EFFECTS OF DIFFERENT SEEDINGS ON THE CRYSTALLIZATION OF *m*- AND *p*-CNB

•

Jatuporn Kanuengnuek

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

I 28369452

580079

.

Thesis Title:	Effects of Different Seedings on the Crystallization of m-	
	and <i>p</i> -CNB	
By:	Jatuporn Kanuengnuek	
Program:	Petroleum Technology	
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit	
	Dr. Santi Kulprathipanja	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

.... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

namol Q

(Assoc. Prof. Pramoch Rangsunvigit)

Santi Kulp

(Dr. Santi Kulprathipanja)

(Assoc. Prof. Apanee Luengnaruemitchai)

(Assoc. Prof. Paisan Kongkachuichay)

0

ABSTRACT

5673006063: Petroleum Technology Program Jatuporn Kanuengnuek: Effects of Different Seedings on the Crystallization of *m*- and *p*-CNB Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Dr. Santi Kulprathipanja 57 pp
Keywords: Crystallization, Chloronitrobenzene, Phase diagram, seeding

Crystallization has been used for the separation of chloronitrobenzenes (CNBs), which are isomeric substances (o-, m-, and p-CNB) and important intermediates in chemical production. Effects of seeding including m-CNB, p-CNB, and KY zeolite were reported. In the experiments, a liquid mixture of m- and p-CNB was cooled to its crystallization temperature, and the precipitate composition was analyzed by gas chromatography. The result showed that after adding different particle sizes of m- and p-CNB seeds, 20/40 and 12/14 mesh, into the crystallizer, the precipitates below the eutectic compositions are rich in p-CNB and above the eutectic compositions are rich in m-CNB. The eutectic composition changed from 62.90 to 65.0 wt% m-CNB. There was no significant change in the phase diagram for the different m- and p-CNB particle sizes. However, the crystallization temperature was shifted from higher to lower due to the presence of foreign particles may induce the nucleation step, which, in turn, changed the metastable zone.

σ

บทคัดย่อ

จตุพร คนึ่งนึก: ผลกระทบของเมล็ดที่แตกต่างกันบนการตกผลึกของเมทาคลอโรไน โตรเบนซีนและพาราคลอโรไนโตรเบนซีน (Effects of Different Seedings on the Crystallization of *m*- and *p*-CNB) อาจารย์ที่ปรึกษา: รศ. คร. ปราโมช รังสรรค์วิจิตร และ คร. สันติ กุลประที่ปัญญา 57 หน้า

งานวิจัยนี้ได้ประยุกต์ใช้หลักการของกระบวนการตกผลึกเพื่อแยกคลอโรไนโตรเบนซีน ซึ่งเป็นสารอนุพันธ์ที่มีงุคเคือคใกล้เคียงกันและเป็นสารตัวกลางสำคัญในอุตสาหกรรมเกมีภัณฑ์ ในงานวิจัยนี้ใช้สารผสมคลอโร ในโตรเบนซีนที่มีสัคส่วนผสมของเมทาคลอโร ในโตรเบนซีนและ พาราคลอโรไนโตรเบนซีน จากนั้นลดอุณหภูมิในระบบลงจนถึงอุณหภูมิที่สารผสมสามารถตก ผลึกได้และวิเคราะห์หาองค์ประกอบของผลึกโดยใช้เทคนิคแก๊สโครมาโทรกราฟี จากผลการวิจัย พบว่าหลังจากที่ใส่เมล็คเมทาคลอโรในโตรเบนซีนและพาราคลอโรในโตรเบนซีนขนาด 20/40 mesh และ 12/14 mesh ลงไปในสารตั้งต้นที่มีความเข้มข้นของเมทาคลอโรไนโตรเบนซีนต่ำกว่า ความเข้มข้นที่จุดยูเทคติค ของแข็งที่เกิดขึ้นมีลักษณะเป็นผลึกใสมีองค์ประกอบของพาราคลอโร ในโตรเบนซีน แต่หากในสารตั้งต้นที่มีความเข้มข้นเมทาคลอโรไนโตรเบนซีนสุงกว่าความ เข้มข้นที่จุดยูเทคติค ของแข็งที่เกิดขึ้นมีลักษณะเป็นผลึกใสมืองค์ประกอบของเมทาคลอโรไนโต รเบนซีน ในกรณีสารตั้งต้นที่มีความเข้มข้นเมทาคลอโร ในโตรเบนซีนที่จุดยูเทคติก ของแข็งที่ เกิดขึ้นมีลักษณะเป็นผลึกสีน้ำต**ุ**ลลมีองค์ประกอบของเมทาคลอโรไนโตรเบนซีนเท่ากับ 65.0 % ซึ่ง เพิ่มขึ้นจากเดิมที่ไม่ได้ใส่เมล็ด (62.9 %) จากผลการทดลองดังกล่าวพบว่าขนาดที่แตกต่างกันของ เมล็คเมทาคลอโรไนโตรเบนซีนและพาราคลอโรไนโตรเบนซีนที่ใส่ลงไปไม่ส่งผลต่อการ เปลี่ยนแปลงของแผนภูมิสมดุลการตกผลึกของคลอโรไนโตรเบนซีนของทั้งสองขนาด ยกเว้นแต่ อุณหภูมิของการตกผลึกที่แตกต่างกัน ซึ่งเปลี่ยนจากอุณหภูมิที่สูงไปยังอุณหภูมิที่ต่ำกว่า และจะ ้เห็นได้ว่าสาเหตุมาจากการก่อตัวของอนุภาคในกระบวนการตกผลึกซึ่งทำให้มีการเปลี่ยนแปลง าคงเมตาสเตเบิลโซน (metastable zone)

ο

ACKNOWLEDGEMENTS

This thesis could not have been successfully completed without the great kindness and support of a number of people.

First and foremost, I would like to give my special to my advisor, Assoc. Prof. Pramoch Rangsunvigit, whose encouragement, suggestions and support enabled me to develop an understanding of this thesis. My thanks also include his kindness, effort to explain thing clearly and simply, and patience to listen to my opinion and proof my writing.

I greatly appreciate Dr. Santi Kulprathipanja, my co-advisor from UOP, Honeywell Company, USA. He provided me encouragement, great advice and teaching throughout this thesis. Furthermore, I extremely appreciate him for giving his time to answer my e-mail, and his insightful comments on my thesis results.

I would like to thank Assoc. Prof. Apanee Luengnaruemitchai and Assoc. Prof. Paisan Kongkachuichay for their nice suggestions and being my thesis committee.

In addition, this research work was partially supported by the Ratchadapisek Sompote Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

Finally, I would really like to thank all PPC staffs and my friends for their help, support, and encouragement. I could not have done anything without all of you. Last but not least, thank you very much my family for always staying with me. You are everything in my life.

TABLE OF CONTENTS

Title Page		i
Abstract (in English)	i	ii
Abstract (in Thai)	i	v
Acknowledgements		v
Table of Contents	V	/i
List of Tables	vi	ii
List of Figures	i	x

CHAPTER

.

I	INTRODUCTION	1
п	LITERATURE REVIEW	3
	2.1 Chloronitrobenzenes	3
	2.2 Crystallization	4
	2.2.1 Solution crystallization	5
	2.2.2 Melt crystallization	5
	2.3 Saturation and supersaturation	7
	2.4 Phase equilibrium	9
	2.4.1 Phase diagram	10
	2.4.2 Solid-liquid phase diagram	11
	2.5 Product quality	13
	2.5.1 Purity	13
	2.5.2 Crystal size distributions	14
	2.6 Adsorption	15
	2.7 X and Y Zeolites	16
	2.8 Chloronitrobenzene separation process	18

-

.

III	EXPERIMENTAL	24
	3.1 Materials and equipment	24
	3.1.1 Equipment	24
	3.1.2 Chemicals	24
	3.1.3 Solvents	24
	3.1.4 Adsorbent	24
	3.2 Experimental procedures	25
	3.2.1 Effects of feed composition on <i>m</i> - and <i>p</i> -CNB	
	crystallization	25
	3.2.2 Effects of particle size on <i>m</i> - and <i>p</i> -CNB	
	crystallization	26
IV	RESULTS AND DISCUSSION	27
	4.1 Effects of feed composition on <i>m</i> - and <i>p</i> -CNB crystallization	27
	4.2 Effects of seeds on the crystallization	29
	4.2.1 Effects of seeds on the CNB feed solution	
	compositions	29
	4.2.2 Effects of <i>m</i> -CNB seeds on the CNB solid	
	compositions and crystallization temperature	31
	4.2.3 Effects of <i>p</i> -CNB seeds on the CNB solid	
	composition and crystallization temperature	35
	4.2.4 Effects of KY zeolite on the CNB Solid Composition	
	and crystallization Temperature	38
	4.3 Roles as Different Seed Sizes On the <i>m</i> - and <i>p</i> -CNB	
	Crystallization	42
V	CONCLUSIONS AND RECOMMENDATIONS	51
	REFERENCES	53
	CURRICULUM VITAE	57

LIST OF TABLES

TABLE		PAGE	
2.1	Physical properties of chloronitrobenzene isomers	: 4	
2.2	Differences between melt and solution crystallization	6	
4.1	Compositions of <i>m</i> - and <i>p</i> -CNB in the feeds and solids,		
	and crystallization temperatures	28	
4.2	<i>m</i> - and <i>p</i> -CNB composition in the feed with 61.0, 62.9 and		
	70.0 wt% of <i>m</i> -CNB before and after adding size 20/40 mesh		
	of seeds at 30°C	30	
4.3	m- and p -CNB composition in the feed with 61.0, 62.9 and		
	70.0 wt% of <i>m</i> -CNB before and after adding size 12/14 mesh		
	of seeds at 30°C	30	
4.4	Composition of <i>m</i> - and <i>p</i> -CNB in the crystals with 5 grains of		
	20/40 mesh <i>m</i> -CNB seed size	32	
4.5	Composition of m - and p -CNB in the crystals with 5 grains of		
	12/14 mesh <i>m</i> -CNB seed size	33	
4.6	Composition of m - and p -CNB in the crystals with 5 grains of		
	20/40 mesh <i>p</i> -CNB seed size	36	o
4.7	Composition of <i>m</i> - and <i>p</i> -CNB in the crystals with 5 grains of		
	12/14 mesh <i>p</i> -CNB seed size	37	
4.8	Composition of m - and p -CNB in the crystals with 5 grains of		
	20/40 mesh KY zeolite size	39	
4.9	Composition of <i>m</i> - and <i>p</i> -CNB in the crystals with 5 grains of		
	12/14 mesh KY zeolite size	40	

σ

-

e)

LIST OF FIGURES

FIGURE

.

2.1	Three isomers of CNB.	4
2.2	Application of melt crystallization in organic separations.	7
2.3	Solubility-Supersolubility diagram.	8
2.4	Some binary solid-liquid phase diagrams encountered in	
	melt crystallization.	11
2.5	Phase diagram for the simple eutectic system naphthalene-benzene.	11
2.6	Line representation of zeolite structure.	17
3.1	Crystallization unit.	25
3.2	Locations where crystals are collected for studying	
	effect of the type of seeds on the crystallization.	26
4.1	Composition of binary phase diagram of <i>m</i> -and <i>p</i> -CNB between	
	this experiment and Sulzer Chemtech Pte., Ltd.	29
4.2	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	20/40 mesh <i>m</i> -CNB seed size.	33
4.3	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	12/14 mesh m-CNB seed size.	34
4.4	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	20/40 mesh <i>p</i> -CNB seed size.	37
4.5	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	12/14 mesh <i>p</i> -CNB seed size.	38
4.6	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	20/40 mesh the KY zeolite size.	40
4.7	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	12/14 mesh the KY zeolite size.	41
4.8	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	20/40 mesh <i>m</i> -CNB seed, <i>p</i> -CNB seed, and KY zeolite size.	41
4.9	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	12/14 mesh <i>m</i> -CNB seed, <i>p</i> -CNB seed, and KY zeolite size.	42

σ

PAGE

.

FIGURE

0

_

ø

х

4.10	Solubility-supersolubility diagram.	44
4.11	Interfacial tension at the boundaries between three phases.	46
4.12	Nucleation on a foreign particle for different wetting angles.	47
4.13	Binary phase diagram of <i>m</i> - and <i>p</i> -CNB with the presence of	
	20/40 and 12/14 mesh <i>m</i> -CNB seed, <i>p</i> -CNB seed, and KY zeolite size	e. 49
4.14	Typical phenomenon of nucleation in bulk and surface of seeds.	49