REFERENCES

- Borer, A.L. and Prins, R. (1993) Temperature-Programmed Reduction and CO Hydrogenation of La2O3-Promoted Rh/SiO2 Catalysts. Journal of Catalysis 144(2), 439-451.
- Lin, R., Ding, Y., Gong, L., Dong, W., Wang, J., and Zhang, T. (2010) Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis 272(1), 65-73.

Lin, R., Ding, Y., Gong, L., Li, J., Chen, W., Yan, L., and Lu, Y. (2009) Oxidative bromination of methane on silica-supported non-noble metal oxide catalysts. Applied Catalysis A: General 353(1), 87-92.

Liu, Z., Li, W. and Zhou, X. (2010) Product oriented oxidative bromination of methane over Rh/SiO2 catalysts. Journal of Natural Gas Chemistry 19(5), 522-529. Moya, S.F., Martins, R.L., and Schmal, M. (2011) Monodispersed and nanostructrured Ni/SiO2 catalyst and its activity for non oxidative methane activation. <u>Applied Catalysis A: General</u> 396(1–2), 159-169.

 Reyes, P., Rodríguez, C., Pecchi, G., and Fierro, J.L.G. (2000) Promoting effect of Mo on the selective hydrogenation of cinnamaldehyde on Rh/SiO2 catalysts.
 <u>Catalysis Letters</u> 69(1-2), 27-32.

Wang, K.X., Xu, H.F., Li, W.S., Au, C.T., and Zhou, X.P. (2006) The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis. <u>Applied Catalysis A: General</u> 304(0), 168-177.

Wang, K.X., Xu, H.F., Li, W.S., and Zhou, X.P. (2005) Acetic acid synthesis from methane by non-synthesis gas process. <u>Journal of Molecular Catalysis A: Chemical</u> 225(1), 65-69.

Xu, H., Wang, K., Li, W., and Zhou, X. (2005) Dimethyl ether synthesis from methane by non syngas process. <u>Catalysis Letters</u> 100(1-2), 53-57.

Yang, F., Liu, Z., Li, W., Wu, T., and Zhou, X. (2008) The Oxidative Bromination of Methane Over Rh/SiO2 Catalyst. <u>Catalysis Letters</u> 124(3-4), 226-232.

Aboul-Gheit, A.K., Hanafy, S.A., Aboul-Enein, A.A., and Ghoneim, S.A. (2011) Para-xylene maximization: Part IX—Activation of toluene methylation catalysts with palladium. Journal of the Taiwan Institute of Chemical Engineers 42(5), 860-867.

-

Albert E. Schweizer, M.E.J., and Daniel A. Hickman (2002) Oxidative Halogenation of C1 Hydrocarbons to Halogenated C1 Hydrocarbons and Integrated Process Related Thereto. USA, Dow Global Technologies. U.S. <u>Patent</u> 6,452,058.

BP (2006) BP Statistical Review of World Energy. London : BP p.l.c.

Chang, C.D. (1983) Hydrocarbons from Methanol. <u>Catalysis Reviews</u> 25(1), 1-118. Crabtree, R.H. (1995) Aspects of Methane Chemistry. <u>Chemical Reviews</u> 95(4), 987-1007.

Degirmenci, V., Uner, D., and Yilmaz, A. (2005) Methane to higher hydrocarbons via halogenation. <u>Catalysis Today</u> 106(1–4), 252-255.

Ding, K., Metiu, H., and Stucky, G.D. (2013) The Selective High-Yield Conversion of Methane Using Iodine-Catalyzed Methane Bromination. <u>ACS Catalysis</u> 3(3), 474-477.

George A. Olah, B.G., Jeff D. Felberg, Wai M. Ip, Altaf Husain, Richard Karpeles, Koop Lammertsma, Ashok K. Melhotra, and Nirupam J. Trivedi (1985) Selective Monohalogenation of Methane over Supported Acid or Platinum Metal Catalysts and Hydrolysis of Methyl Halides over y-Alumina-Supported Metal Oxide/Hydroxide Catalysts. A Feasible Path for the Oxidative Conversion of Methane to Methyl Alcohol/Dimethyl Ether. Journal of the American Chemical Society 107, 7097-7105.

Hutchings, G.J. and Hunter, R. (1990) Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products. <u>Catalysis Today</u> 6(3), 279-306.

Lin, R., Ding, Y., Gong, L., Dong, W., Wang, J., and Zhang, T. (2010) Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis 272(1), 65-73.

Lin, R., Ding, Y., Gong, L., Li, J., Chen, W., Yan, L., and Lu, Y. (2009) Oxidative bromination of methane on silica-supported non-noble metal oxide catalysts. <u>Applied Catalysis A: General</u> 353(1), 87-92.

Liu, Z., Huang, L., Li, W.S., Yang, F., Au, C.T., and Zhou, X.P. (2007) Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis A: Chemical 273(1–2), 14-20.

Liu, Z., Li, W., and Zhou, X. (2010) Product oriented oxidative bromination of methane over Rh/SiO2 catalysts. Journal of Natural Gas Chemistry 19(5), 522-529. Lorkovic, I.M., Sun, S., Gadewar, S., Breed, A., Macala, G.S., Sardar, A., Cross, S.E., Sherman, J.H., Stucky, G.D., and Ford, P.C. (2006) Alkane Bromination Revisited: "Reproportionation" in Gas-Phase Methane Bromination Leads to Higher Selectivity for CH3Br at Moderate Temperatures. <u>The Journal of Physical</u> Chemistry A 110(28), 8695-8700.

Olah, G.A. (1987) Electrophilic methane conversion. <u>Accounts of Chemical</u> <u>Research</u> 20(11), 422-428.

Otsuka, K. and Hatano, M. (1987) The catalysts for the synthesis of formaldehyde by partial oxidation of methane. Journal of Catalysis 108(1), 252-255.

Reid, R.C., Prausnitz, J.M., and Sherwood, T.K. (1977) The properties of gases and liquids: McGraw-Hill.

Stocker, M. (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. <u>Microporous and Mesoporous Materials</u> 29(1), 3-48.

Wang, K.X., Xu, H.F., Li, W.S., Au, C.T., and Zhou, X.P. (2006) The synthesis of acetic acid from methane via oxidative bromination, carbonylation, and hydrolysis. <u>Applied Catalysis A: General</u> 304(0), 168-177.

Wang, K.X., Xu, H.F., Li, W.S., and Zhou, X.P. (2005) Acetic acid synthesis from methane by non-synthesis gas process. Journal of Molecular Catalysis A: Chemical 225(1), 65-69.

WorldBank (2006) Reducing the Gas Burning. World Bank Weekly Update. Washington, DC : The World Bank.

Xu, H., Wang, K., Li, W., and Zhou, X. (2005) Dimethyl ether synthesis from methane by non syngas process. <u>Catalysis Letters 100(1-2)</u>, 53-57.

Yang, F., Liu, Z., Li, W., Wu, T., and Zhou, X. (2008) The Oxidative Bromination of Methane Over Rh/SiO₂ Catalyst. <u>Catalysis Letters</u> 124(3-4), 226-232.

Zhou, X.-P., Ouyang, Q., Yin, S.-F., Chen, L., and Au, C.-T. (2013) A new catalytic process for high-efficiency synthesis of p-xylene by methylation of toluene with CH₃Br. <u>AIChE Journal</u> 59(2), 532-540.

Zhou, X.P., Yilmaz, A., Yilmaz, G.A., Lorkovic, I.M., Laverman, L.E., Weiss, M., Sherman, J.H., McFarland, E.W., Stucky, G.D., and Ford, P.C. (2003) An

integrated process for partial oxidation of alkanes. <u>Chemical communications</u> (Cambridge, England) (18), 2294-2295.

.

÷

. .

-

.

•

+

-

APPENDICES

Appendix A Calculation of Methane Conversion and Product Selectivity

A.1 %CH4 Conversion

1. Definition of CH₄ Conversion

$$\% CH_4Conversion = \frac{Total \ mol \ of \ CH_{4,in} - Total \ mol \ of \ CH_{4,out}}{Total \ mol \ of \ CH_{4,in}} \times 100$$
(1)

2. Total mol of $CH_{4,in}$ can be replaced by the term Total C since the source of total carbon are derived from only methane and Total C in $CH_{4,out}$ can be replaced by C in unreacted CH_4 .

Therefore, the eq. (1) becomes;

$$\% CH_4 Conversion = \frac{Total C - C in unreacted CH_4}{Total C} \times 100$$
(2)

3. Carbon balance with <u>no coke formation</u>:

Total $C = Total \ C_{in} = Total \ C_{out}$ (obtained from all carbon in outlet stream) Hence, $Total \ C - C$ in unreacted CH_4 in eq. (2) can be replaced by Total C in all Products

Thus eq. (2) becomes;

. .

%
$$CH_4Conversion = \frac{Total C \text{ in all Products}}{Total C} \times 100$$
 (3)

Example; for the reaction in case of the blank tube

1. The resulting peak area from online GC of all chemicals in the exhaust stream listed below:

	TCD							
CH4	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₃ Br CH ₂ Br ₂				
11808.5	0	38.8	1126.4	79.7	932.7			

2. Change area to mol by multipling with response factor of each substance.

Table A2 Response factor (obtained from Calibration Data)

Substance	Response factor(mol/area)
CH4	4.5969E-10
C ₂ H ₆	3.4581E-10
C ₂ H ₄	3.4151E-10
CH ₃ Br	1.0000E-09
CH ₂ Br ₂	5.0000E-10
СО	5.6853E-10

 Table A3
 Mol of each chemical species in the exhaust stream

Mol								
CH₄	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО			
5.42827E-06	0	1.32506E-08	1.1264E-06	3.985E-08	5.30274E-07			

3. Total mol of C was calculated by

= mol of C_{CH4} + 2(mol of C_{C2H6}) + 2(mol of C_{C2H4}) + mol of

 C_{CH3Br} + mol of C_{CH2Br2} + mol of C_{CO}

C in product_was calculated by

-

= 2(mol of C_{C2H6}) + 2(mol of C_{C2H4}) + mol of C_{CH3Br} + mol of C_{CH3Br2} + mol of C_{CO}

Accordingly, the methane conversion calculated from eq. (3) was shown in the below table

Table A4Methane conversion

Total mol of C	C in product	% CH ₄ Conversion
7.15129E-06	1.72302E-06	24.0939

A.2 %CH₃Br Selectivity

%
$$CH_3$$
Br Selectivity = $\frac{\text{mol of } CH_3Br}{\text{Total mol of Product}} \times 100$

Example;

1. Mol of CH₃Br (shown in Table A3)

= 1.1264E-06 mol

2. Total mol of Product was calculated by

= mol of C_{C2H6} + mol of C_{C2H4} + mol of C_{CH3Br} + mol of

 C_{CH2Br2} + mol of C_{CO}

Table A5Total mol of Product

	Total mol of				
C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО	product
0	1.32506E-08	1.1264E-06	3.985E-08	5.30274E-07	1.70977E-06

% CH_3 Br Selectivity = $\frac{1.1264E - 0.06}{1.70977E - 0.06} \times 100 = 65.88$ %

A.3 <u>%CO Selectivity</u>

*The conceptual calculation of %CO Selectivity is the same as %CH3Br Selectivity.

Appendix B Calculation of Catalyst Composition

The Rh/SiO₂ catalyst was prepared by incipient wetness impregnation method which means support containing the same pore volume as the volume of the solution that was added.

Example 2 g of 0.5 wt% Rh/SiO₂ catalyst

.

= 2 g ($Rh_2O_3 + SiO_2$) of 0.5 % (Rh^0 w/w to $Rh_2O_3 + SiO_2$)

Rh₂O₃ form must be involved in this case due to small amount of catalyst prepared.

-	Step 1: wt. Rh ⁰		
	wt. of Rh ⁰	0.0100	g
	Step 2: wt. Rh ₂ O ₃		
	MW of Rh ⁰	102.9100	g/mol
	MW of Rh ₂ O ₃	253.8200	g/mol
	wt. of Rh_2O_3	0.0123	g
	Step 3: wt SiO ₂		
	wt. of Support (SiO ₂)	1.9877	g
	Step 4: wt RhCl ₃ *3H ₂ O		
	MW of RhCl ₃ *3H ₂ O	263.3103	g/mol
	g of RhCl ₃ *3H ₂ O	0.0256	g
	$(assay \ge 99.9\% trace metal)$	basis)	
	Corrected weight	0.0258	g
	Step 5: Lacttice water		
	Lattice water	0.0052	ml
	(neglible)		
	Step 6: Volume of SiO ₂		
	From BET surface analysis, total p	oore volume of	SiO ₂ is
	2.1606 ml/g		
	Volume of SiO ₂	4.2925	ml
	Step 7: Water required	-	
	Impregnation volume (100% pore	volume)	
	Water required for RhCl ₃ *3H ₂ O	4.2925	ml

Loading (wt%)	SiO ₂ (g)	RhCl ₃ *3H ₂ O (g)	Required water (ml)
0.1	2	0.0052	4.3160
0.3	2	0.0258	4.2925
0.5	2	0.0155	4.3052

-

.

-

-

-

Table B1 The ingredients of prepared catalyst

-

÷

÷

Appendix C Calibration Data and Feed Flow Calibration

The response factors of methane (CH_4) ethane (C_2H_6) ethylene (C_2H_4) , and carbon monoxide (CO) were determined by using the Single Point External Standard assuming analyte response to be linear over a range of concentrations. This method requires a known amount of analytes and record the peak area. The peak area of each substrate was calculated from average areas. The volume of each online injection equals to 2.5 ml which subsequently converted to mol bases on an ideal gas. Then calculate a response factor using an equation below.

Response Factor =
$$\frac{\text{mol}}{\text{area}}$$

No./	Methane	Ethane	Ethylene	Carbon monoxide
Retention time	3.49	4.46	5.02	9.34
1	22225.7	295.6	299.1	180.7
2	22315.9	294.3	297.9	180.5
3	22222.5	297.2	301.1	178.2
4		296.3	300.2	180.4
Area	22254.7	295.85 -	299.575	179.95
Volume(1)	0.00025	0.0000025	0.0000025	0.0000025
Mol	1.023E-05	1.023E-07	1.023E-07	1.023E-07
Response factor (mol/area)	4.5969E-10	3.4581E-10	3.4151E-10	5.6853E-10

Table C1 The response factors calculated from the Single Point External Standard

For methyl bromide (CH_3Br) and dibromomethane (CH_2Br_2) , the response factors were determined by using the Multiple Point External Standard. The samples used in this method cover the expected analyte concentration range. Use a line fitting algorithm such as point to point, linear least squares, or quadratic least squares to produce a calibration curve. The response factor used for calculation the products amount were derived from the the reciprocal of slope of calibration curve as shown in Figure C1 and Figure C2.

Figure C1 Response factors from GC FID as a function of injection volume of methyl bromide.

Figure C2 Response factors from GC FID as a function of injection volume of dibromomethanes.

Chemicals	Retention time	Slope (area/mol)	Response factor (mol/area)
Methyl bromide	12.50	1E+09	1E-09
Dibromomethanes	21.03	2E+09	5E-10

.

-

. .

- -

-

Table C2 The response factors calculated from the Multiple Point External Standard

.

-

Appendix D Raw Data of Reaction Results

۰.

1

.

The reaction results as a raw data of GC FID and TCD peak area and calculated data are shown below.

.

Table D1 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 660 °C, and 2 g of SiO₂

T	OS			FID			TCD	%CH4		' % Selectivity			
min	h	CH4	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	13352.9	0	9.8	315.5	0	2398.6	21.55	0	0.20	18.75	0	81.05
64	1.1	12641.3	0	9.8	683.6	13.5	2316.2	25.74	0	0.17	34.00	0.34	65.50
98	1.6	12912.3	0	9.2	816.1	19.6	2113.3	25.52	0	0.15	40.19	0.48	59.17
132	2.2	12341.9	0	9.9	791.8	18.1	2152.1	26.36	0	0.17	39.05	0.45	60.34
166	2.8	12123.2	0	11.9	889.5	27.2	2217.6	28.04	0	0.19	41.03	0.63	58.16
200	3.3	12120.9	Q	11.7	930.4	29.5	2106.8	27.85	0	0.19	43.34	0.69	55.79
234	3.9	11968	0	12.5	986.8	31.8	2079.2	28.50	0	0.20	45.08	0.73	54.00
268	4.5	12667.5	0'	, 9.7	991	30.3	1723	25.49	0	0.17	49.82	0.76	49.25
302	5.0	11898.2	0	11.5	1017.7	33.5	2020	28.60	0	0.18	46.54	0.77	52.52
336	5.6	12240.6	0	10.2	964.3	32.9	1897.8	26.86	0	0.17	46.74	0.80	52.30
370	6.2	12114.9	0	9.8	962.2	30	1807.6	26.54	0	0.17	47.91	0.75	51.17
404	6.7	12070.2	0	7.8	993	31.9	1700.1	26.31	0	0.13	50.20	0.81	48.86
438	7.3	12511.4	0	6.6	891.5	26.3	1733.5	24.78	0	0.12	47.11	0.69	52.08

÷.

Τ	DS			FID			TCD	%CH4	% Selectivity				
min	h	CH ₄	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	12722	0	15.1	40.7	0	2226.8	18.38	0	0.39	3.10	0	96.50
64	1.1	12509.5	0	18.3	35.6	0	2667.6	21.39	0	0.40	2.28	0	97.31
98	1.6	12979.8	0	14.1	29.2	0	2488.9	19.59	0	0.33	2.02	0	97.65
132	2.2	12406.8	0	22	20.3	0	2713.5	21.67	0	0.48	1.29	0	98.23
166	2.8	12599.9	0	20.1	18	0	2700	21.29	0	0'.44	1.15	0	98.41
200	3.3	12544.3	0	19	14	0	2830.3	22.10	0	0.40	0.86	0	98.74
234	3.9	12683.9	0	23.1	0	0	2994.5	22.76	0	0.46	0.00	0	99.54
268	4.5	13425.4	0	16.1	12.8	0	2685.9	20.08	0	0.36	0.83	0	98.82
302	5.0	13824.5	0	20.1	0	0	2621.9	19.14	0	0.46	0	0	99.54
336	5.6	13872.3	0	17.4	0	0	2606.3	18.98	0	0.40	0	0	99.60
370	6.2	13428	0	21.9	0	0	2776.4	20.52	0	0.47	0	0	99.53
404	6.7	13838.2	Q	19.8	0	0	2761.7	19.93	0	0.43	0	0	99.57
438	7.3	13763	0	20.4	0	0	2693.1	19.63	0	0.45	0	0	99.55
			1	41			100						

- 4

Table D2 The results of the reaction with 20 ml/min of CH₄, 5 ml/min of O₂, 5 ml/min of N₂, 6.5 ml/h of 48 wt% HBr/H₂O, reaction temperature 660 °C, and 2 g of Al_2O_3

,

.

1

								1					
T	OS			FID			TCD	%CH4	% Selectivity				
min	h	CH ₄	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	14386.4	0	19.3	0	0	1974.9	14.66	0	0.58	0	0	99.42
64	1.1	12348.1	0	33.8	18.4	0	3382.7	25.71	0	0.59	0.94	0	98.47
98	1.6	13795.2	0	32.2	20.5	0	2950.4	21.33	0	0.64	1.20	0	98.16
132	2.2	12625.8	0	40.6	17	0	3009.8	23.23	0	0.80	0.98	0	98.23
166	2.8	13556.6	0	33.3	22.4	0	2344.1	18.11	0	0.83	1.64	0	97.53
200	3.3	12695.6	0	50.3	20.8	0	2823.8	22.15	0	1.05	1.27	0	97.69
234	3.9	12772.8	0	56.3	21.7	0	2633.1	20.96	0	1.25	1.41	0	97.34
268	4.5	13157.8	0	53.8	20.4	0	2500	19.64	0	1.26	1.40	0	97.34
302	5.0	13557.1	0	55.8	23.5	0	2389.3	18.56	0	1.36	1.68	0	96.96
336	5.6	12495.9	0	62.2	24	0	2606.5	21.23	0	1.39	1.57	0	97.04
370	6.2	12385.9	0	60.8	24.2	0	2617.3	21.44	0	1.35	1.58	0	97.07
404	6.7	12512.8	0	60.9	27.4	0	2573.4	21.03	0	1.38	1.81	0	96.81
438	7.3	12802.3	0	61.3	28.7	0	2463.2	20.00	0	1.44	1.98	0	96.58

.

.

.

Table D3The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 660 °C, and 2 g of ZSM-5

1

1

T	DS			FľD			TCD	%CH4		·	% Select	ivity	
min	h	CH₄	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	12457.4	0	0	0	0	1827.3	15.36	, 0	0	0	0	100
64	1.1	11355.6	0	0	0	0	2190.6	19.26	0	0	0	0	100
98	1.6	11136.7	0	0	0	0	2268.3	20.12	0	0	0	0	100
132	2.2	10878.8	0	0	0	0	2186.7	19.91	0	0	0	0	100
166	2.8	11676.7	0	0	0	0	2029.4	17.69	0	0	0	0	100
200	3.3	11412.2	0	0	0	0	2089.6	18.46	0	0	0	0	100
234	3.9	11547.1	0	0	0	0	2004.9	17.68	0	' 0	0	0	100
268	4.5	10876.1	0	0	0	0	2439	21,71	0	0	. 0	0	100
302	5.0	10961.2	0	0	0	0	2278.5	20.45	0	0	0	0	100
336	5.6	10990.6	0	0	0	0	2286.4	20.46	0	0	0	0	100
370	6.2	10255.4	0	0	0	0	2417.1	22.57	0	0	0	0	100
404	6.7	10559.8	0	0	0 '	0	2357.3	21.64	0	0	0	0	100
438	7.3	10869.7	0	0	0	0	2277.3	20.58	0	0	0	0	100

٠

1

.

.

 Table D4
 The results of the reaction with 20 ml/min of CH₄, 5 ml/min of O₂, 5 ml/min of N₂, 6.5 ml/h of 48 wt% HBr/H₂O, reaction

 temperature 660 °C, and 2 g of Activated carbon

Τ	OS			FID			TCD	%CH4			% Selecti	vity	
min	h	CH ₄	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	14407.6	0	0	49.6	0	0	0.74	0	0	100	0	0
64	1.1	13885.5	0	0	19	0	0	0.30	0	0	100	0	0
98	1.6	14061.1	0	0	13.3	0	0	0.21	0	0	100	0	0
132	2.2	14630.7	0	0	10.2	0	0	0.15	0	0	100	0	0
166	2.8	14026.6	0	0	12.7	0	0	0.20	0	0	100	0	0
200	3.3	13343.5	0	0	17.2	0	0	0.28	0	0	100	0	0
234	3.9	13498.8	0	0	10.3	0	0	0.17	0	0	100	0	0
268	4.5	13613.5	0	0	12.2	0	0	0.19	0	0	100	0	0
302	5.0	13349.7	0	0 '	11.6	0	0	0.19	0	0	100	0	0
336	5.6	13486.7	0	0	11.5	0	0	0.19	0	0	100	0	0
370	6.2	13032.5	0	0	14	0	0	0.23	0	0	100	0	0
404	6.7	13108.6	0	0	17.6	0	0	0.29	0	0	100	0	0
438	7.3	13166.3	0	0	13.9	0	0	0.23	0	0	100	0	0

э.

11

.

Table D5 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C

.

1

.

.

Table D6 The results of the reaction with 20 ml/min of CH₄, 5 ml/min of O₂, 5 ml/min of N₂, 6.5 ml/h of 48 wt% HBr/H₂O, reaction temperature 500 °C

.

1

T	OS			FID			TCD	%CH4			% Selecti	vity	
min	h	CH ₄	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C ₂ H ₆	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	14349.3	0	0	359.7	27.3	124.3	6.31	0	0	81.01	3.07	15.92
64	1.1	14214.5	0	0	269.3	22.8	88.6	4.82	0	0	81.34	3.44	15.21
98	1.6	14619.4	0	0	302.9	23.4	101.2	5.25	0	0	81.40	3.14	15.46
132	2.2	13774.4	0	0	346.6	31.3	135.9	6.49	0	0	78.86	3.56	17.58
166	2.8	13423.9	0	0	395.1	36	159.1	7.54	0	0	78.46	3.57	17.96
200	3.3	13223.2	0	0	410.8	42	177.5	8.06	0	0	77.11	3.94	18.94
234	3.9	13117.2	0	0	419.9	44.2	185.2	'8.32	0	0	76.72	4.04	19.24
268	4.5	12820.1	0	0	380.2	38.7	158.3	7.67	0	0	77.66	3.95	18.38
302	5.0	13035.8	0	0	359.5	37.3	141.7	7.11	0	0	78.37	4.07	17.56
336	5.6	13355.4	0	0	346.5	33.3	134.2	6.68	0	0	78.85	3.79	17.36
370	6.2	13135	0	0	367.4	34.8	141.8	7.16	0	0	78.94	3.74	17.32
404	6.7	13073.8	0	0	383	39.1	148.4	7.49	0	0	78.66	4.02	17.33
438	7.3	13222.2	0	0	373.2	38.1	147	7.26	0	0	78.43	4.00	17.56

1

τ

4

.

.

T	OS			FID			TCD	%CH4			% Selecti	vity	
min	h	CH4	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	13706.7	0	. 11.2	1023.3	95.4	391.9	17.12	0	0.29	78.86	3.68	17.17
64	1.1	13409.2	0	7.7	938.9	87.1	372.2	16.29	0	0.22	78.46	3.64	17.68
98	1.6	13782.2	0	6.8	839.9	69.3	343.3	14.50	0	0.22	78.35	3.23	18.21
132	2.2	13618.2	0	0	847.1	70.4	336.3	14.64	0	0	78.91	3.28	17.81
166	2.8	13906	0	0	837.5	67.7	319.1	14.14	0	0	79.55	3.22	17.23
200	3.3	14116.1	0	0	786.5	60.7	296.5	13.18	0	0	79.81	3.08	17.11
234	3.9	14138.1	0	0	812.3	61.7	316.3	13.60	0	0	79.41	3.02	17.58
268	4.5	14311.7	0	0	785.7	58.9	285.2	12.93	0	0	80.40	3.01	16.59
302	5.0	13499.4	0	0	868.7	68.9	336.5	14.99	0	0	79.37	3.15	17.48
336	5.6	13625.1	0	0	848.1	66.2	354.4	14.74	0	0	78.33	3.06	18.61
370	6.2	13743.4	0	0	820.6	64.9	311.1	14.02	0	0	79.68	3.15	17.17
404	6.7	13773	0	0	798.7	62	297.4	13.63	0	0	79.97	3.10	16.93
438	7.3	12714.8	0	0	843.4	71.8	353.1	15.60	0	0	78.09	3.32	18.59

Table D7 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 600 °C

T	OS			FID			TCD	%CH4			% Selecti	vity	
min	h	CH ₄	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	11808.5	0	38.8	1126.4	79.7	932.7	24.09	0	0.77	65.88	2.33	31.01
64	1.1	11710.8	0	30	1518.3	145.9	886	28.21	0	0,49	72.12	3.47	23.93
98	1.6	11834.5	0	30.5	1447	133.2	840.9	27.00	0	0.52	72.27	3.33	23.88
132	2.2	11760.8	0	29.4	1387	124.7	794.6	26.22	0	0.53	72.57	3.26	23.64
166	2.8	11779.8	0	26.4	1362.4	116.5	791.2	25.86	0	0.48	72.49	3.10	23.93
200	3.3	12135.3	0	35.2	1284.4	104.8	801.8	24.57	0	0.67	71.17	2.90	25.26
234	3.9	11844.6	0	33.7	1292.3	103.8	810.4	25.13	0	0.63	71.14	2.86	25.36
268	4.5	11872.4	0	30.7	1294.2	100.6	790.5	24.96	0	0.58	71.72	2.79	24.91
302	5.0	12019.5	0	35.5	1240.9	93.8	810.5	24.29	0	0.69	70.48	2.66	26.17
336	5.6	12012.6	O	34.2	1298.4	97.3	834.7	25.04	0	0.64	70.82	2.65	25.89
370	6.2	12213.1	0,	33.4	1256.1	92.9	811.8	24.14	0	0.64	70.75	2.62	25.99
404	6.7	12340.8	0	45.4	1261.8	92.6	879.2	24.48	0	0.85	69.20	2.54	27.41
438	7.3	11796.8	0	40.9	1143.4	84.8	805.3	23.56	0	0.84	68.98	2.56	27.62

.

Table D8 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 660 °C

.

1

.....

T	OS			FID			TCD	%CH₄			% Selecti	vity	
min	h	CH4	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	13577.5	16.1	217	1080.7	43.1	1085.7	23.23	0.31	4.11	59.90	1.19	34.21
64	1.1	12464.8	0	94.6	1361.9	84.6	1178.8	27.26	0	1.53	64.52	2.00	31.75
98	1.6	11991.3	0	78.1	1264.9	70.5	1067.6	26.30	0	1.38	65.30	1.82	31.34
132	2.2	11969.3	0	66.5	1368.2	71.8	1038.7	27.11	0	1.12	67.71	1.78	29.22
166	2.8	12360.9	0	76.8	1223.8	62.2	1016.8	24.97	0	1.41	65.72	1.67	31.05
200	3.3	12649	0	78.4	1224.5	57.6	1018.5	24.55	0	1.44	65.76	1.55	31.10
234	3.9	12081	0	69.2	1256	59.5	1046.8	25.83	0	1.24	65.84	1.56	31.20
268	4.5	12324.9	0	67.2	1297.4	59.2	980.8	25.47	0	1.20	67.91	1.55	29.19
302	5.0	11633.5	0	70.9	1221	62.8	1158.6	26.88	0	1.25	62.99	1.62	33.98
336	5.6	11799.8	0	72.2	1175.7	61.1	1080	25.69	0	1.33	63.63	1.65	33.23
370	6.2	11872.8	0	67.7	1244.5	61.1	1095.4	26.32	0	1.20	64.69	1.59	32.37
404	6.7	11953.7	0	62.7	1242.3	61.4	961	25.36	0	1.16	67.39	1.67	29.64
438	7.3	12138.7	0	70.1	1203.6	59	1029.9	25.12	0	1.30	65.22	1.60	31.73

.,

4

Table D9 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 700 °C

.

.

I.

T	OS			FID			TCD	%CH₄			% Selectiv	vity	
min	h	CH ₄	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	14280	0	0	0	0	0	0	0	0	0	0	0
64	1.1	14373.5	0	0	0	0	0	0	0	0	0	0	0
98	1.6	14293.2	0	0	0	0	0	0	0	0	0	0	0
132	2.2	15425.9	0	0	0	0	0	0	0	0	· 0	0	0
166	2.8	14940.5	0	0	0	0	0	0	0	0	0	0	0
200	3.3	15099.5	0	0	0	0	0	0	0	0	0	0	0
234	3.9	14621	0	0	0	0	0	0	0	0	0	0	0
268	4.5	14783.2	0	0	0	0	0	0	0	0	0	0	0
302	5.0	15310.6	0	0	0	0	0	0	0	0	0	0	0
336	5.6	15593.7	0	0	0	0	0	0	0	0	0	0	0
370	6.2	15549.6	0	0	0	0	0	0	0	0	0	0	0

Table D10 The results of the reaction with 20 ml/min of CH_4 , 10 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reaction temperature400 °C, and 2 g of 0.5 wt% Rh/SiO₂-calcined at 450 °C 6 h

.

÷.

.

.

.

۶.

Τ	OS			FID			TCD	%CH₄			% Select	ivity	
min	h	CH4	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	12113.2	0	0	98.9	0	71.1	2.44	0	0	70.99	0	29.01
64	1.1	12357.6	0	0,	113.4	0	45.3	2.39	0	0	81.49	0	18.51
98	1.6	11700.9	0	0	103.1	0	39.1	2.28	0	0	82.26	0	17.74
132	2.2	11889.5	0	0	109.8	0	45.2	2.42	0	0	81.03	0	18.97
166	2.8	11850.3	0	0	109.5	0	44.4	2.41	Ò	0	81.27	0	18.73
200	3.3	11935.8	0	0	107.7	0	47.9	2.40	0	0	79.82	0	20.18
234	3.9	11848.5	0	0	101.8	0	35.5	2.19	0	0	83.45	0	16.55
268	4.5	11979.8	0	0	108.6	0	44	2.37	0	0	81.28	0	18.72
302	5.0	12245.3	0	0	113	0	43.5	2.39	0	0	82.04	0	17.96
336	5.6	12440.2	0	0	123.1	0	44.9	2.53	0	Q	82.82	0	17.18
370	6.2	11616.7	0	0	125.9	0	48.9	2.80	0	0	81.91	0	18.09
								'					

÷....

٠

4

....

Table D11 The results of the reaction with 20 ml/min of CH_4 , 3.5 ml/min of O_2 , 7.5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reaction temperature 400 °C, and 2 g of 0.5 wt% Rh/SiO₂-calcined at 450 °C 6 h

•

T	OS			FID			TCD	%CH4			% Selec	tivity	
min	h	CH4	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	14919.2	0	0	249.6	0	80.3	4.13	0	0	84.54	0.00	15.46
64	1.1	14256.4	0	0	248.7	8.4	92.7	4.46	0	0	81.38	1.37	17.25
98	1.6	14624.3	0	0	277.8	12	72.4	4.61	0	0	85.49	1.85	12.67
132	2.2	14258.6	0	0	267.2	13	54.7	4.44	0	0	87.66	2.13	10.20
166	2.8	14157.2	0	0	266.1	13.2	52.7	4.44	0	0	87.92	2.18	9.90
200	3.3	14509	0	0	_245.3	13.1	35.8	3.92	0	0	90.12	2.41	7.48
234	3.9	14593.9	0	0	256.6	13	38.3	4.07	0	0	90.07	2.28	7.64
268	4.5	14749.6	0	0	252.5	13.1	29.7	3.91	0	0	91.51	2.37	6.12
302	5.0	14777.2	0	0	246	12.9	22.1	3.75	0	0	92.83	2.43	4.74
336	5.6	13857.2	0	0	245.8	12.8	24.8	4.01	0	0	92.30	2.40	5.29
370	6.2	13999.4	0	0	245.6	12.4	20.6	3.93	0	0	93.20	2.35	4.44

Table D12 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C , and 2 g of 0.5 wt% Rh/SiO₂-calcined at 450 °C 6 h

+

71

.

۱.

. .

.

Τ	OS			FID			TCD	%CH4			% Selec	tivity	a -
min	h	CH4	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	11798	0	0	120.6	0	177.3	3.92	0	0	54.47	0	45.53
64	1.1	11445.2	0	0	151.9	0	106.6	3.88	0	0	71.48	0	28.52
98	1.6	11298.5	0	0	145.4	0	106.9	3.82	0	0	70.52	0	29.48
132	2.2	11487.1	0	0	153	0	119.3	4.01	0	0	69.29	0	30.71
166	2.8	11775.9	0	0	154.1	0	103.9	3.79	0	0	72.29	0	27.71
200	3.3	12131.8	0	0	158.5	0	96.6	3.69	0	0	74.27	0	25.73
234	3.9	12220.4	0	0	167.9	0	111.1	3.95	0	0	72.66	0	27.34
268	4.5	11701.5	0	0	167.7	0	112.1	4.12	0	0	72.46	0	27.54
302	5.0	11727.8	0	0	168.6	0	105.8	4.07	0	0	73.70	0	26.30
336	5.6	11376.2	0	0	168.1	0	109.9	4.22	0	0	72.90	0	27.10
370	6.2	11590.7	0	0	175.6	6.5	107.8	4.31 '	0	0	73.12	1.35	25.52

+

1

.

Table D13 The results of the reaction with 20 ml/min of CH_4 , 6 ml/min of O_2 , 4 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C , and 2 g of 0.5 wt% Rh/SiO₂-calcined at 450 °C 6 h

TOS FID TCD %CH₄ % Selectivity C_2H_6 min CH₄ C_2H_4 CH₃Br CH₂Br₂ CO Conversion C_2H_6 C_2H_4 CH₃Br CO h CH₂Br₂ 0.5 11844.5 30 0 0 122.7 27.4 81.1 3.24 0 0 67.23 7.51 25.26 64 1.1 13557.6 0 0 148.9 131.3 3.46 0 66.61 33.39 0 0 0 1.6 98 11609 0 0 126.2 59.5 2.91 0 0 0 78.86 0 21.14 132 2.2 12479 0 0 129.7 0 50.8 2.69 0 0 81.79 18.21 0 2.8 12276.5 166 0 0 115.7 0 34.4 2.34 0 0 85.54 0 14.46 3.3 200 13041.5 0 0 122.5 0 0 2.00 0 . 0 100 0 0 234 3.9 12864.1 0 119.6 0 0 0 1.98 100 0 0 0 0 268 4.5 12132.3 0 0 100.5 0 0 1.77 0 0 100 0 0 302 5.0 12140.6 0 102.5 0 0 0 1.80 0 0 100 0 0 . 336 5.6 11711 0 0 99.6 0 0 1.82 0 0 100 0 0 370 6.2 11592 0 0 0 103.9 0 1.91 0 0 100 0 0

۱.

.

.

Table D14 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C , and 2 g of 0.3 wt% Rh/SiO₂-calcined at 450 °C 6 h

.

Table D15 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C , and 2 g of 0.3 wt% Rh/SiO₂-calcined at 900 °C 10 h

T	DS			FID			TCD	%CH4			% Select	ivity	
min	h	CH4	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	12510.7	0	0	38.5	0	0	0.66	0	0	100	0	0
64	1.1	12193.2	0	0	53.7	0	0	0.95	0	0	100	0	0
98	1.6	11643.9	0	0	43.6	0	0	0.81	0	0	100	0	0
132	2.2	11884	0	0	35.7	0	0	0.65	0	0	100	0	0
166	2.8	11605.1	0	0	44.5	0	0	0.83	0	0	100	0	0
200	3.3	11827.1	0	0	40.5	0	0	0.74	0	0	100	0	0
234	3.9	12069	0	0	43.3	0	0	0.77	0	0	100	0	0
268	4.5	11584.8	0	0	49.7	0	0	0.92	0	0	100	0	0
302	5.0	11840.5	0	. 0	42.4	0	0,	0.77	0	0	100	0	0
336	5.6	12069	0	0	51.9	0	0	0.93	0	0	100	0	0
370	6.2	11863	0	0	48.9	0	0	0.89	0	0	100	0	0

+

		1					<u>г</u>	1					
T	<u>DS</u>		a.	FID			TCD	%CH4			% Select	tivity	
min	h	CH4	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C_2H_6	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	СО
30	0.5	12697.1	0	0	35	0	50.7	1.08	0	0	54.84	0	45.16
64	1.1	12016.6	0	0	44.3	0	0	0.80	0	0	100	0	0
98	1.6	11789.8	0	0	35.9	0	0	0.66	0	0	100	0	0
132	2.2	11564.5	0	0	38.7	0	0	0.72	0	0	100	0	0
166	2.8	11757.2	0	0	41	0	0	0.75	0	0	100	0	0
200	3.3	11958.6	0	0	50.2	0	0	0.90	0	0	100	0	0
234	3.9	12146	0	0	45.3	0	0	0.80	0	0	100	0	0
268	4.5	12367.4	0	0	53	0	0	0.92	0	0	100	0	0
302	5.0	12521.7	0	0	45.8	0	0	0.79	0	0'	100	0	0
336	5.6	12569.5	0	0	49.1	0	0	0.84	0	0	100	0	0
370	6.2	12024.1	0	0	57.8	0	0	1.03	0	0	100	0	0

x.

1

1 .

Table D16 The results of the reaction with 20 ml/min of CH_4 , 5 ml/min of O_2 , 5 ml/min of N_2 , 6.5 ml/h of 48 wt% HBr/H₂O, reactiontemperature 400 °C , and 2 g of 0.5 wt% Rh/SiO₂-calcined at 900 °C 10 h

.

4

х.

1

.

Table D17 The results of the reaction with 20 ml/min of CH₄, 5 ml/min of O₂, 5 ml/min of N₂, 6.5 ml/h of 48 wt% HBr/H₂O, reaction temperature 400 °C , and 2 g of SiO₂

.

.

.

Т

.

TOS		FID						%CH4	% Selectivity				
min	h	CH ₄	C_2H_6	C_2H_4	CH ₃ Br	CH ₂ Br ₂	CO	Conversion	C ₂ H ₆	C ₂ H ₄	CH ₃ Br	CH ₂ Br ₂	CO
30	0.5	15083.4	0	0	194.7	7.8	25.6	2.98	0	0	91.34	1.83	6.83
64	1.1	14822.8	0	0	161.7	7	41.1	2.69	0	0	85.75	1.86	12.39
98	1.6	14377.4	0	0	126.4	0	0	1.88	0	0	100	0	0
132	2.2	13460.6	0	0	102.3	0	0	1.63	0	0	100	0	0
166	2.8	13803.8	0	0	99.5	0	0	1.54	0	0	100	0	0
200	3.3	13922.4	· 0	0	103.4	0	0	1.59	0	0	100	0	0
234	3.9	14279	0	0	94.9	0	0	1.43	0	0	100	0	0
268	4.5	13355.4	0	0	93	0	0	1.49	0	0	100	0	0
302	5.0	13660.7	0	0	97	0	0	1.52	0	0	100	0	0
336	5.6	13766.7	0	0	93.2	0	0	1.45	0	0	100	0	0
370	6.2	13844.6	0	0	94.7	0	0	1.47	0	0	100	0	0

CURRICULUM VITAE

Date of Birth: March 26, 1990

Nationality: Thai

University Education:

2008-2012 Bachelor Degree of Engineering, Faculty of Chemical Engineering, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand,

.

Working Experience:

	2011	Position:	Internship Student					
		Company name:	PTT Aromatics and Refining Public					
			Company, Ltd. (PTTAR), Rayong					
			Thailand					
1:	7							

Proceedings:

-

 Sirijantarat, V.; Jermwongratanachai, T.; and Kitiyanan, B. (2014, April 22) Methyl Bromide Synthesis via Oxidative Bromination of Methane. Proceedings of The 5th Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 20th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.

÷

.