TIME BASED FRACTIONATION OF ASPHALTENES

Phitsanu Teeraphapkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

.

-

Thesis Title:Time Based Fractionation of AsphaltenesBy:Phitsanu TeeraphapkulProgram:Petrochemical TechnologyThesis Advisors:Prof. H. Scott Fogler
Asst. Prof. Pomthong Malakul

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. H. Scott Fogler)

(Asst. Prof. Pomthong Malakul)

havedly

(Prof. Sumaeth Chavadej)

(Dr. Veerapat Tantayakom)

ABSTRACT

5571017063: Petrochemical Technology Program
Phitsanu Teeraphapkul: Time Based Fractionation of Asphaltenes
Thesis Advisors: Prof. H. Scott Fogler and Asst. Prof. Pomthong
Malakul 46 pp.
Keywords: Asphaltenes/ Fractionation/ Detection time/
Solubility parameter/ Nanoaggregates

The precipitation of asphaltenes has been established as a time-dependent process. Asphaltenes precipitated first are expected to be the most unstable asphaltenes and cause severe problems in oil productions. It has also been observed that the aggregation rate of asphaltenes is controlled by asphaltene concentration. In this study, we utilized time and solubility based fractionation to investigate the polydispersity of asphaltenes and differences in the aggregation tendency for asphaltenes precipitated at different asphaltene concentrations. Asphaltenes extracted from two different crude oils (A1 and K1) were separately mixed with toluene to generate model mixtures with two different asphaltene concentrations (3 wt% and 8 wt% asphaltenes in toluene). The solutions were fractionated by adding heptane as a precipitant at fixed concentrations. Destabilized asphaltenes were then collected at different times until equilibrium was reached. Microscopy and small-angle X-ray scattering (SAXS) results showed that the aggregation rate of fractionated asphaltenes strongly depends on time and asphaltene concentration. The fraction that precipitated earlier is more unstable and form larger nanoaggregates than the fraction precipitated later. Moreover, the results of asphaltene concentration suggest that asphaltenes precipitated from a higher asphaltene-content solution have more variation in properties, which influences their aggregation behaviour, compared to solutions with a lower asphaltene-content.

-

บทคัดย่อ

พิษณุ ธีรภาพกุล : การตกตะกอนของแอสฟัลทีนตามเวลา (Time Based Fractionation of Asphaltenes) อาจารย์ที่ปรึกษา: ศาสตราจารย์ คร. เอช สก๊อต ฟอกเลอร์ และ ผู้ช่วยศาตราจารย์ คร. ปมทอง มาลากุล ณ อยุธยา 46 หน้า

การตกตะกอนของแอสฟัลทีนนั้นเป็นกระบวนการที่ขึ้นกับเวลา โดยเชื่อว่าแอสฟัลทีนที่ ดกตะกอนก่อนเป็นแอสฟ์สทีนที่มีความเสถียรน้อยที่สุดซึ่งก่อให้เกิดปัญหาในกระบวนการผลิต น้ำมัน ความเข้มข้นของแอสฟิลที่นถูกศึกษาว่าเป็นหนึ่งในตัวแปรที่ควบคุมอัตราการตกตะกอน ของแอสฟิลทีน งานวิจัยนี้ใช้การแยกตามเวลาและตัวแปรของการละลายของแอสฟัลทีนใน การศึกษาพอลิดิสเพิร์สซิตี (polydispersity) ของแอสฟ์สทีนและความแตกต่างของแนวโน้มในการ ดกตะกอนของแอสฟัลทีนที่ความเข้มข้นของแอสฟัลทีนต่างๆกัน แอสฟัลทีนที่สกัดได้จาก น้ำมันดิบสองชนิดคือ Al และ Kl ถูกแยกผสมด้วยโทลีอีน เพื่อเตรียมน้ำมันตัวอย่างที่ความ เข้มข้นของแอสฟัลทีนต่างกันคือ 3 เปอร์เซ็นต์ และ 8 เปอร์เซ็นต์ โดยน้ำหนักของแอสฟัลทีนใน ์ โทลูอีน แอสฟัลทีนในสารละลายถูกทำให้ดกตะกอนโดยการเติมตัวตกตะกอน (เฮปเทน) ดาม ้ความเข้มข้นที่กำหนด แอสฟัลทีนที่ไม่เสถียรได้ถูกเก็บตัวอย่างที่เวลาต่างๆกันจนกระทั่งถึงจุด สมคุล ผลการทดลองจากกล้องจุลทรรศน์และ SAXS แสดงให้เห็นว่าอัตราของการตกตะกอนของ แอสฟัลทีนที่ถูกแยกขึ้นอยู่กับเวลาและความเข้มข้นของแอสฟัลทีน ส่วนที่ตกตะกอนก่อนมีความ เสถียรน้อยกว่าและสร้างกลุ่มก้อนนาโนที่ใหญ่กว่าแอสฟัลทีนส่วนที่ตกทีหลัง นอกจากนี้ผลจาก ้ความเข้มข้นของแอสพัลทีนชี้ให้เห็นว่าแอสพัลทีนที่ตกตะกอนจากสารละลายที่มีความเข้มข้น ของแอสฟิลทีนสูงกว่ามีความหลากหลายของคุณสมบัติมากกว่าซึ่งมีผลกระทบของพฤติกรรมของ การตกตะกอนมากกว่าสารละลายแอสฟัลทีนที่มีความเข้มข้นน้อยกว่า

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Prof. H. Scott Fogler for providing me a great opportunity to do the research in his research group at University of Michigan. I would also like to thank my co-advisor, Asst. Prof. Pomthong Malakul for giving advices on the thesis and helpful suggestions regarding the life in United States. In addition, I am very greatful to have Prof. Sumaeth Chavadej and Dr. Veerapat Tantayakom as my thesis committees.

I am very thankful to all current and previous members of Fogler research group, especially Dr. Nasim Haji Akbari Balou, Dr. Michael Hoepfner, Dr. Mark Jemmett, Claudio Vilas Boas Favero, Nina Gasbarro, Zheng Sheng, Anucha (Boo) Leelaratsameephanit, Gustav Sandborgh, and Fan Zhang for helpful suggestions, valuable discussion and creating a friendly environment. I would like to thank the sponsors of the University of Michigan Industrial Affiliates Program for financial support. The program members include: Chevron, Conocophilips, MSi Kenny, Nalco, BP, Shell, Statoil, Halliburton, and Total. I am also greatful for the full scholarship for my Master's degree provided by the Petroleum and Petrochemical College and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials. I would also like to acknowledge the excellent staff from the Chemical Engineering Department of the University of Michigan, namely; Laura Bracken, Shelly Fellers, Kelly Raickovich, Susan Hamlin and Michael Lazaz.

Additionally, I would like to thank my friends at North Campus Coop and members from Thai Student Associate at University of Michigan for making my time in Michigan a wonderful experience.

I would like to thank Pongkhun Siriprasurtsilp for his help, moral support and great time together in Ann Arbor. Also, I would like to express my thanks to Thanawat (Tum), Thammaporn (Pearl) and Wattana (Zack) for helping and suggesting me for the laboratory work. I would like to extend my thanks to Kamol (Mail), Pantid (Glur), and Kasidit (Tua) for their help in performing and collecting some experimental data and paper works.

Finally, I am very thankful to my family for their support and encouragement. Without them, this project would not have been accomplished.

V

TABLE OF CONTENTS

.

		PAGE
Tit	le Page	i
Ab	stract (in English)	iii
Ab	stract (in Thai)	iv
Acl	knowledgements	v
Tat	Page act (in English) act (in Thai) owledgements of Contents of Contents of Tables of Figures R INTRODUCTION THEORETICAL BACKGROUND AND LITERATURE REVIEW EXPERIMENTAL 3.1 Materials 3.1.1 Crude oil 3.1.2 Solvents 3.2 Equipment	vi
Lis	t of Tables	viii
Lis	t of Figures	ix
СНАРТ	ER	
I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	3
	LITERATURE REVIEW	
III	EXPERIMENTAL	14
	3.1 Materials	14
	3.1.1 Crude oil	14
	3.1.2 Solvents	14
	3.2 Equipment	15
	3.2.1 Optical Microscope	15
	3.2.2 Cāmera	15
	3.2.3 Ultracentrifuge	15
	3.2.4 Microcentrifuge	15
	3.2.5 Syringe Pump	15
	3.2.6 Scale	15
	3.2.7 Sonicator	15

CHAPTER

-

.

.

PAGE

	3.3 Software	16	
	3.4 Experimental Procedures	16	
	3.4.1 Asphaltene Extraction	16	
	3.4.2 Model Mixture Preparation	16	
	3.4.3 Time and Solubilioty Based Fractionation	16	
	3.4.4 Microscopy Experiments	18	
	3.4.5 Small Angle X-ray Scattering Experiments	18	
	3.4.6 Centrifugation Experiments	19	
IV	RESULTS AND DISCUSSION	20	
	4.1 Scattering Results	20	
	4.2 Microscopy Results	24	
	4.3 Mixture of Least and Most Stable Asphaltenes	30	
V	CONCLUSIONS AND RECOMMENDATIONS	33	
	REFERENCES	35	
	APPENDICES	38	
	Appendix A Micro-centrifugation Results of A1 Asphaltenes	38	
	Appendix B Plausible Explanation for Effect of Concentration	40	
	CURRICULUM VITAE	44	

.

LIST OF TABLES

TABLE

.

3.1	Elemental analysis of A1 and K1 asphaltenes	14
3.2	Physical properties of n-Heptane precipitant at room	14
	temperature	
4.1	Radius of gyration of unfractionated and fractionated A1	
	asphaltenes extracted from 3 wt% and 8 wt% asphaltene-	
	content solutions	23
4.2	Radius of gyration of unfractionated and fractionated K1	
	asphaltenes extracted from 3 wt% and 8 wt% asphaltene-	
	content solutions	23

PAGE

LIST OF FIGURES

FIGURE

•

2.1	Yen-Mullins model	4	
2.2	Schematic of interaction between two colliding asphaltene		
	particles	5	
2.3	Detection times for onset of precipitation and onset of haze	;	
	for varying heptane concentrations using K-1 and K-2		
	crude oils	5	
2.4	Centrifugation result of asphaltenes precipitated at		
	50 vol% heptane	6	
2.5	Single master curve of unified model for aggregation of		
	asphaltenes	7	
2.6	Schematic of proposed the modification of fractal		
	dimension of asphaltene precipitation mechanism	10	
2.7	Centrifugation plots at (a) 50 vol% heptane and		
	(b) 75 vol% heptane	10	
2.8	(a) average alkyl chain lengths and (b) metal contents for		
	different asphaltene cuts	11	
2.9	Collision efficiency of asphaltenes extracted from various		
	origins vs. percentage of precipitant concentration	12	
2.10	Relative diffusivities of (a) Buzurgan, (b) Maya and (c)		
	Athabasca asphaltenes, as a function of asphaltene		
	concentration in toluene-d8	13	
3.1	A schematic diagram of A1 fractionation procedure	17	
3.2	A schematic diagram of K1 fractionation procedure	18	
4.1	Scattering profile of unfractionated A1 asphaltenes and		
	fractionated A1 asphaltenes extracted from 3 wt%		
	asphaltene solution	21	

÷

. .

PAGE

LIST OF FIGURES

.

1.1

FIGURE			PAGE
4.2	Scattering profile of unfractionated K1 asphaltenes and		12
	fractionated K1 asphaltenes extracted from 3 wt%		
	asphaltene solution	-	22
4.3	Detection lines of unfractionated A1 asphaltenes and		
	fractionated A1 asphaltenes extracted from 3 wt%		
	asphaltene solution		26
4.4	Detection lines of unfractionated K1 asphaltenes and		
-	fractionated K1 asphaltenes extracted from 3 wt%		
	asphaltene solution		26
4.5	Detection lines of fractionated A1 asphaltenes extracted		
	from 3 wt% solution (black lines) and 8 wt% solution (blue		
	lines)		27
4.6	Detection lines of fractionated K1 asphaltenes extracted		
	from 3 wt% solution (black lines) and 8 wt% solution (blue		
	lines)		27
4.7	Plot of $ln(t_{detection}\sqrt{C_1(0)}/\mu)$ vs. $1/(\delta_{asph} - \delta_{solution})^2$ for all		
	fractionated and unfractionated A1 and K1 asphaltenes.		29
4.8	Solubility parameters of fractionated A1 asphaltenes.		29
4.9	Solubility parameters of fractionated K1 asphaltenes		30
4.10	Detection time as a function of heptane concentration of		
	mixtures of A1 least stable (Cut 1) and most stable (Cut 5)		
	fractions extracted from 3 wt% asphaltene solution		31
4.11	Solubility parameters of mixed Cut 1 and Cut 5 of		
	fractionated A1 asphaltenes at different mass fractions of		
	Cut 5		32
Al	Centrifugation plots for different cuts at 60 vol% and 70		
	vol% heptane from 3 wt% asphaltene solution		38

9.1

х

LIST OF FIGURES

9

FIGURE

.

•

A2	Centrifugation plots for different cuts at 60 vol% and 70			
	vol% heptane from 8 wt% asphaltene solution.		39	
B1	Fraction of asphaltenes precipitated to total asphaltenes at			
	(a) one month and (b) two months as a function of heptane			
	concentration.		41	-
B2	Fraction of asphaltenes precipitated at 1 day to total	-		
	asphatlenes precipitated after 25 days as a function of			
	heptane concentration		43	

PAGE

*

-