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ABSTRACT

5673023063:  Petroleum Technology Program
Rawipreeya Suesuan: Comparative Study on the Effects of Hollow
Silica and Activated Carbon on Methane Hydrate Formation and
Dissociation
Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Dr. Santi
Kulprathipanja 61 pp.
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Both hollow silica and activated carbon are attractive porous media because
of their high specific area, high porosity, and high adsorption gas capacity. The
methane hydrate formation and dissociation were compared between the system with
hollow silica and activated carbon. The formation experiment was conducted in the
quiescent condition and closed system at 8 MPa and 6 MPa and 4°c. The dissociation
experiment was conducted after the formation was completed at 6.5 MPa and 5 MPa
with the driving force of 21°c. Results showed that the temperature profiles and rate
of methane hydrate formation between activated carbon and hollow silica systems are
different. The hydrate formation at ¢ MPa'gave lower conversion than that at s MPa
in the system with activated carbon, but the different of experimental pressure not
effect to the conversion in hollow silica system. The methane gas recovery in the
system with hollow silica is higher than the activated carbon system. Therefore, hollow
silica is an effective porous media for methane hydrate formation at lower pressure
and also methane recovery than the activated carbon system. It may be concluded that
the type and characteristics of porous media played a significant role on the methane
hydrate formation and dissociation.
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