC point, the surface of metal oxide will be negative. Conversely, below PZC point the surface is positively charges. Additionally, the PZC value of same metal oxide is different depending on the synthesis technique. In this research, the PZC value of CeO₂ was measured through layer-by-layer technique. CeO₂ nanoparticles were dispersed into distilled water then adjust the pH from 3 to 10 by using HCl and NaOH. The 5 and 6 layers of primer (positive charges and negative charge on top, respectively) were dipped into the solution.

Figure 4.15 Show the effect of pH on the surface's charges of CeO_2 .

.

Ø

Fig.4.15-4.16 shows the effect of pH on the charge on the surface of CeO₂. It can be seen that CeO₂ can attach with 5 and 6 layers of primer at different pH, since the charges on the surface of CeO₂ can be change with the varying pH. For this research the PZC point is approximately 5.5 because CeO₂ can deposit on 6 layers better than 5 layers of primer at pH 3-5.5 which indicated that the charge on the surface of CeO₂ is positive. Additionally, at pH 5.5-10 the charge on the surface of CeO₂ is negative because it can deposit on 5 layers of primer which has positive charges on the surface.

Ø

a

4.1.4 Compare the Photo-catalytic Activity between Ce(OH)CO3 and CeO2

 $Ce(OH)CO_3$ and CeO_2 nanoparticles were dispersed into 5 ppm methyl violet dye by sonication for 5 minutes. Then, methyl violet in the presence of $Ce(OH)CO_3$ and CeO_2 nanoparticles and pure methyl violet were exposed with UV light for 5 hours.

Figure 4.17 Compare the photo-catalytic activity between $Ce(OH)CO_3$ (before calcination) and CeO_2 (after calcination).

I28368976 -

Figure 4.18 Images of methyl violet in the presence; (A) pure MV (B) $Ce(OH)CO_3$ (C) CeO_2 .

From Fig.4.17-4.18, the photo-catalytic activity of CeO_2 is higher than $Ce(OH)CO_3$. Pure methyl violet (MV) can slightly degraded by itself under UV irradiation.

4.2 Effect of Ag Nanoparticle on the Synthesis of CeO₂

Ag nanoparticles were prepared by chemical reduction of $AgNO_3$ using COPSS as stabilizer to produce negative charges on the surface of Ag nanoparticles. Ag nanoparticles were used to prevent the recombination reaction and also enhance photon harvest of CeO₂ due to the lower in energy band gap and surface plasmon resonance (SPR) properties. CeO₂ nanoparticles were synthesized at the surface of Ag nanoparticles.

Figure 4.19 Diagram for Ag nanoparticle synthesis.

Ø

Figure 4.20 Diagram for the synthesis CeO₂ with Ag nanoparticles.

Since cerium ions have positive charges which can attach with the negatively charged Ag nanoparticles, CeO_2 can be synthesized at the surface of Ag nanoparticles.

4.2.1 Effect of AgNO₃ Concentration on Synthesis of CeO₂ with Ag Nanoparticles for Photo-catalytic Application

Ag nanoparticles were synthesized by using 1, 5 and 10 mM AgNO₃. Then, CeO₂ nanoparticles were synthesized at the surface of Ag nanoparticles. The morphology and size of CeO₂ on Ag nanoparticles were investigated by FESEM as shown in Fig. 4.21(B-D).

o

Figure 4.21 FESEM images of CeO_2 at various conditions: (A) Pure CeO_2 (B)-(D) CeO_2 with Ag nanoparticles by using 1, 5 and 10 mM of AgNO₃.

The particles of CeO_2 with Ag nanoparticle are more homogenous and smaller than that of pure CeO_2 as shown in Fig. 4.21 because the surface of Ag nanoparticles has negative charges of COPSS which can cap Ce^{3+} to prevent agglomeration; therefore, controls the size of CeO_2 . The size of Ag nanoparticles varies with the concentration of AgNO₃ due to the agglomeration of Ag nanoparticles at higher concentration of AgNO₃ as shown in Fig. 4.21(B-D). The average size of CeO_2 with Ag nanoparticles increases with increasing the concentration of AgNO₃.

4.2.2 Photo-catalytic Activity of CeO2 with Ag Nanoparticles

 CeO_2 and CeO_2 with Ag nanoparticles were dispersed into 10 ppm MV solution by sonication for 5 minutes. The MV solution in the presence of CeO_2 and CeO_2 with Ag nanoparticles was exposed to UV light for 2 hours. The photocatalytic activity was measured by using UV-visible spectroscopy. The result was showed in Fig.4.22-23.

Figure 4.22 Plot comparing the change in methyl violet absorbance at wavelength 577.97 cm⁻¹ (absorbance after exposure to UV as A/absorbance before exposure to UV as A₀) and exposure time of Methyl violet in the presence of CeO₂, and CeO₂ with Ag nanoparticles by varying AgNO₃ concentration.

Fig.4.22, shows the degradation 10 ppm methyl violet in the presence of CeO₂ and CeO₂ with Ag nanoparticles synthesized by using 1, 2, 5 and 10 mM AgNO₃ at 3, 5, 10, 20, 30, 60 and 120 minutes. The graph shows that the photocatalytic activity of CeO₂ with Ag nanoparticles is higher than pure CeO₂ because Ag nanoparticles can prevent the recombination reaction of electrons from conduction band to valence band and also enhances the photon harvest (Benxia.et al., 2014). Moreover, the photo-catalytic activity of CeO₂ with Ag nanoparticles synthesized by using high concentration AgNO₃ is less than that of low concentration AgNO₃ because the particles size of Ag nanoparticles increases with the increasing of AgNO₃ concentration; therefore, the specific surface area of CeO₂ with Ag nanoparticles at low concentration of AgNO₃ is higher than high concentration of AgNO₃. It can be concluded that Ag nanoparticles improves the photo-catalytic activity of CeO₂.

Figure 4.23 Plot comparing the change in methyl violet absorbance at wavelength 577.97 cm⁻¹ (absorbance after exposure to UV as A/absorbance before exposure to UV as A_0) and exposure time of Methyl violet in the presence of CeO₂ and CeO₂ with Ag nanoparticles by varying COPSS concentration.

Figure 4.23 describes the photo-catalytic activity of CeO_2 and CeO_2 with Ag nanoparticles. Ag nanoparticles were synthesized by using 1mM of AgNO₃ with varied concentrations of COPSS (0.001, 0.005, 0.01, and 0.05 mM). The photo-catalytic activity of Ag nanoparticles with 0.01 mM COPSS is the highest because there is suitable amount of COPSS to cap Ag ions and prevent agglomeration which results with fine Ag nanoparticles. At low COPSS concentrations which are 0.001 and 0.005 mM, there is insufficient amount of COPSS to cap Ag ions. Additionally, Ag particles have weak negative charges on the surface which allows Ag nanoparticles to agglomerate. At high COPSS concentration (0.05mM) the Ag nanoparticles are large particles because Ag ions were capped by many chains of COPSS which makes the strong negative charge at the surface of Ag nanoparticles that repels one another. Consequently, the photocatalytic activity of CeO₂ with Ag nanoparticles synthesized by using 0.05 mM

COPSS is higher than CeO₂ with Ag nanoparticles synthesized by using 0.001 and 0.005 mM but lower than 0.01 mM COPSS

4.3 Effect of Polyelectrolyte on Synthesis of CeO₂

ο

The way to improve the photo-catalytic activity is synthesize the CeO₂ as small as possible. This part studies the synthesis of CeO₂ nanoparticles using polyelectrolytes to prevent the agglomeration. Polyelectrolytes were used as capping agent to cap the Cerium ions (Ce³⁺) before converting it into Ce(OH)CO₃ by Na₂CO₃. The polyelectrolytes used in this work are PDADMAC, PSS, PAA and COPSS.

Figure 4.24 Show the diagram to synthesize CeO₂ by using polyelectrolytes.

The morphology and size of CeO_2 nanoparticles synthesized by using polyelectrolytes was investigated by FESEM. The size of CeO_2 nanoparticles synthesized by using polyelectrolytes is smaller than pure CeO_2 as shown in Fig.4.25.

Figure 4.25 Show FESEM image of CeO_2 nanoparticles with polymer: (A) with PDADMAC (B) with COPSS (C) with PSS (D) with PAA.

From Fig.4.25, the average size of CeO_2 nanoparticles with PDADMAC, COPSS, PSS and PAA is 39.72, 33.18, 33.66 and 29.28 nm, respectively. The average size of CeO₂ nanoparticles with PAA is the smallest because PAA has a carboxylic group in the structure which has higher electronegativity; therefore, stronger negative charges to cap Ce³⁺ than the sulfonate group in PSS and COPSS. CeO₂ nanoparticles with PDADMAC produces the largest nanoparticles size because PDADMAC has positive charge which cannot encapsulate Ce³⁺ but the average size of particles still smaller than pure CeO₂ since it can control the size by capping the Ce(OH)CO₃ which is the intermediate substance before the conversion to CeO₂.

Figure 4.26 Show FE-SEM image of CeO_2 nanoparticles with PAA at varies concentration: (A) 5 mM (B) 10 mM (C) 20 mM (D) 50 mM.

Fig.4.26 shows that the average size of CeO_2 nanoparticles with PAA concentration of 5 mM, 10 mM, 20 mM and 50 mM is 34.4, 33.1, 29.28 and 57.74 nm, respectively. At 20 mM PAA with CeO_2 nanoparticles is the smallest particle because there is suitable amount of PAA and CeO_2 to obtain the smallest particles. For CeO_2 nanoparticles with 5 and 10 mM PAA, the particles are larger than CeO_2 with 20 mM PAA because there is not enough PAA to cap the Ce^{3+} ion to control the size. Additionally, CeO_2 nanoparticles with 50 mM of PAA are bigger than CeO_2 with 20 mM of PAA because Ce^{3+} were capped with many PAA chains.

4.3.1 Photo-catalytic Activity of CeO2 with Polyelectrolyte

0.1g of CeO₂ nanoparticles was dispersed in 5 ppm methyl violet dye then exposed under UV light for 5 hours. CeO₂ nanoparticles were synthesized by using various types of polyelectrolytes; PDADMAC, COPSS and PAA. Furthermore, each polyelectrolyte concentration will be varied at 5, 10, 20, 30, 50 and 100 mM. The photo-catalytic activity was showed in Fig.4.27.

Figure 4.27 Show photo-catalytic activity of CeO₂ synthesized by using PDADMAC as capping agent at various concentrations.

Figure 4.28 Show photo-catalytic activity of CeO₂ synthesized by using COPSS as capping agent at various concentrations.

Figure 4.29 Show photo-catalytic activity of CeO_2 synthesized by using PAA as capping agent at various concentrations.

From previous results, the best concentration of all polyelectrolytes for CeO₂ synthesis is 20 and 30 mM. At low concentrations of the negatively charged PAA and COPSS i.e. 5 and 10 mM, there are insufficient amount of polymer to cap Ce³⁺ to control the size of CeO₂. At 50 and 100 mM PAA and COPSS, there are too much polyelectrolyte cap the Ce³⁺ result in large particles. Moreover, PDADMAC can control the size of CeO₂ even with positive charges because it can encapsulate Ce(OH)CO₃ which are formed by the reaction between Na₂CO₃ and Ce(NO₃)₃. The photo-catalytic activity of CeO₂ synthesized with PDADMAC is slightly different in each concentration because the surface of Ce(OH)CO₃ will have positive charges of PDADMAC on top after encapsulated. Additionally, the Ce(OH)CO₃ that has not been encapsulated can be attracted towards the positively charged encapsulated Ce(OH)CO₃; resulting as a large aggregate of CeO₂ at any concentration. The photo-catalytic activity of PDADMAC, COPSS and PAA were showed in Fig.4.27-4.29.

Ø

Figure 4.30 Plot comparing the change in methyl violet absorbance at wavelength 577.97 cm⁻¹ (absorbance after exposure to UV as A/absorbance before exposure to UV as A_0) and exposure time of Methyl violet in the presence of pure CeO₂, CeO₂ with varies types of polyelectrolyte and CeO₂ with Ag nanoparticles in the presence of 10 ppm methyl violet dye.

The photo-catalytic activity of CeO₂ synthesized by using 20 mM of various types of polyelectrolytes, CeO₂ with Ag nanoparticles and pure CeO₂ were shown in Fig.4.30. 0.1 g of the catalysts was dispersed into 10 ppm MV^{\circ} solution. The photo-catalytic activity of PAA has the highest efficiency to decompose the dye molecules compared to other polyelectrolytes because the CeO₂ nanoparticles synthesized by PAA have the smallest particles size. As shown in Fig.4.25, the size of CeO₂ varies with the polyelectrolyte used during synthesis; therefore, affects the photo-catalytic activity of CeO₂. However, the photo-catalytic activity of CeO₂ synthesized with PDADMAC is similar to that of pure CeO₂ even with difference in size because CeO₂ synthesized by PDADMAC tends to agglomerate with one another. Since, PDADMAC is a polycation, it will interact electrostatically with Ce(OH)CO₃; therefore, the Ce(OH)CO₃ will have positive

o

charges of PDADMAC on top. Additionally, the Ce(OH)CO₃ that has not been encapsulated can be attracted towards the positively charged encapsulated Ce(OH)CO₃; resulting as a large aggregate of CeO₂. Furthermore, the photocatalytic activity of CeO₂ with Ag nanoparticles is better than CeO₂ synthesized by polyelectrolyte even the size is slightly different because Ag can prevent recombination reaction and also enhance photon harvest.

Figure 4.32 Show photo-catalytic activity of CeO_2 with 20 mM of PAA in the presence of MV under UV irradiation at various concentration of MV.

.

The photo-catalytic activity of the CeO₂ synthesized using PAA at various concentration of MV (0.05, 0.025 and 0.01 g/L) was described in Fig 4.32. It can be seen that the photo-catalytic activity of CeO₂ with 0.01 g/L MV show the lowest absorbance intensity due to less amount of dye molecule. On the contrary, at 0.05 g/L MV in the presence of CeO₂ show the highest absorbance intensity due to much more concentration of dye molecules.

4.4 X-Ray Diffraction (XRD)

The X-ray diffraction spectroscopy was used to identify the synthesized product whether the product is CeO_2 or not. Also, XRD was used to confirm the compositions of CeO_2 with Ag nanoparticles. Additionally, identifies the existence of impurities from polyelectrolytes.

4.4.1 <u>XRD graph of CeO₂ nanoparticles synthesized by using</u> polyelectrolytes and without polyelectrolytes

Fig.4.33 shows the XRD pattern of the CeO₂ particles over 2 θ of 10°-80° with scan rate 1°/min. The peaks at 28.6°, 33.2°, 47.5°, 56.4°, 59.2°, 68.3°, 76.5° and 78.1° of 2 θ corresponds to the (111), (200), (311), and (222) planes. As compared to the standard XRD graph of CeO₂, this sample shows a pure-phase CeO₂ nanoparticle in a cubic fluorite structure (Wong, C.P., 2003). The CeO₂

synthesized with polyelectrolytes has the same XRD graph as that of pure CeO_2 because the polyelectrolyte degrades after calcination at 550 °C, leaving no impurities in the product. The peak from the XRD graph of both CeO_2 and CeO_2 synthesized by using polyelectrolytes are the same because polyelectrolytes were degraded after calcination at 550 °C.

4.4.2 XRD Graph of CeO2 with Ag Nanoparticles

Figure 4.34 Show the XRD peak of; (A) CeO_2 with Ag nanoparticles (2:1) (B) CeO_2 with Ag nanoparticles (1:1).

Fig. 4.34 shows the comparison between XRD graphs of CeO₂ with Ag nanoparticles synthesized at different ratios. The ratio between Ce(NO₃)₃·6H₂O and AgNO₃ is 1:1 and 2:1. At ratio 1:1, XRD can detect both peaks of CeO₂ and Ag nanoparticles but it cannot detect the peak of Ag nanoparticles at ratio 2:1 which indicates that CeO₂ covers the surface of Ag nanoparticles completely. Therefore, XRD cannot detect the peak of Ag nanoparticles (Benxia et al., 2014).