REFERENCES

- Aadnoy, B.S., Fazaelizadeh, M., and Hareland, G. (2010) A 3D analytical model for wellbore friction. <u>Journal of Petroleum Technology</u>, 49(10), 12.
- Armenta, M. (2008) Identifying inefficient drilling conditions using drilling-specific energy. <u>SPE Annual Technical and Exhibition</u>. Denver, USA, 21-24 September 2008.
- Celada, B., Galera, J.M., Muñoz, C., and Tardáguila, I. (2009, May 23-28) The use of the specific drilling energy for rock mass characterization and TBM driving during tunnel construction. Paper presented at <u>ITA-AITES World</u> <u>Tunnel Congress</u>. Budapest, Hungary.
- Fazaelizadeh, M., Hareland, G., and Aadnoy, B.S. (2010) Application of new 3-D analytical model for directional wellbore friction. <u>Modern Applied Science</u> 4(2), 21.
- Hareland, G., Wu, A., and Lei, L. (2014, January 20-22) The field tests for measurement of downhole weight on bit (DWOB) and the calibration of a real-time DWOB model. Paper presented at <u>International Petroleum</u> <u>Technology Conference</u>. Doha, Qatar.
- Johancsik, C.A., Friesen, D.B., and Dawson, R. (1983, February 20-23) Torque and drag in directional wells-prediction and measurement. Paper presented at <u>IADC/SPE Drilling Conference</u>. New Orleans.
- Kerkar, P.B., Hareland, G., Fonseca, E.R., and Hackbarth, C.J. (2014, January 19-22) Estimation of rock compressive strength using downhole weight-on-bit and drilling models, Paper presented at <u>International Petroleum Technology</u> <u>Conference</u>, Doha, Qatar.
- Klayhan, A. (2014) Drilling Simulation and User Program for Oil and Gas I. Well planning. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Lesage, M., Falconer, I.G., and Wick, C.J. (1988) Evaluating drilling practice in deviated wells with torque and weight data. <u>SPE Drilling Engineering</u> (September), 248 - 252.

- Luke, G.R. and Jucakam-Wold, H.C. (1993) Determination of true hook load and line tension under dynamic condition. <u>SPE Drilling & Completion</u>, 6.
- Mirhaj, S.A., Kaarstad, E., and Aadnoy, B.S. (2011) Improvement of torque-anddrag modeling in long-reach wells. <u>Modern Applied Science</u> 5(5), 10-28.
- Mohan, K. and Adil, F. (2009, March 17-19) Tracking drilling efficiency using hydro-mechanical specific energy. Paper presented at <u>SPE/IADC Drilling</u> <u>Conference and Exhibition</u>. Amsterdam, The Netherlands.
- Pessier, R.C. and Fear, M.J. (1992, October 4-7) Quantifying common drilling problems with mechanical specific energy and a bit-specific coefficient of sliding friction. Paper presented at <u>SPE Annual Technical Conference and Exhibition</u>. Washington, D.C., USA.
- Prurapark, P. (2009) Torque and drag calculation in three-dimensional wellbores.Ph.D. Dissertation, Texas A&M University, Texas, USA.
- "Rotating Off Bottom (ROffB)." Pegasus Vertex, Inc. 2011. 12 May 2014 http://www.pvisoftware.com/drilling-industry-glossary/R/rotating-off-bottom.html
- "Rotating Off Bottom (ROffB)." Pegasus Vertex, Inc. 2011. 12 May 2014 <http://www.pvisoftware.com/drilling-industry-glossary/R/rotating-onbottom.html>
- Schuster, N.A. and Riboud, J. (1971, June 13-18) Well logging technique. Paper presented at <u>World Petroleum Congress</u>. Moscow, USSR.
- Shankar, S.S. (1999) Well logging techniques and formation evaluation: An over view. Department of Energy, USA.
- Teale, R. (1965) The concept of specific energy in rock drilling. <u>International</u> <u>Journal of Rock Mechanics and Mining Sciences</u> 2, 57-73.

APPENDICES

Appendix A Well Trajectory Calculation Methods

A.1 Methods for well trajectory calculation

- 1. The average angle method
- 2. The balanced tangential method
- 3. The radius of curvature method
- 4. The minimum of curvature method
- 5. The tangential method

In this research well trajectory is calculated by the balanced tangential

method

A.1.1 The balanced tangential method

$$\Delta North = \frac{\Delta MD}{2} |\sin(\alpha_1) \times \cos(\Phi_1) + \sin(\alpha_2) \times \cos(\Phi_2)|$$
(A.1)

$$\Delta East = \frac{\Delta MD}{2} |\sin(\alpha_1) \times \sin(\Phi_1) + \sin(\alpha_2) \times \sin(\Phi_2)|$$
(A.2)

$$\Delta Vertical = \frac{\Delta MD}{2} |\cos(\alpha_1) + \cos(\alpha_2)| \tag{A.3}$$

Appendix B R and $R_{turn}\ Calculation$

o

$$R = \left(\frac{\Delta MD}{\alpha_1 - \alpha_2}\right) \times \frac{\pi}{180}$$
(B.1)
$$R_{\Phi} = \frac{\Delta East}{(\cos(\Phi_1) - \cos(\Phi_2))} = \frac{\Delta North}{(\sin(\Phi_1) - \sin(\Phi_2))}$$
(B.2)

o .

Appendix C Well Trajectories Data of Wells A and B

The details of survey files are shown in Table C1 and C2.

 Table C.1
 Well A Trajectories

•

		Azimuth
MD	Inclination	Grid
(ft.)	(°)	(0)
		(°)
0.00	0.00	0.00
65.62	0.00	100.12
05.02	0.00	100.12
131.23	0.00	100.13
131.23	0.00	100.15
106.95	0.00	100.14
190.85	0.00	100.14
2(2.47	0.00	100.15
202.47	0.00	100.15
200.00	0.00	
328.08	0.00	100.16
390.06	0.07	100.17
454.82	0.28	100.18
513.78	2.39	100.40
575.07	5.85	103.16
637.20	8.86	102.65
695.70	11.81	102.48

0

56

MD (ft.)	Inclination (°)	Azimuth Grid (°)
763.42	15.80	102.58
822.34	20.27	103.16
885.70	24.76	103.95
948.82	27.75	103.80
1011.71	30.36	102.49
1074.48	33.08	102.87
1137.57	36.47	102.86
1200.33	40.03	102.84
1263.42	42.71	102.47
1325.66	45.35	101.92
1389.30	47.66	100.57
1451.74	50.16	100.02
1515.35	52.30	99.62

 Table C.1
 Well A Trajectories (Con't.)

MD (ft.)	Inclination (°)	Azimuth Grid (°)
1575.92	55.11	99.14
1642.81	58.60	97.86
1704.36	61.22	97.23
1765.58	63.64	96.87
1827.92	64.73	94.59
1891.24	65.46	91.89
1953.77	67.55	89.90
2016.21	69.80	88.54
2079.10	71.10	86.76
2142.65	72.46	84.81
2198.85	74.24	82.89
2268.54	75.83	80.27
2331.59	75.67	77.34

Table C.1	Well A	Trajectories ((Con't.)
-----------	--------	----------------	----------

•

•

	MD . (ft.)	Inclination (°)	Azimuth Grid (°)
	2393.96	74.49	74.57
	2457.32	73.53	71.96
	2520.83	72.85	69.19
	2612.83	72.55	67.02
	2677.66	74.41	66.72
	2741.27	76.01	66.52
	2804.07	76.41	66.48
	2864.60	76.34	66.75
	2905.54	76.05	66.48
	2961.42	74.88	65.68
	2968.60	74.73	65.58
	3031.79	75.09	64.19
	3094.55	71.63	61.58
L			

Table C.1	Well A Trajectories	(Con't.)
-----------	---------------------	----------

·...

0

. .

MD (ft.)	Inclination (°)	Azimuth Grid (°)	•
3157.78	68.53	58.49	
3220.57	65.90	56.42	
3283.69	64.35	53.98	
3347.70	62.91	52.80	
3409.78	62.30	51.27	
3473.26	62.84	49.52	
3536.55	62.72	47.67	
3599.64 •	61.53	45.38	
3686.02	61.91	41.55	
3747.83	61.71	40.54	
3811.12	61.52	37.07	
3873.85	61.42	35.94	
3936.68	61.37	35.98	
			1

Table C.I Well A Trajectories (Con't.	Fable C.1	Well A	Trajectories	(Con't.
--	------------------	--------	--------------	---------

. .

.

MD (ft.)	Inclination (°)	Azimuth Grid ([°])
3998.98	60.96	35.94
4062.73	59.53	36.33
4125.82	59.61	36.38
4188.29	59.47	36.89
4251.35	59.25	36.56
4314.67	58.89	37.01
4374.80	59.03	36.89
4439.76	58.84	37.07
4502.89	58.82	37.20
4564.96	58.96	37.71
4628.58	58.74	37.86
4691.08	58.72	38.27
4756.20	58.78	38.25

÷.)

Table C.1	Well A	Trajectories	(Con't.)
-----------	--------	--------------	----------

•

MD (ft.)	Inclination (°)	Azimuth Grid (°)
4816.67	58.67	38.79
4850.66	58.63	38.85
4943.27	58.40	39.07
5008.43	57.12	39.33
5070.70	55.64	39.44
5131.99	55.27	39.20
5194.88	55.41	39.52
5257.45	54.10	40.05
5308.21	54.06	40.41
5320.18	54.05	40.49
5381.40	54.32	40.61

Table C.1 We	Il A Trajectorio	es (Con't.)
--------------	------------------	-------------

o

-

MD	Inclination	Azimuth
		Grid
(ft.)		(°)
0.00	0.00	300.00
19.69	0.13	339.34
150.92	1.00	339.34
216.54	1.44	339.34
393.70	2.62	339.34
425.33	2.83	339.34
486.43	8.99	332.45
548.98	14.40	326.19
609.97	17.80	317.42
672.08	19.61	307.06
733.34	23.55	302.23
794.80	27.28	297.03

 Table C.2
 Well B Trajectories

.

		Azimuth
MD	Inclination	Grid
(ft.)	(°)	Unu
		(°)
858.01	31.91	293.43
919.02	35.59	289.20
991.33	39.34	287.19
1052.96	41.43	285.58
1115.16	44.72	283.41
1178.50	47.91	280.39
1237.37	51.00	277.97
1298.52	53.09	276.54
1362.67	54.74	275.44
1426.42	56.14	275.34
1488.94	55.12	275.72
1553.42	56.15	275.54
1614.09	57.91	274.93

 Table C.2
 Well B Trajectories (Con't.)

.

MD (ft.)	Inclination . (°)	Azimuth Grid (°)	
1627.26	57.89	275.02	
1697.83	57.77	275.47	
1712.80	57.75	275.56	
1774.11	57.55	274.67	
1835.96	57.45	274.31	
1896.46	55.16	274.62	
1959.35	53.35	275.35	
2020.70	51.45	277.76	
2083.86	48.72	280.11	
2147.34	45.08	282.33	
2211.88	41.13	284.13	
2273.39	39.75	284.02	
2337.20	40.19	284.23	

Table C.2	Well B Ti	rajectories	(Con't.)
-----------	-----------	-------------	----------

-

MD (ft.)	Inclination (°)	Azimuth Grid (°)
2399.54	40.25	287.21
2461.35	38.76	286.95
2528.64	39.53	285.98
2586.68	40.10	285.08
2652.03	40.84	284.79
2714.70	41.31	284.85
2778.31	39.77	285.73
2842.45	39.82	285.49
2905.38	39.76	285.72
2970.05	40.16	286.16
3032.28	38.87	283.83
3095.87	38.93	283.96
3159.12	38.90	283.67

Table C.2	Well B	Trajectories (Con't.)

•

MD (ft.)	Inclination (°)	Azimuth Grid (°)	
3222.93	38.83	283.35	
3285.27	39.05	282.95	
3350.00	39.19	283.00	
3411.55	39.22	283.31	
3472.77	39.30	283.84	
3478.81	39.31	283.89	

o

Table C.2	Well B Trajectories (Con't.)	

11 T

o

-

CURRICULUM VITAE

Name: Mr. Lertsak Laosripaiboon

0

Date of Birth: July 2, 1991

Nationality: Thai

University Education:

2009–2013 Bachelor Degree of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Work Experience:

2014-2015	Position:	Petroleum Engineer
	Company name:	Energy Thai Trading Hubs

Proceeding:

 Laosripaiboon, L.; Saiwan, C.; and Prurapark, R. (2015, April 21) Analysis of potential zone by using down-hole drilling specific energy. <u>Proceeding of the 6th</u> <u>Research Symposium on Petrochemical and Materials Technology and the 21th</u> <u>PPC Symposium on Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand.

Presentation:

 Laosripaiboon, L.; Saiwan, C.; and Prurapark, R. (2015, May 4-7) Reservoir characteristics interpretation by using down-hole speaific energy with down-hole torque and drag. Paper presented at <u>Offshore Technology Conference 2015</u>, Texas, USA.