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ABSTRACT

##962003  POLYMER SCIENCE PROGRAM
KEYWORDS  Cetyltrimethyl ammonium chloride/ CTAC/ Fatty Alcohol/
Hydroxyethyl Cellulose/ HEC/ Rheology of emulsion/ Optical
microscope/ Laser scannin microscope/ LSM.
Jintana Nakarapanich : Rheology of Cationic Surfactant and Fatty
Alcohol Mixtures in the presence of Hydroxyethyl Cellulose. Thesis Advisors :
Prof. ~ Alexander M. Jamieson, Dr. Malika Punyagupta and Assoc. Prof.
Anuvat Sirivat, 190 pp. ISBN 974-638-476-7

Emulsion structures and rheological properties of CTACIFA,
CTAC/FA/HEC, CTAC/FA/modified HEC and BTAC/FA were mvestl?ated in
terms of aging time and concentration. Aging allows a growth of [amellar
structures toward equilibrium sizes within seven _da?/s. Fatty alcohol induces
lamellar or vesicle structures, instead of rod-like micelles in the absence of fatty
alcohol content. Both entanglement storage modulus and zero shear yISCOS_ItK
increase with fatt¥ alcohol Ccontent until reaching a saturation state in whic
there is an excess Tatty alcohol left, as seen by laser scanning mlc_rographs.

The effect of adding HEC to the ternary systems is to disrupt lamellar
formation due to interaction between the polymer and the cationic surfactant,
inducing Rolymer chain expansion and surfactant will not be available to
stabilize the Tamellar structure. This leads to smaller lamellar sizes. On the
other hand, the effect of adding modified HEC is to induce the formation of
interconnected  lamellar structures by the hydrophobic interaction between
cetyl branched chain and hydrophobic part of both CTAC and FA. This effect
makes the rheological P_lrot):ertles such as the storage modulus and viscosity
increase with modified HEC concentration. _ _

In the BTACIFA systems, we found the beautiful and symmetric
sunflower-like structures whereas in the CTAC/FA systems we found the
ag?regates of lamellar and vesicle structures. The differences in structures
between these two systems depend on the nature of the cationic surfactant.
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