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CHAPTER 1

Introduction

In this chapter, we give an introduction to the background materials used in this
dissertation. We start with ideas and the motivations for quantum gravity. We
then move to the topic of the AdS/CFT correspondence, holographic renormaliza-
tion group (RG) flows and gauged supergravities. The aim of this dissertation is
to study holographic RG flows from four-dimensional gauged supergravities with

N =3 and N = 4.

1.1 Quantum gravity

Quantum gravity is one of the most prevailing research in high energy physics. It is
an attempt to give a quantum description of gravity. Three of the four fundamental
forces are described in the framework of quantum theory. The standard model
successfully gives a quantum description of the electromagnetic, weak, and strong
interactions, along with the existence of elementary particles. The standard model
also successes in providing experimental predictions. By including a quantum
description of gravity, it is a hope to have a theory with a unification of the four

fundamental forces.

Besides quantum effects, general relativity provides a wonderful classical
framework for gravity. It describes gravitation as a geometry of spacetime. Gen-
eral relativity also gives precise predictions, including gravitational time dilation,
gravitational lensing, gravitational redshift. Recently, the gravitational wave from

merging of a binary black hole system, which is predicted in the theory was di-



rectly observed using the Laser Interferometer Gravitational-Wave Observatory

(LIGO) [L].

There are no less than 16 major approaches proposed to give a quantum

description to general relativity [2]:

1. Canonical quantum gravity
2. Manifestly covariant quantization
3. Euclidean quantum gravity
4. R-squared gravity
5. Supergravity
6. String and brane theory
7. Renormalization group and Weinberg’s asymptotic safety
8. Non-commutative geometry
9. Twistor theory
10. Asymptotic quantization
11. Lattice formulation
12. Loop space representation
13. Quantum topology, motivated by Wheeler’s quantum geometrodynamics
14. Simplicial quantum gravity and null-strut calculus
15. Condensed-matter view: the universe in a helium droplet

16. Affine quantum gravity.



The first eight approaches are based on the Lagrangian/Hamiltonian framework
which uses the action principle. String theory is the only one among the first
eight approaches that are not a field theory of conventional point particles and
spacetime is is required to have extended structures. The later eight approaches

use different mathematical structures of conventional pictures.

However, there are problems that obstruct the attempt to quantize the the-
ory of gravity. We often encounter divergences or some inconsistency of quantum
gravity theories. For example, field quantization in quantum field theory neglects
modes of fields that possess zero-point energy. The number of these mode is infi-
nite. The vacuum energy is then infinite implying infinite gravity which is coupled
to this energy. From observations, a cosmological constant which is corresponding
to the vacuum energy is small. This is a problem. Also from the viewpoint of field
theory in the unit with A = ¢ = 1, the gravitational coupling constant has a unit
of energy~2. Theories with coupling constant of positive dimensions usually turn
out to be finite, while theories with a dimensionless coupling constant are can-
didates to be renormalizable. Theories that have coupling constants of negative
dimensions, usually have divergences and they are not renormalizable. Quantum

description of general relativity falls into the last category.

In string theory, as the candidate for a quantum theory of gravity, the prob-
lem of non-renormalizability has been cured. One-loop diagrams in this theory are
finite and free of any ultraviolet divergences [3]. A solution to the cosmological
constant problem is possible [4]. String theory also provides a potentially powerful
tool, the AdS/CFT correspondence, to solve complex problems in various areas of

theoretical physics.

1.2 AdS/CFT correspondence

Recently, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence
(also known as gauge/gravity duality), which is proposed by Juan Maldacena

in 1997 [B], is one of the most outstanding developments in string theory with



exceed 14,700 citations [6]. It is a duality between conformal field theories, which
are the gauge theories, and string theory on anti-de Sitter spaces. With this
duality, one can study strongly coupled quantum field theories, which cannot
be described by perturbative expansion, via the gravitational theories which are

weakly interacting.

The AdS/CFT correspondence is not only interesting in the field of high
energy physics and string theories, but also used to study other areas, i.g. con-
densed matter physics and nuclear physics. Condensed matter physics also uses
the formalism of quantum field theory to describe exotic states of matter. How-
ever, some phenomena are described by strongly coupled field theories. Some

condensed matter physicists believe that we can study these phenomena by using

the AdS/CFT correspondence [{7].

Recently, there has been a lot of studies using the AdS/CFT correspon-
dence and string theories in the fields of hadron physics [8] and condensed matter,
including superconductors [9] [10] [11] [12] [13] [14] and superfluids [15]. As con-
ventional superconductors are well-described by Cooper pair fluid in BCS theory,
the understanding of pairing mechanism for unconventional superconductors are
still incomplete since a normal state of some materials is not well-described by the
standard Fermi liquid theory. Recently, the AdS/CFT correspondence technique
is used to study unconventional superconductors by introducing a 3 + 1 dimen-
sional black hole with a charged scalar field dual to a strongly coupled gauge theory
on a layered unconventional superconductor. This is the well-known AdS,/CFT;
correspondence. With this technique, we can obtain some results for conductivity,

phase transition, and energy gap from Einstein-Maxwell scalar theory.

This correspondence can also be used to study the other side of the coin, as
it could give a microscopic description of black hole thermodynamics. The AdS/
CF'T correspondence provides a wonderful framework to study a non-perturbative
definition in quantum gravity of asymptotically-AdS black hole, in the context of
a conformal field theory living on the boundary of the AdS space. The Bekenstein-
Hawking entropy of a class of BPS black holes could be reproduced in the dual



CFT [16] [17] [18] [19] [2d] [21).

AdS/CFT correspondence provides an excellent framework in the study of
the renormalization group flows in theories with a strongly interacting system,
which is a non-perturbative system. We can study a deformation in a CFT by
constructing a dual geometry in a gravity theory with an asymptotically AdS
background. The conjecture gives a one-to-one map between fields in the gravity
theory and operators in the conformal field theory. A map between the radial
coordinate of the AdS geometry to the energy scale in the CFT allows us to
holographically study a non-perturbative RG flows from the UV to IR fixed points.

1.3 Four-dimensional gauged supergravity

To study holographic RG flows, working in lower-dimensional gauged supergrav-
ities, as the effective theories of superstring theories or M-theory, has proven to
be useful and effective. There are geometries in the form of the AdS, x X7,
identified with AdS, vacua of the scalar potential of four-dimensional gauged su-
pergravity. The isometry of the internal manifold corresponds to gauge symmetry
at the AdS, vacua. The effective four-dimensional N = 8 SO(8) gauged super-
gravity constructed in [22] results in the AdS, x ST geometry preserving maximal
supersymmetry. Holographic study within this gauged supergravity has been in-
vestigated in [23] [24] [25] [26] [27]. These results give holographic descriptions of
the deformations leading to various types of RG flows in the superconformal field

theories in three dimensions.

In this dissertation, we study holographic RG flows from four-dimensional
gauged supergravities in the context of AdS,/CFTy correspondence. Moreover,
we focus on gauged supergravities with N = 3,4. We will study supersymmetric
solutions with only the metric and scalar fields non-vanishing. Supergravity the-
ories with N > 2 have enough supersymmetries to determine the geometry of the
scalar manifold in the form of the coset space G/H. We are also not interested

in supergravities with N > 4 since they have no matter multiplet. Thus, we only



interested in gauged supergravities with N = 3 and N = 4.

In four-dimensional N = 3 gauged supergravity, there is a unique non-
maximal AdS, solutions from a compactification of the eleven-dimensional super-
gravity [28]. The internal manifold is the tri-sasakian N9'? with SU(2) x SU(3)
isometry. The corresponding Kaluza-Klein spectrum has been given in [29], and
the structure of N = 3 multiplets is investigated in [B0]. A possible N =3 SCFT
dual to M-theory compactified on AdS; x N0 is studied in [31]. The gravity
dual to N = 3 SCFT is also studied in many aspects [32] [33] [B4] [B5] [B6] [37].
These result in a significant match between N = 3 SCFT and the AdS, solution
from the compactification of eleven-dimensional configurations in M-theory. The
eleven-dimensional supergravity compactified on the AdSy x N9 can be described
by an N = 3, SU(3) x SO(3) gauged supergravity as an effective theory [29] [30].
The theory with eight vector multiplets is constructed in [38] [B9] [40]. Vari-
ous deformations and supersymmetric vacua have been identified in [41]. The
eleven-dimensional configurations to these solutions might be obtained through a

consistent reduction ansatz if exists.

Four-dimensional N = 4 Gauged supergravity has been studies for a long
time [42] [43] [44]. The embedding tensor formalism, which included all the de-
formations, has been given in [45]. There are also N = 4 gauged supergravity
obtained from the compactifications of type IIA and type IIB superstring theories
with various fluxes [46] [47] [48] [49].

1.4 Outline

This dissertation focuses on studying holographic RG flow solutions from N = 3
and N = 4 gauged supergravities in the context of AdSy/CFTj correspondence.
In chapter 2, we give an introduction to AdSs/CFT, correspondence. This in-
cludes reviews of N = 4 super Yang-Mills theory and type IIB superstring theory
on AdSs x S°. We will later consider a generalization to the AdS,/CFTj corre-

spondence and give holographic solutions of interest in chapter 4 and chapter 5.



In chapter 3, we review some general structures of gauged supergravities in four
dimensions. The specific structures for N = 3 and N = 4 gauged supergravities

will be given in each corresponding chapter.

In chapter 4, we study holographic RG flows from N = 3 gauged supergrav-
ity in four dimensions. In chapter 5, we study holographic RG flows from N =4
gauged supergravity obtained from the compactifications of type II string theories
with non-semisimple gaugings and also consider solutions from semisimple gauge

groups. We conclude the dissertation in chapter 6.



CHAPTER II

AdS/CFT Correspondence

Anti-de Sitter/conformal field theory correspondence or AdS/CFT correspon-
dence, sometimes called Maldecena’s conjecture, is a relationship between D + 1-
dimensional quantum gravity theories with AdS background and quantum field
theories with conformal symmetry, living on D-dimensional boundary of the grav-
ity theories. As the boundary theories are similar to the Yang-Mills theories which
are gauge theories that describe elementary particles, the correspondence is some-

times called gauge/gravity duality.

The correspondence was proposed by Juan Maldacena in 1997 [5], as a re-
lation between type IIB string theory on AdSs x S° space and N' = 4 super
Yang-Mills theory on 3 4 1-dimensional Minkowski space. It was showed later
that the conformal field theory lives on the boundary of the corresponding anti-
de Sitter space [p0] [b1]. This made the conjecture more precise and has more

physical aspects.

There are many ways the correspondence can be extended and generalized.
Generally, it is a duality between a gravitational theory on AdSp.; and a D-
dimensional conformal field theory. There are also extensions in which nonconfor-
mal quantum field theories correspond to quantum gravity theories on the domain

wall backgrounds, called domain wall/QFT correspondence [52].

The AdS/CFT correspondence is now one of the largest areas of study in
string theory. Maldacena’s paper had become the most cited papers in high energy
physics by the year 2019, with more than 14,700 citations [6]. Although the

correspondence has not been concretely proved, the consecutive researches provide



considerable evidences of the correspondence.

In this chapter, we review Maldacena’s conjecture which is a relation between
N = 4 super Yang-Mills theory on 3 + 1-dimensional Minkowski space and type
IIB string theory on AdSs x S® space. We first review N' = 4 super Yang-Mills
theory, a system of D3-branes in type IIB string theory, and the conjecture.

We will later assume that the AdS,/CFT; correspondence, which will be
used to discuss holographic RG flows, works in a similar way. Although there
is no formal mathematical proof for general cases, a large number of researches
from both AdS and CFT sides are in agreement to make it evident that the

correspondence could be generalized to various dimensions.

2.1 N =4 super Yang-Mills theory

For a gauge group SU(N) with coupling constant gy, each N = 4 vector su-
permultiplet consists of a gauge fields AMA, four Weyl spinors A7 and six real
scalar fields X4 with SU(N) index A =1,...,N?—1 = dim(SU(N)), spacetime
index p = 0,...,3 with signature n = diag(—1,+1,+1,+1), Weyl index o = 1, 2,
R-symmetry SU(4) ~ SO(6) indices i = 1,...,6,a=1,...,4. SU(N) generators
T4 satisfy the algebra

(T4, TP) =i fA2 . TC. (2.1.1)
All fields in vector multiplet can be written into a form of N x N matrices,

A, = AATA N = ALTH, X = XA4TA (2.1.2)

Lagrangian for N' = 4 vector multiplet is

1 1 - .
Ly—g = —5—tr (——ij — NP, — (D, X")? (2.1.3)
9y m 2

) 1 . .
FOPALX ] + e + (X XJ]2) , (2.1.4)
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where the field strength tensor and covariant derivative are defined as

F.=0,A,—0,A, +i[A,, A (2.1.5)
D, X"'=09,X"+i[A, X']. (2.1.6)

Note that there are a possibly #-term 1697r2 trePAF,, F,\ with constant 6, and a
gauge fixing and ghost terms for quantum computations. The coefficients C2
are needed to make a singlet form \,, \, and X* transforming respectively as 4,
4, and 6 of the global SU(4) R-symmetry. These coefficients can be derived by
dimensional reduction of A/ = 1 super Yang-Mills theory in 9 + 1 dimensions,
containing a ten-dimensional gauge field Ay = (4,, X") and a Majorana-Weyl
spinor ¥, = (A\,q). The 10-dimensional Lagrangian is

Lig = —Zitr <—1F§4N + i\I/FMDM\I/> : (2.1.7)

Iy m 2

with 10-dimensional gamma matrices

TGS, ), (2.1.8)

where
=t Ti=q0 g5 (2.1.9)
The matrices v* are the usual 4 Dirac matrices, 7®) = i7%v'4%43 and 3* are

8 x 8 Dirac matrices of SO(6). In the Weyl representation, these matrices can be

written in the form of Pauli matrices o# and the coefficients C?,

0 o » 0 C!
- A= . (2.1.10)
a* 0 cio0

These gamma matrices satisfy ten-dimensional Clifford algebra

{r™ Ny = 2MN, (2.1.11)

Since C?, are constructed to be invariant under SU(4), the lagrangian is
manifestly invariant under R-symmetry. The other manifest symmetries are gauge

SU(N) and Poincaré symmetries. However, there are also other symmetries. It is
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called the N' = 4 super Yang-Mills theory because there are 4 supersymmetries,

by the transformations

QaX" = C oy (2.1.12)
QNgy — faply + [X', X]easCi®, (2.1.13)

oy — Ci'ah DX (2.1.14)
QuA, = 00”23, (2.1.15)

which can be also derived from 10 dimensions. The f,3 is the self-dual component
of Fy, written as fog = Fj,0" 4. Note that Q¢ has the R-symmetry index a.
This is the general definition of an R-symmetry, a symmetry that acts on the

supercharges. The fundamental relations among supercharges are

{Qa Qpp} = 207, Pudy, (2.1.16)

{Q%, Q% = [P,,Q%] = 0. (2.1.17)

It can be shown that the S-function of N' = 4 super Yang-Mills theory

vanishes at all loops. For example, the S-function to one loop is given by

Blovar) = 1 (%cw SOMIOET)Y C<X>> G (2119

where the second term on the right-hand side is a sum over all Weyl fermion and
the third term is a sum over all real scalars. For C'(4) = C(\) = C(X) = N,
the right hand side can be factored out and gives zero. In a theory with g = 0,
there is no dynamical scale generated. Hence there are no "particles”, and, strictly
speaking, no S-matrix, although one can talk about perturbative S-matrix for a
scattering of (gauge variant) gluons, gluinos, etc.. For theory with 5 = 0 the

Poincaré group has a larger bosonic extension known as a conformal group.

In any quantum field theory, the 2-point function of an operator ©(z), let

it be scalar for simplicity, can be defined as

(01T (6(2)6(0)) |0) = G(z%, . ) (2.1.19)
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where p is a renormalization scale, ¢ is a renormalized coupling and G(2?, u, g)
is the renormalized (finite, well-defined) correlation function depending only on
z? = z,2" to preserve Lorentz invariant. We have indicated that there are no

dependences on all other parameters.

Let © have engineering dimension Dg, which is the mass dimension in A =

c = 1 units, e.g.

O | Dg
P 1
v | 3/2
A, 1
Fol 2
o3 3
F? 4
Therefore, we can redefine G(z2, i, g) as
G(2?,p,9) = («%) P2 G(t, g) (2.1.20)

where the function G(t, g) depends on the dimensionless parameter ¢ = slog(a?1?).

The renormalization group (RG) equation tells us that
2+ﬁ( )2+2() G(t,g) =0 (2.1.21)
General solution: First find a solution to the auxiliary equation,

Calt.9) = 5(3(t.9)) (2122)

with initial condition of the running coupling g(0, g) = g. Then we can solve the

RG equation for

A

G(t.g) = £(g(t, g))e 2o drtalta)), (2.1.23)
A critical point is given by 5(g*) = 0 for some g* then
G(t,g") = &(gh)e 0! (2.1.24)

= {(g") (pPa®) ). (2.1.25)
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Note that the second line in the above equation came from dimensional analysis.

Hence

constant

2

where (g*) acts as an anomalous dimension. Such power-law behavior is typical

of conformally invariant theories.

For example, let’s consider a single bosonic field ¢(z) in 4 dimensions with

a free action,

s=3 [ a0 =5 [ a0, (2.1.27)

The form of the action, including the explicit from of the metric n = diag(—1,+1, +1, +1),
is invariant under the spacetime translations z# = " + ¢* and Lorentz transfor-

mation x# = A*,2'" as long as ¢(x) transforms as a scalar, ¢(z) = ¢'(2).

If we take a scale transformation into account, let x* = Ax* where A is a

constant. This is clearly not a Lorentz transformation. The metric is then changes

1
Mo = AMrs Ty = —5 7 (2.1.28)

Since the change is proportional to the metric itself, we also could try to compen-

sate by rescaling the fields,

1/d4 99(z) 9¢(x )77 /d4 'A41 0 gb(Am')l 0 d(Az" . (2.1.29)

2 Oz OV A Ox' Aoz
The previous equation can be brought to the same form by letting

Ap(Ar) = ¢(a'),  A(x) = ' (5x). (2.1.30)

The 2-point function is also the same,

constant A?constant

(¢'(2')¢'(0)) = (2.1.31)
— (Ad(x)Ag(0)) . (2.1.32)

This is an example where the mass dimension or scaling dimension equal to one

for a scalar field.
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In general, a conformal invariant condition applies if
0/(2') = AR°O(x) (2.1.33)

with the scaling dimension or mass dimension Ag = Dg + 7. In this case, one

can show
constant
(O(2)0(0)) = TR (2.1.34)
This can be proved by letting
(6(2)0(0)) = f(l=]) = f(A]Z"). (2.1.35)
The 2-point function is then
(6(2)0(0)) = x5 (6/(1)01(0)) = = (1) (2.1.36)
By setting || = 1, the scaling A give a relation for function f(|z|),
Flay =t _ T0). (2.1.37)

We got a lot of information by just considering a scale transformation, z* =
Ax™ where A = constant. In fact, there is another change of coordinates, special
conformal transformation, which is within a conformal group,

'+ atx’?

no_ '
1+ 2z2™a, + a?x"?

(2.1.38)

One can show that under the special conformal transformation, the metric trans-

forms as 1, — 2@y,

It is possible to rescale away w(x). However, one can use the covariant

expression for the action

S = /d%\/g Gauqsa% + %R&) . (2.1.39)

Let us see how it works in general. Suppose there is a coordinate transformation
a# = z#(z’), under which, by covariance,

OxP 0x° (!
O Oz el )gw’(I/)‘ (2.1.40)

G (2) = Gpo ("))
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In order to do this, it is convenient to think of the transformation of ¢ as a scalar
¢(z) = d(z') and Poincaré rescaling ¢(z') = e~z @)@/ (2'). Note that for D = 4,
e¥ = A is a constant, and we get ¢'(z') = Ag(x) as before.

Be general covariance, the action transforms as

de\/g_( o o(x) + ﬂmww)

8(D —1)
D, ./ / D -2 (o 22 (!
d”z'\/g 0" H(r)) + ———R (2P (') ) (2.1.41)
8(D— 1)
Now if the coordinate transformation is such that g/, (2') = e*(@ g, (z'), we have
R'(2') = e ) (R(2') — 2(D — 1)V”?w — (D — 1)(D — 2)0,wd"w) . (2.1.42)

Letting ¢(z) = e_¥w(x/)gb’(x’), we get

/dDQS'/\/_GD 2)w ( 8/( —T_ngb/)a/u(e—%wqb/)

D-2 / / / i
+m (R—2(D—-1)V?w—(D—1)(D - 2)0,wd"w) ¢2>
—/dD:C'\/E(lamb'a”qb’—l— (ll)) 2)R¢I2) /de/\/—(_D 28/ (b/a/,u(bl_i_
+;(D . )28I a/u ¢I2 B V/2w¢l2 - %(a/yw)Q(ﬂZ) ) <2143)

Note that everything in the above equation is at 2’. The second and the fourth
terms in the second integral of the right-hand side cancel each other. The first

and third terms also cancel by integration by part.

Now we see what the connection with § = 0 is. In theories where 5 # 0
a scale parameter will be generated in the quantum theory spoiling conformal
invariance even if it was present in the classical action (e.g. in QCD with massless
quarks [63].) In A/ = 4 SYM conformal invariance is exact. Let’s look at the
generators of the conformal group. Let A = 1 + ¢ with € < 1. An infinitesimal

scale transformation is then

0¢(x) = ¢'(x) — d(x) = (1 + €)(x + ex) — ¢()
~ (1 + 2"0,)¢p(x) (2.1.44)
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which can be defined as a scale generator D = i(1 + 2#0,). Note that this can
be generalized to D = i(A + z#0,). Similarly, we will get a set of conformal

generators (without spin),

P, =id, (2.1.45)
M, =i(z,0, — x,0,) (2.1.46)
D =i(A+2"9,) (2.1.47)
K, =i(2*0, — 2,20, — 2Ax,,) (2.1.48)

where P, and M,, are Poincaré generators and K, denotes a special conformal

generator. These generators make a conformal group SO(4,2) ~ SU(2,2).

The last thing to notice is that K, and Q% do not commute. Thus we
need to introduce 4 extra fermionic generators S¢ = o, [K,, Q] to close the
superalgebra. Hence the global symmetry of A/ = 4 super Yang-Mills theory is
PSU(2,2|4), whose bosonic part is a product SU(2,2) x SU(4) of a conformal
group and R-symmetry group.

2.2 Type IIB String Theory on AdSs x S°

In flat Minkowski 9 + 1-dimensional space, type II string theory, after fixing the

world sheet metric, has an action

1

4o

Swg = — / dodr (0o X3 0" XM — iUMy29, W ) (2.2.1)

where XM (7,0) and U (7, ¢) denote bosonic worldsheet coordinates in 9 + 1 di-
mensional Minkowski space and ten 2-components Majorana fermions world sheet

fields respectively. The index o = 0,1 is now the Lorentz index on the world

sheet, which can be raised/lowered with 1.5 = diag(—1,41) (¢° = 7,0' = 0.)
2-dimensional Dirac matrices are
0 — 0 2
V=1 oY= : (2.2.2)
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Equations of motion of (),

0,0°XM =0 (2.2.3)
i 0, UM =0, (2.2.4)
have a solution
XM =XMr+o0)+ XM (1 -0) (2.2.5)
VM (r —o
M = - ) : (2.2.6)
(T +0)

If we only look at closed strings, the left/right movers (7 + o) are completely
decoupled. For a string to be closed we need X to be periodic, with period equal
to 7 conventionally. However, fermionic fields ¥4 can be either periodic (Ramond)
or antiperiodic (Neveu-Schwarz). We can express them as mode expansions, for

bosonic string,

1 ! ;
XM — §£L'M +a'pM(r - o) + i1/ % Z aﬁ/[e_zm(T_") (2.2.7)

n#0
1 ! ;
XY = oM+ M + o)+ % Y M e2inirre), (2.2.8)
n#0

For fermionic strings, there are mode expansions for Ramond (R) sector,

Hsai i aneia) (2.2.9)
nez

=" d) e o) (2.2.10)
nez

and for Neveu-Schwarz (NS) sector

UM = " (o) (2.2.11)
rez+3

vl = )" b)), (2.2.12)
TEZ+%

Since there are two (anti)periodic conditions for each endpoint, we have

four sectors, NS-NS, R-R, NS-R, and R-NS. The first two sectors are spacetime
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bosons and the other two are spacetime fermions. With the similar quantiza-
tion, «, a,d, d, b,l; become creation/annihilation operators generating the quanta
of spacetime fields.

Let’s look at the left movers (X* and ¥"). The ground state of the NS sector

2 1

|0) yg has mass m* = —5, which is a tachyon and removed by GSO projection.

Excited states b, |0) 4 has m? = 0 corresponding to massless vector fields in 8y
2

representation of SO(8) massless little group. The ground state of R sector |0),

is massless. Other excitations of both sectors are massive.

Since elements of Clifford algebra {d}!,d})'} = 2n™¥ acting as Dirac matri-
ces, the R ground state carries a representation of SO(8), i.e. it transforms like a
spinor 85 & 8¢, where 8¢ has a positive chirality and 8¢ is a negative one. The
GSO projection removes one of these imposing a chirality condition for left /right
movers. Type IIA superstring theory results if we remove the opposite chiralities
from left /right movers (non-chiral theory) while type IIB superstring is obtained

by removing the same chiralities (chiral theory).

Let’s consider bosonic massless spectra of both theories. For type ITA theo-
ries, the massless bosonic spectra of NS-NS sector come from 8, ®8, = 1928335
of SO(8) representation. The field content contains a dilaton ¢, B-fields B;; =
—Bj; and metric G;; = Gj; corresponding to the trace, antisymmetric and sym-
metric traceless parts of the state bi_%l;j_ . |0) ® |0). The R-R sector massless
spectra have 1-form C, and 3-form C,,, corresponding to the decomposition

85 X SC = 81, D 561, of 80(8)

NS-NS massless bosonic spectra of type IIB theories are the same as type
ITA. However, the bosonic R-R state |0), ® [0), decompositions are 8¢ @ 8¢ =
1" ® 28 @ 35’ of SO(8), which corresponds to scalar C, 2-form Cj;, and 4*-forms
C’;;.kl. In particular, C;]“.kl are the physical components of a 4-form C’:V oA which has

a self dual field strength dC} = *dCy, i.e. 9, CF L Pluo th7---p10],

paeps] T B M0
The fermionic degree of freedom comes from two gravitinos W', of positive
chirality and two dilatinos A’ of negative chirality (¢ = 1,2). The theory is chiral

but all anomalies cancel.
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String theory also contains an infinite number of massive fields, but in the
low energy limit, we can restrict ourselves to the massless fields with only leading
interactions. Thus we are considering type IIB supergravity. For k ~ a'%g,, g, =

e®= the bosonic action is

S —% / { -2 (*R +4do A xdg — ng A *Hg)
—%Fl A xF) — §F3 A xF5 — ZF5 A xF5 — 501 A Hs A Fg] (2.2.13)
where
Fy =dCy, Hs=dB, Fs=dCs, (2.2.14)
Fs=dCf, Fy=F;—CyA Hs, (2.2.15)
Fy = Fy — %OQ A Hs + %B A Fy (2.2.16)

and, strictly speaking, it is Fy which is self-dual, F; = %F5. Note that this makes
the kinetic term *Fy A Fy vanished. Strictly speaking, we cannot write an action
but we will do it anyway and impose Fs = %Fj at the level of the equation of

motions.

The action is in the "string frame.” One can go to the "Einstein frame”
by setting GMN = e~ ?2Gy N, with

2Hg/\/_RJr (2.2.17)

For all our purposes this will not make a difference since the solutions we are
interested in have ¢ = 0. Note that ¢ is only the deviation from the asymptotic

value ¢, that we have already used to define g; and absorbed into k.

Certainly, flat spacetime Gy ny = nyn with all other fields vanishing is a
solution that preserves all supersymmetry, 32 supercharges for ten-dimensional
N = 2 theories. Recall that from supersymmetric quantum field theory, for a

chiral superfield ® = ¢ + /20 + F#?, supersymmetry transformations are

Sep = [Q, 0] = eth, Sap=[1Q",¢] =0 (2:2.18)
5€¢ = [GQJM - EF? 56T¢ = [GTQT, @ZJ] = —iO'METaMQO (2219)
F=1[Q,F]=0, 0:+F=][Q, F] =ie'a"0,1 (2.2.20)
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where € is 2-component constant Grassmann Weyl spinor. If any of these things
get a vacuum expectation value (VEV) then the supersymmetry is broken. Since
unbroken supersymmetry implies Q |0) = QT]0) = 0, to preserve Lorentz invari-
ance, the only one that can possibly get a VEV is F. In this case, F' # 0 for
broken supersymmetric theory. So we must always check fermion supersymmetry

transformations.

Let n be a 16 component Weyl constant Grassmann spinor, fermion trans-

formations are

S\ = iTMy Py — ;ZPMNPUGMNP + fermions (2.2.21)
1
0yWar = Dy + @FNPQRSFMFNPQRS
1
+ %(FMPQRGPQR — ITMPGanp)n* + fermions. (2.2.22)

We will only be interested in solutions only with Fy # 0, F5 = Fs. In this case

SN = 0 is trivially satisfied since it does not depend on F5 whereas 0W%, = 0

reduces to
Dy + ﬁFNPQRSFMFNPQRSn =0 (2.2.23)
with
Dym = (Om + %lWMABFAB)U (2.2.24)
wyP = eNAa[Meﬁ] — eNBﬁ[Mef\‘,] — ef4eBeY O pes . (2.2.25)

Note that wy4? and e}, are spin connection and frame (zehnbein) in ten dimen-

sions.

Obviously flat 9 + 1 Minkowski space with Fy = 0 gives dyn = 0 for 32 real

supersymmetries. However, there are other solutions. The one of interest here is

ds® = ds’g, + dsgs (2.2.26)
1

F5:L

1
VOlAdSs + zvolss (2227)
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where ds? ;g is the metric of AdSs with radius L, Volags, is its volume 5-form

and similarly for S°. More explicitly, we can write in Poincaré coordinates,

2 T2 “w v L2 2
dsgs, = Iz (M dxtds”) + ﬁdr (2.2.28)
dsts = L?dQs = L*Gapd0*do” (2.2.29)
3
71 A~
F[01237"] = ﬁa Fa1--.a5 = L4 \/.56041...(3(5' (2230)

Note that F5 = %10F5. With this explicit form, we are able to investigate the
numbers of solutions of the equation f)Mn = (0 where f)M = Dy + 0(F), not just

Oy = 0. However, we should compute the integrability condition

[Dar, DxJn = Ennn (2.2.31)

where an antisymmetric matrix =),y = —ZEns is a matrix acting on 7 similar to
[Dy, Dy| = ;ILRMNPQFPQU. The number of independent solutions to DMn =0
is the same as the number of zero eigenvalues of =;yn = 0. For our case, the

maximal supersymmetry implies that =,y = 0 and all 32 of n are allowed.

2.2.1 D3-brane

The existence of RR potentials, Cy, Cs, C’l in type II1B and C1, C3 in type IIA, has
been known since the beginning of superstring theory. However, the fundamental
string is neutral under these fields. It was not clear how to describe the states
charged under such fields until 1995 [54]. In the same way as electron couples to

a 1-form electromagnetic potential via

e /[R dr A, (z(1))a" (7). (2.2.32)

An n-form potential C),, ., couples to a p = n — 1 dimensional extended object

spanning a p + 1 = n dimensional world-volume
T, / drdPoCy ., (X(7,5))0, X1 L Opp X Hr+] (2.2.33)
YpxR

Note that p is even in type ITA and odd in type IIB. The objects coupled to the
RR fields are known as Dp-branes.
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There are two types of descriptions for Dp-brane. First, they are solutions
to the supergravity equation [b5],
p
ds? = H;V2(r) (-(d:&))2 + Z(dxif) +HY2(r) (dr? + r2dQs,)  (2.2.34)
i=1

3—p

Fppo = da® Adz" A--- Ada? NdH N (r),  e® = Hp* () (2.2.35)

where

kgSNO/‘?_Tp

Hy(r) =1+ (2.2.36)

r7-p
with k& being a numerical factor. Note that this solution preserves half of the

supersymmetry (16 supercharges).

Another description is Dp-brane being hypersurfaces on which open strings
are allowed to end. To explain this, let X° X' ... XP lie on Dp-branes, as
in Figure El] They will have usual Neumann-Neumann boundary conditions.
In other words, they can move freely on Dp-branes. However, the open string
ends are fixed to the branes. The directions X?*!, ... X* have Dirichlet-Dirichlet
boundary conditions. This makes the left and right movers coupled into standing
waves. The type of modding, integer for all X and integer /half-integer for U in
the R/NS sector respectively, remains the same. However, their mode expansions
are different since there is no p-dependence in the direction perpendicular to Dp-

brane. For example, mode expansions of a bosonic string are,

1
XM = 53;“ + o'p"T + oscillators; p = 0,1,....p (2.2.37)
X'= §xz —d'o + oscillators; i =p+1,...,9. (2.2.38)

Note that d® = 0 if all Dp-branes are on top of each other. Moreover, GSO
projection works as before, removing the tachyon, and so on. Hence, the world-
volume theory is that of maximally super Yang-Mills theory in p + 1 dimensions,

as we can map
VL T g — AR (2.2.39)
% i J
b, %P = X (2.2.40)

%P L), = dar? (2.2.41)
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123 -+ N

+1
xpL

Figure 2.1: The stringy point of view of the Dp-branes with ends of open strings

fixed on brane directions

: p—3
with g%, o< gsa/ 7 .

Now we are interested in the case when p = 3 or the IIB D3-brane. From the
string point of view, we have directly 3 + 1 dimensional N' = 4 super Yang-Mills
theory with gauge group SU(N) and g%,, = gs. From the supergravity point of
view, we have e? = 1 which implies g, = e®~ being a constant everywhere. The

metric of N-stack of D3-branes is

rd rd

Na'? —=1/2 N2 1/2
ds* = (1+47r95 - ) (dz#)? + (1+47r95 - > (dr® 4 r2dQ2).

(2.2.42)

The illustration of this metric is shown in Figure @ For the region gs]j—f‘lg < 1,

the metric become flat and reduces to 9 + 1 dimensional Minkowski space
ds® = (da")? + dr® + r?dS2z, (2.2.43)

where the RHS represents R*! and R® in spherical coordinates, respectively. For
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NIZ
u<<1

gsNOl,2
rd

>1

Figure 2.2: Illustration of the metric of N-stack of D3-brane () where the

region gsle‘a < 1 reduces to 9 + 1-dimensional Minkowski space, and the region

gs]:fflz > 1 gives AdSs x S® throat

the region gs]ff‘/z > 1, the metric is much more interesting,
r? VAarg,No'?
ds? = do#)? + XTI (g2 4 p2g02)

\/47rg5Noz’2( 2
2 4 Na'2
= ﬁ(dﬂ) + VTR0 4 \/Irg,Nardgs (2.2.44)
mgsNa

which is clearly a metric of AdSs x S® with both of their radius L? = \/4mwg,No’2.
Hence the stack of D3-branes has made its appearance as AdSs x S® and the R!

is acting as its boundary.

Note that we can rescale r — L?r so that the metric () be

2
ds? = [2d3? = L2 (ﬁ(dﬂ)2 + d% + ng>
T
n\2 2
— 12 (W)—fdz + dQ§> (2.2.45)
z

where recall that z = 1/r.

Let’s discuss on a naive argument for the correspondence. In the string
picture, the total action consists of D3-brane action, interactions, and a bulk

action,

Stot - Sbrane + Sint + Sbulk- (2246)
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D3-brane action contains gauge fields of SU(N) in N/ = 4 theory due to charges
they carried by the open string ends. S;,; is an interaction term between gravi-
ton and gauge fields. The bulk action contains the low energy effective action

(supergravity) and other higher-order terms. To summarize,

Sbrane =SN=4 + Shigher order
(N /d4xF2 +. > + (~ 0/2/d4xF4 +.. ) (2.2.47)
Sint ~kd*ThEF? + ... (2.2.48)
Spulk =SSUGRA + Shigherorder /massive

<~ / (Oh)? + Kkh(D) + . ) + <~ 0 / (Oh)") + . > (2.2.49)

In low energy limits, the brane action is approximated by Sy—4, no interaction

and the bulk action will be approximated by free supergravity action.

On the other hand, in the brane picture at low energy. As in the previous

discussion, there are two regions which strings can live, at the boundary R3!

where &2 2® < 1 and in the AdS; x S° throat where 951;7_40/2 > 1. The string at
the boundary is decoupled from the brane since its cross-section on the brane is
vanishing o ~ w3L® ~ 0 [66], where w is the incident energy. Strings in AdSs x S°
are infinitely red shifted (g; = 1/1/1+ L1/rt = 0 as r — 0) and have no enough

energy to come out. Thus, these two regions are decoupled form each other.

Hence, by comparing both pictures,

Sn=14 + Shree SUGRA < S4dSsx55 + Otree SUGRA (2.2.50)

we can naively map N = 4 super Yang-Mills theory on R*! to type IIB gravity
theory on AdSs x S°.

2.3 The Conjecture

In this section, we will discuss on a one-to-one map between two physical theories,

N = 4 super Yang-Mills theory with gauge group SU(N) and coupling constant
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gyum(0) and type IIB string theory on AdSs x S° with [o F5 = N and g, = gy,

One might object that there is no one who knows how to formulate the AdS
side, so this whole thing seems empty. However, there are various highly non-
trivial limits of the above conjecture where many things can be tested. If nobody
ever succeeds in formulating it or it turns out that there are ambiguities in the

formulation, we might turn the conjecture around and use the super Yang-Mills

side to define the AdS side.

To see how it all comes together, we must understand where the various
theories live. First of all, let’s take a stack of D3-branes and go deep into the

throat. The five-dimensional metric then looks like

ds® ~ T—Q(da:“)2 + L—erfﬂ + L2dQ3 (2.3.1)
=7 > 2 3.
1
% (;(de + (dz™)?) + dQ52) (2.3.2)

Thus, to the question where are the branes, one could answer that we are inside
it so it is everywhere. Remember that when we illustrated the picture of a brane
as a hyperplane this is an approximation. In fact, the brane curves spacetime at
r # 0 as well. This is the space where type IIB closed strings live. They move
inside AdSs x S°.

The next question is "where is N/ = 4 super Yang-Mills?” One might say
that the open strings are attached to the branes so it would be the region r = 0,
but this is wrong. The N = 4 super Yang-Mills theory lives on the conformal
boundary of AdS, r — oo or z — 0. This seems like we are going away from the
brane, but it is not really. In a sense, it is a matter of the order of limits. Once we
are in the AdS limit, we cannot move away from the brane. We did throw away

the Minkowski region.

We will argue that there is no other place N' = 4 could live. The conformal
boundary of AdSj; is four-dimensional Minkowski space Minks. The isometry of

AdSs, SO(4,2), acts as a conformal group on Mink,. As in @, we will write
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AdSj5 as hyperboloid,
YA YR+ YRS+ Y+ Y =L (2.3.3)
Let rescale Y; = Ay, is then

o T T e VR e T S T

2
o (2.3.4)
Let A — oo as we move to the conformal boundary, the RHS of is going to
zero. Note that we can still write the identification y; ~ sy; for s > 0. If we set

U+ = y_1 £ y4, our embedded space is then

usu— —yo +yi +ys +y; = 0. (2.3.5)
We can use the equivalence to set u_ = 1, or in other words, we can chose a
representative
U u
(__‘_717@727272) = (—+,1,.Z'0,£L’1,£L’2,$3) (236)
u_ o u_ Ul u_ u_ Uu_

with &= = 2% — 2§ — 23 — 23 and z,, independent from each other. The metric is

simply ds? = (dz*)?. Going to the previous coordinates,
Y_1 = LcoshpcosT,... (2.3.7)

we see the Y; — oo limit corresponds to p — oo or & — Thus the type 1IB

oy

theory lives in the bulk and A = 4 lives on the boundary.

To refine the conjecture and make some tests, let’s make a Wick rotation
in Yy or 2°. An AdS; is turned into a hyperbolic plane or topologically a ball
H; ~ B®. Four-dimensional Minkowski space R%® changes into R*, and R x S?

changes into S* = 9B®. The AdSs metric is now

dat)? + dz?

ds* = L2( (2.3.8)

22

which is in a form of Euclidean space. The metric is invariant under the isometry

— A . (2.3.9)
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The metric cannot take the boundary form by simply taking the limit z — 0 since
it will blow up. However, if we rescale the metric by a conformal transformation

2%, we can take the boundary limit,

lim 2%ds® = (da')? = ds}undary- (2.3.10)

z—0

Note that ds},,,der, 15 DOt invariant under . It transforms as

dsgoundary = AZdS;;?mndm‘y' (2.3.11)
2.3.1 Scalar Field in AdS Space
Let’s consider a scalar field in AdSs. Its action is
S = %/dzd“x\/g ("N OnrpOnd + m?¢?) . (2.3.12)
By the definition of a scalar, it transforms as
o' x") = ¢(z,2), (2.3.13)
¢'(Az, Az) = ¢(z, ). (2.3.14)

The equation of motion obtained from the action is Klein-Gordon equation,
(=0 +m?*)¢ = 0. (2.3.15)

By using

1 1\° 1
Iay = §5MN7 gMN = 2MN g = (?) == (2.3.16)

we expand the 4-gradient up to a subleading term
1

V9

At z = 0, the equation can be approximated to

0= GM\/EgMNaN = 250,230, + 220,,,0™". (2.3.17)

—2°0,27%0,0 + m*¢ = 0. (2.3.18)
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We cannot hope to fix a scalar at boundary ¢(z = 0, ) because ¢(z, ) is

not a constant. Instead, let ¢ ~ z® and set L = 1, then from m we get
—ala—4)2* +m?*2* =0 (2.3.19)
so that
—ala —4)+m? =0. (2.3.20)
Hence, the solutions are oy = 2 4 v/4 + m2. Note that in general, we will get an
equation —a(a —d) +m? =0 for AdSz;.

Thus there are two linearly independent solutions, which depend on z%*+, at
z — 0. One linear combination is smooth in the bulk, so generically we can write

¢(z,x) ~ 2% + subleading term. Therefore the best we can do is to define

(bboundary(x) = lim zia_(é(/z,m)- (2321)

z—0
By a scalar transformation ¢/ (2, ") = ¢(z, z), the transformation (z, ) = (Az', Ax’)
gives
¢boundary<x) v hn(l)<AZ/)7a_¢(AZ/, A.T/)
2
= lim (Az") " ¢'(7, 2")
2/ =0

=A™ lim Z2 % ¢ (2, x)
z/—0

= A" Q%)oundary (ZE/) (2322)

Thus ngoundmy(x’ ) = A% Dvoundary(Z).  Dboundary Dehaves as an object of scaling
dimension «_. We interpret it as a source on the boundary coupling to a gauge-

invariant local operator ©(z) by

[ i), (2.3.23)

A scale invariance of the interaction requires the scaling transformation of the

operator to be ©'(z') = A*™*-O(x),
[ 5 rmnian(@0(a) = [ A AA Gy ()2 )

_ / 02’ Bpery ()6 (). (2.3.24)



30

Thus a scalar field at the boundary ¢uoundary is dual to an operator © of mass

dimension A =4 —a_ = ay =2+ V4 +m?.

Given a specific @poundary(€) We can actually find the bulk field ¢(z,z) by
noticing that for an appropriate range of «,
412«
lim ———————— = C,0%x). (2.3.25)

250 (22 4 [z]2)4—e

A constant C,, is obtained by integration

/d4x Z4—2a _/d4 28—2a _q /oo 0 7"3
(22+ |$|2)4—a - y22(4—o¢)(1_|_ |y|2)4—a — o4 0 (1+T2)4—a

(2.3.26)
where we use x* = zy*. Therefore
2
s
(0777 e — 2.3.27
6 — 5o+ a? ( )
Let’s consider
1 Z4—a,¢b d (x/)
= | da pUndary 2.3.28
0e.0) # g [ dal e o) (2329
2= Y- ¢boundary<x> (2329)
and check that it obeys the equation of motion
5 3 202 2 s
(—z 0,27°0, —z°V*+m ) 1 )
) ) Z4—a,
=(44d—-—a_)—(4—a_
( (6ay-oncKonrt- +m)(z2+|x’2)4—a,
4—o—
2 2
= (4o — o} +m?) =1 2
=0 (2.3.30)
at x # 0. Note that the last step is equal to zero by definitions of ...
At this point, we get
22 Pvoundary (')
~ | da’ ounery . 2.3.31
o) = [ e (2:3.31)
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If we put it back into the action and integrate by parts, we find
1
S = 3 / dzd*x0y (¢\/§gMN3N¢) + surface term
|2|>e
1
~ /d%qﬁ(e, LL’)—562 0.¢(z, )| _. - (2.3.32)
€

To calculate the last step, we use ¢(€, ) ~ €2 Gpoundary (),

A—1 /
az¢<z, $)|Z:6 & /dl-’AZ (bboundary(ai )

(22 4 |z — 2/ |2)A

+ higher order|,_,

~ A A—1 d /Cbboundary(x/) hich d
>~ Ae T pP— + higher order. (2.3.33)
All together, the action is then
~ 4 4 ¢b0undary (37) ¢b0undary (37/)
S o~ /d zd'a’ TS : (2.3.34)

Note that we can compute a 2-point function

5 5 g 1

~ 2.3.35
5¢boundary ($) 6¢bounda7‘y<x/) uboundary:o R ‘33' - x/|2A ( )

~ (Oa(2)Oa(z')) . (2.3.36)

We can extend this to an idea of the semiclassical partition function (on-shell) of

¢ as
Z[gb()(l'), 6] R 6—5[¢] |¢_)€a,¢0 (2337)
where €*- acts as IR regulator. This is equal to the generating function of ©

<€f dfﬁ¢o($)9(w)> (2.3.38)

€

with A =2+ v/4 + m? for a scalar. Note that € is a UV regulator.

2.4 AdS;/CFT,; Summary

We have review the AdS/CFT correspondence for the type IIB supergravity from
coincident D3-branes and N = 4 supersymmetric Yang-Mills theory in flat space.
The background created by a stack of N D3-branes can be written as

ds* = h(r)~2(dx")? + h(r)?(dr* + r2dQ2) (2.4.1)

gsFs = (14 %)d*z A dh™*(r) (2.4.2)
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where

4

h(r):1+L—

o L'=4mg,Na”. (2.4.3)
.

In the near horizon limit, r < L, we can approximate h(r) ~ L*/r*. The space-
time geometry becomes AdSs x S°. Thus, we can describe a system of N-stack
D3-branes in the near horizon limit by type IIB string theory on AdSs x S® space-

time.

In the world volume point of view, let’s consider one D3-brane in flat space.
It is a free gauge theory in 341 dimensions in a low energy limit. The Lagrangian

describing the gauge theory is

6
1 1 »
L= —ZF/fV = E (9,0")* + fermionic terms. (2.4.4)
i=1

This corresponds to N’ = 4 supersymmetric U(1) gauge theory. Since it is a free

theory, the moduli space is simply RS.

The stack of N parallel D3-branes, in the low energy limit, gives the theory
with gauge group U(N). The lagrangian is

1 : ETRS
L="Tr _ZFE” — (D" + gz[gbz, ¢’]?| + fermionic terms. (2.4.5)

The scalar fields ¢ transform in the adjoint representation of the gauge group
U(N). The moduli space is (R%)" /Sy where Sy is the permutation group of N

elements.

The gauge group U(N) is the same as U(1) x SU(N). One might think of
U(1) subgroup as a center of mass of a stack of N D3-brane. In a low energy
limit, when all fields are neutral, the remaining gauge group is SU(N) gauge
group. Therefore this system is basically an SU(N) supersymmetric Yang-Mills
theory.

At this point, a stack of N D3-branes has two points of view. In a string
theory point of view, the near horizon limit, it is a type IIB string theory on

AdSs x S° with N units of 5-form Ramond-Ramond flux. From the gauge theory
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point of view, the low energy limit gives an N' = 4 supersymmetric Yang-Mills
theory with SU(N) gauge group. Thus, there are two descriptions of the same

theory, 4-dimensional gauge field, and the 10-dimensional strings.

2.4.1 Extension to AdS; x Y?°

We can generalize the AdSs/CFT), correspondence to more general geometry
AdSs x X, where the X® is an internal compact 5-dimensional manifold. One of
the interesting cases is when the df25 in is the base of the cone, as we place a
stack of D3-branes at the tip of a Ricci-flat cone. This is an Einstein manifold Y°,
which gives the geometry AdSsx Y® in the  — 0 limit. If the cone is a Calabi-Yau
space, the base of the cone is a Sasaki-Einstein manifold which preserves N' = 1,

supersymmetry of AdSs x S° [57].

Let’s repeat the same procedure for a D3-brane at the tip of the cone. Con-
sider the Calabi-Yau cone is a conifold C* which is a complex manifold described

by a quadratic equation of complex variable wu;,
uf +ud +udFud=0. (2.4.6)

With this condition, it has 3 complex dimensions or 6 real dimensions. This is a
cone with S? x S3 being its base [b§]. A Ricci flat, Kéhler metric of this conifold

can be written as
ds® = dr* + r’dsi, (2.4.7)

where ds2,, denotes the metric of Einstein space 7' which has the topology

S? x S3,

2
dSTu =

2 2

1
Y (dF + sin67dg?) + §(d¢ + ) cosbide;)*. (2.4.8)
=1 =1

=

The tip of the cone is singular. If we put a D3-brane at the singularity of
the conifold, gauge theory in the low energy limit is an A/ = 1 super Yang-Mills
theory with gauge group U(1); x U(1)y. There are four chiral fields, z;, 2o, w1, wo,
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in the theory transforming under gauge group U(1); X U(1),. The fields 21, 2 have
charge +1 under U(1); and —1 under U(1),, and in the opposite way for wy, ws.

There is no superpotential for one D3-brane case, there are no F-term equa-
tions. Thus we have to solve only the D-term equation to determine the moduli
space. The moduli space of vacua can be obtained by imposing the vanishing of
D-terms and dividing by the gauge group. The D-term of one D3-brane on the
tip of this cone is in the form of auxiliary field D,

D? 2 2 2 212
['D = ? + D(|21| + |Z2| - |w1\ - |w2| ) . (249)
As usual, integrating out the D-term results in the scalar potential
Vo = g*(Jzaaf* + [22f” = Jwn [* — [wel*)? (2.4.10)

which gives the condition

21 + |22)* = |wi |* — Jwal® = 0, (2.4.11)

* and w; ~ w;e "

and the gauge invariance gives z; ~ ze' with a being a gauge
parameter. Thus this conifold is basically (SU(2) x SU(2))/U(1), which is often
referred to as T*'. Thus there are two flavor symmetries transforming the chiral
fields z;,w; as doublets and charged under U(1) which is the anti-diagonal sub-
group of U(1); x U(1)y. Note that the matter chiral fields are neutral under the

diagonal subgroup.

In the same way, this can be generalized to a stack of N D3-branes at
the tip of the cone. It is an N/ = 1 super Yang-Mills theory with gauge group
U(N)y x U(N)y. The chiral fields z;,w; transform in the fundamental repre-
sentation of U(N); and U(N )y, respectively. As before, z;, w; transform in the
anti-fundamental representation of U(N ), and U(N);, respectively.

Since in this case there are multiple D3-branes, we have to modify the
superpotential. The only quartic function in the superfields and invariant under

SU(2) x SU(2) is

TT(EACGBDZA’UJBZCU)D) = Tr(z1wy z0we — 21 Wa22wW1 ). (2.4.12)
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There are two U(1) factors from the gauge group U(N); x U(N);. The
diagonal subgroup decouples and the anti-diagonal subgroup becomes a global
symmetry in low energy limit since the gauge coupling flows to zero. Thus we
have an N' = 1 supersymmetric Yang-Mills theory with gauge group SU(N); X
SU(N)s. This is corresponding to its stringy picture, the type IIB string theory
on AdSs x TH! with N Ramond-Ramond flux on 7.

In the following chapters, we will generalize this principle to AdS,/CFT;
correspondence to study solutions from supergravity with the AdS; vacuum in-
terpreted as renormalization group flows in C'FT3. Similar to the AdS5;/CFT,
description with a stack of D3-branes in the previous discussion, M2-branes play

an important role in describing the AdSy/CFTjy correspondence [57].

We will study supergravity solutions in the form of

ds? = A0 (—d¢? + da?) 4 dr?

¢i = ¢i(r), (2.4.13)

which we have assumed A(r) ~ r/L, and ¢;(r) ~ constant at large r. The geome-
tries in the form () arise in the gauged supergravity descriptions of certain
vacuum states of N = 4 super-Yang-Mills theory, and presume to be the gravity
duals of the renormalization group flows emerging from relevant deformations in
the CFT [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [[73] [[74] [75]
[76].

The scalar potential V' (¢;) plays an important role in the study of holo-
graphic renormalization group flows. It should satisfy some conditions in order
to have solutions with AdS vacua of radius L. First, the V(¢;) must have a sta-
tionary point, without loss of generality, at ¢; = 0. For gravity theory with AdS,

background, we get

3
V(9i=0)= -7 (2.4.14)
For ¢; # 0, the V(¢;) takes the form near r = 0
3 1 55
V() = —— +-m°¢; +.... (2.4.15)

Lz 2
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Note that the scalar masses obtained from () should satisty the BF bound,

m2L? > —% in order to maintain the stability of the solution.

It should be noted here that solving for supergravity solutions is sometimes
lead to singular solutions. However, these singularities do not necessarily imply
that the solutions are wrong, they mean the supergravity description fails. We
have to look into the dual description instead. The criterion to determine if a
singularity in the IR is allowed or not is proposed in [77], which states that large
curvature in geometries are allowed only if the scalar potential is bounded above in
the solution. The motivation for this criterion comes from a necessary condition
for a family of black hole solutions, with horizons hiding the singularity. The
Hawking temperature of the horizon is identified with a finite temperature in the
dual field theory. A naked singularity may indicate the absence of a well-defined
dual field theory or a field theory in an unphysical vacuum state. The criterion
for singularities in the IR also discussed in [78] with the condition that the gy is
bounded such that it gives a proper energy excitation in the dual field theory. For

example, a Schwarzschild-like solution with a negative mass should not be allowed.



CHAPTER 111

Gauged Supergravity Basic

In this chapter, we review the construction of gauged supergravity in four di-
mensions. Note that we will only focus on the structure that can be used with
2 < N < 4 supersymmetry. This chapter mainly follows [79]. We begin with
a discussion of bosonic Lagrangian of an ungauged four-dimensional supergravity
coupled to a non-linear o-model together with its supersymmetry transformations.
We then discuss a procedure of gaugings some of the global symmetries of the un-

gauged Lagrangian in the notion of an embedding tensor.

3.1 Ungauged supergravity

Pure supergravity in four dimensions allows only for N < 8 number of super-
symmetry. Theories with more supersymmetries must contain a massless particle
with spin higher than 2. The bound N < 8 also imposes a condition on higher
dimensional theories, as the N = 8 supergravity can be found from a dimen-
sional reduction of eleven-dimensional supergravity. This restricts the number of

supercharge not to be greater than 32.

Scalar fields in extended supergravity can be described by a non-linear sigma
model. Supergravities with N > 2 have enough supersymmetries to determine the
geometry of the scalar manifold. The scalar fields in these theories are described
by a G/H coset space sigma-model. The group G is the global symmetry group

of the theory, which is a non-compact group, generally. The group H C G is its
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G/H

SU(3,n)

SU(3)xSU(n)
SL(2,R) SO(6,n)
S0(2) SO(6)xSO(n)

SU(1,5)
SU(1)xSU(5)

SO*(12)
U)xSU(6)

Ereny

SU(8)

X

w o Ut s W | A

Table 3.1: Scalar manifolds of four-dimensional N > 2 extended supergravities

maximal compact subgroup, which is in the form
H = Hp x H,, (3.1.1)

where Hp is the supersymmetry automorphism group or R-symmetry group, Hg =
U(N) for N < 8, and H,, is a compact group acting on the matter fields. The
theories with N > 4 have no matter multiplet, thus H = Hg. The scalar manifolds

of four-dimensional N > 2 extended supergravities are shown in Table @

The bosonic field content, of four-dimensional supergravity theories with N >
2 consists of the metric g,,, scalar field ¢', and abelian vector fields Afy . The

dynamics of these fields is described by the bosonic Lagrangian, which is given by

1 1 1 1
e 'Lp= §R — §Gst(¢)a,u¢sau¢t L Z[AE(@F;?VFWE + ge_lRAz(@eWMF,fprzm
(3.1.2)

where e = 4/|detg,,|. The kinetic term of the graviton is described by the
Einstein-Hilbert term where R is defined by contracting the Riemann tensor, R =

el'ey R, . The abelian field strength is defined by
Fy=0,A) —0,A] (3.1.3)

The matrices Rpy and Ipy are real and imaginary parts of the matrix Ny,
Nas, = Ras + ilpy. The indices s,t = 1,...,n, indicate all scalar fields from

both supergravity and vector multiplets. The indices A, > =1,...,n, indicate all
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vector fields from both multiplets. Note that there is no scalar potential in an un-
gauged supergravity with N > 1. A non-trivial scalar potential can be introduced

without breaking supersymmetry through the gauging procedure.

The scalar fields ¢° are described by a non-linear o-model. The positive
definite metric G4 (¢) describes the space whose coordinates are the scalar fields,
called target space. It encodes the geometry of the scalar field space. For N > 2
supersymmetry, consistent couplings of the scalar fields to the vectors and fermions
impose constraints on G (¢) such that the scalar manifold is in the form of coset
manifold Mgcaar = G/H in which G is a semisimple group and H is a maximal

compact subgroup of G.

Fermionic fields transform under the holonomy group H, which contains
the R-symmetry group Hpg, of Mgea,. Since the action of H is local on the
scalar manifold, the covariant derivatives of the fermion fields require a composite
connection ), which is defined in terms of the scalar fields ¢° and their derivatives
0,¢°. Consistency of the transformation property of the fermionic fields gives an

additional structure on the scalar manifold.

The coset space can be parametrized by a coset representative L(¢), which
transforms under left and right multiplications of ¢ € G and h(x) € H, respec-
tively,

L(¢) = L'(x) = gL(x)h(z). (3.1.4)
Note that the coset representative L(¢) can be parametrized by ny = dim(G) —
dim(H) scalar fields. This defines dim(G)—dim(H) coordinates of the coset space.
It should be noted here that we can make use of the left-invariant current
J,=L7'9,L € g = LieG, (3.1.5)
to see the coset structure, as it can be decomposed to @), € h and P, € ¢,
Ju=Qu+ P (3.16)
where h = LieH and ¢ denotes its complement. This implies that the Lie algebra

g can be decomposed into h and ¢,

g=hot (3.1.7)
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The Lie algebra g is then described by Lie brackets,

h,b] Ch, [h,E]Ce [e€Ch. (3.1.8)

This implies that the coset space £ represents the subgroup H, and the generators

in the h and € are compact and non-compact generators, accordingly.

The geometry of the scalar manifold can be described by a Maurer-Cartan
1-form Q € g,
Q=L"dL, (3.1.9)

which satisfies the Maurer-Cartan equation,
dQA+QAQ=0. (3.1.10)
The €2 can be decomposed into a connection () € h and a vielbein P € &,
Q=Q+P. (3.1.11)

We can define a covariant derivative of L(¢) by including the connection @ of the

internal symmetry H,

DL =dL— LQ = LP. (3.1.12)

The covariant derivative of the vielbein P satisfies
DP=dP+QANP+PANQ=0. (3.1.13)
Covariant derivative for any field ®(z), which transforms under H, is given by
D,® =09+ Q,09®, (3.1.14)

where (), o @ is the connection () acts on the field . The scalar Lagrangian can

be written in terms of P,
1
Localar = —éeTT(P#P“), (3.1.15)
which is invariant under global G and local H transformations,

0L = gL — Lh(x). (3.1.16)
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The currents @), and P, transform as
0Q, = —0,h+[h,Q,], 0P,=[h,P,], (3.1.17)

which implies that the connection @), acts as a gauge field under H. The current
P, transforms in a linear representation of H, thus it can be used to construct
H-invariant kinetic terms (), and may be used to construct H-invariant

fermionic interaction terms.

There are several ways to parametrize the coset representative L(¢). In this
dissertation, we use unitary parametrization, which the matrix L(¢) is taken of

the form

L = exp{¢°Ys}, (3.1.18)

where the non-compact generators Y, span the space £, called coset generators. In
this parametrization, the scalars ¢® transform in a linear representation of H C G.

The global H-invariant of the Lagrangian is then manifest.

Fermionic fields in supergravities are depending on the numbers of super-
symmetries. In 2 < N < 4 supergravity theories, there are fermionic fields from
supergravity and vector multiplets. For NV = 3, there are 9,4 and xapc from
the supergravity multiplet, and A4;, Aapc; from vector multiplets. For N = 4,
there are ¥, 4 and xapc from the supergravity multiplet and \4; from vector mul-
tiplets. Note that the indices A, B = 1,..., N indicate the group Hr = U(N),
for 3 < N < 6. The indices 7,5 = 1,...,n indicate the fundamental indices of

H,, = SU(n) for N =3, and H,, = SO(n) for N = 4.

Since fermionic fields transform under the group H, but not transform under
the group G, the fermionic Lagrangian, which invariant under H, should be in the
form of covariant derivatives with the connection @), as the group H acts as a

gauge symmetry. The covariant derivative for arbitrary fermions is given by

Db =Dy +Quop, (3.1.19)

where D, is the spacetime covariant derivative involving spin connection and

Christoffel connection, and @), = Qs0,¢°. The term @), o ¢ is the connection @)
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acts on the ¥. The fermionic kinetic term is then given by

»Cf—kinetic =ielP? (f&f’}/u gpra - &A,uf)/u -@pw?)

1 _
- E€<XABCV“QMXABC + XaBcV' Dux

1 — .. _ .
- ée()\my“.@“)\m- + Aa DAY, (3.1.20)

ABC)

The kinetic terms for fermionic fields Aapci = €apci, x in the N = 3 case can

be obtained similarly.

The supersymmetry transformations for bosonic and fermionic fields can be

schematically described in the form

0Boson = E Fermion - ¢,

Fermions

dFermion = Z O0Boson - €. (3.1.21)

Bosons
The general form of the supersymmetry transformations for the bosonic and

fermionic fields in the ungauged theory are given by

del = &M Yuy + Eav Y, (3.1.22)

SAN = %fAABO;‘B + /40! +he., (3.1.23)
PABOD§ g = $3ABCD (3.1.24)
PiABsgs = nIAB (3.1.25)
OVay = Dy€ea + %Fp_aABW’prEB, (3.1.26)
Sxapc = Piapcp0,¢°y*e” + %’FM AV ea), (3.1.27)
6Aai = Piiap0,¢°y*e + }liF;;jﬂ’“’eA. (3.1.28)

Note that for N = 3, there is an additional supersymmetry transformation for \;,

1
O = 5P 50,0 eceBC. (3.1.29)

The composite matrices PAB¢P and PP describe the spin-0 states in the gravi-
tational and vector multiplets, respectively. They are components of the ¢-valued

vielbein one-form P,. The tensors SABCP 3145 O;?B , and OZ are the components
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of the ¢-generator 3°. Note that the explicit forms of the fermionic supersymmetry

transformations for N = 3 and N = 4 will be given in the corresponding chapters.

3.2 Gauged supergravity

We now discuss the gauging of the supergravity theory, which is obtained by
promoting a subgroup Gy C G to a local symmetry group gauged by the vector
fields. The Lagrangian and the supersymmetry transformations are changed in
order to have the same supersymmetries as the original ungauged theory. In this
section, we will illustrate the construction of a gauged supergravity in an electric
frame. We will discuss a covariant formalism in which the possible gaugings are

encoded into an object call embedding tensor.

The gauging procedure starts by choosing a subgroup Gy of the global sym-
metry G of the ungauged Lagrangian. The condition for gauging is that the di-
mension of a gauge group GGy should not greater than the number of vector fields
in the theory, dimGy < n,. A subset {AA} of the vector fields become the gauge

vectors corresponding to the generators X of Gy. Let {25 be a gauge connection,
Qgn = gALX, (3.2.1)

where g is the gauge coupling. The X are generators of gauge group Gy, which
satisfy the algebra
(X, Xg] = fig' X¢- (3.2.2)

The structure constant f Aif must obey the Jacobi identity,
fias' fap' =0, (3.2.3)
in order to make the gauge group Gy a closed subgroup.

In order to get the local invariance of the Lagrangian under Gg, ordinary

derivatives are replaced by gauge-covariant derivatives,

By = Dy = 9 — Q= 9, — gAL X (3.2.4)
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This is where we introduce the minimal coupling of the vectors to the other fields.
For homogeneous scalar manifold, the Maurer-Cartan 1-form 2 introduced in

() is redefined by replacing the derivative,
Q,=L19,L—+Q,=L"'D,L="P,+0Q,. (3.2.5)
The gauged vielbein and connection are given by
P, =P, —gAP;, Q.= Q.- gALQ;, (3.2.6)

where P; and @ are the projections of L™'X; L onto £ and b, respectively. The

gauge-covariant derivative is acting on a generic fermionic field v as

Db = Db+ Q0. (3.2.7)

Generally, the gauging procedure can be done by replacing all P, and @, with

their corresponding gauged forms,

A

P/ P Q=@ (3.2.8)

3.2.1 Embedding Tensor

In gauging some subgroup Gy C G, a G-invariant object © is introduced by

defining gauge generators as linear combinations of the global symmetry generators

t, of G,
X; =03, (3.2.9)

Note that the indices A = 1,...,n,and a = 1,...,dimG are adjoint indices of the
gauge group and the global symmetry group, respectively. The dimension of the
gauge group is given by the rank of ©;¢. We expect that rank of the gauge group
should be less than the number of physical vector fields of the ungauged theory.

However, the gauging is not generally valid for an arbitrary choice of ©f.

It needs to satisfy a set of constraints for consistency. We will not work out a
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complete set of constraints, however, it is useful to have some examples. One of
the constraints is obtained by the requirement that the embedding tensor must be
invariant under the action of the subgroup Gq. This implies a quadratic constraint

in ©;°,
5292\(1 = @i‘b(;b@[xb = @gA(tA)Af@fa + ngfbca@[f =0, (3.2.10)

which is equivalent to [Xj, Xg] = _XAifoa where X[@f = @;\a(ta)gf, due to
the fact that generators in the adjoint representation can be written in terms of
the structure constants. This also implies that f[\if =-X Aif satisfy the Jacobi

identity,
fas" fo™ = 0. (3.2.11)
In summary, generators of the global symmetry satisfy a Lie algebra,

[taatb] 3 fabctca (3212)

where f,;¢ is the structure constant of the global symmetry. The gauge generators

also satisfy a Lie algebra [ X, Xg] = f Aifo since it forms a closed subgroup.

3.2.2 Lagrangian and supersymmetry transformations

In gauged supergravity, we modify the ungauged Lagrangian by promoting deriva-
tives to covariant derivatives. However, the modified action is not invariant under
the original supersymmetry transformation since there are additional gauge fields
from the covariant derivatives. In order to restore the supersymmetry of the the-
ory, we need to add coupling terms between scalars and fermions at first order in

g, called Yukawa term,
¢ Lyurawa = 9(—20 7" Y0 S4B + Ny 4, Ni* + NN M) +hee. (3.2.13)

This term is also called a fermion mass-like term. The tensors Sap, N4, and M,

can be identified in term of T-tensor. By adding the Yukawa term, the fermionic
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supersymmetry transformations are modified to the form,

0bua = Vuea — 9Sapvue” + ..., (3.2.14)
I = Pﬁy“eA%—gN]AeA—k.... (3.2.15)

The tensors Sap, Ni4, and M;; are sometimes called fermion-shift matrices. Note
that the bosonic supersymmetry transformations are the same as in the ungauged

theory.

Besides promoting derivatives to covariant derivatives and adding Yukawa
term, there are some terms left in the supersymmetry transformation of the La-

grangian. These terms can be canceled by adding a scalar potential term,
1
V(¢) = NQQ(NIANIA — 12547 S,p). (3.2.16)

This scalar potential plays an important role as its value at the given critical
point will be identified as the cosmological constant, which is crucial to the study

of holographic RG flows in the following chapters.

At this point, we are able to study supergravity solutions involving only the
metrics and scalars non-vanishing. This leads to non-trivial scalar potential and
fermionic supersymmetry transformations. The bosonic supersymmetry transfor-
mations are satisfied automatically with vanishing fermions. We can obtain a
set of differential equations from the fermionic supersymmetry transformations as
functions of scalar fields. For a given gauge group and a group of preserved sym-
metry, the differential equations can be solved for solutions interpolating between
critical points of the scalar potential. In the following chapters, we study solutions
interpolating between AdS, vacua, V(¢) < 0, which are later interpreted as RG
flows between CFTs.



CHAPTER 1V

RG Flows from Four-dimensional

N = 3 Gauged Supergravity

In this chapter, we first review four-dimensional N = 3 gauged supergravity. We
will then discuss possible semisimple gauge groups allowed by supersymmetry. In
each possible gauge group, the scalar potential and its possible supersymmetric

AdS, vacua will be identified along with their possible holographic RG flows.

Among N > 2 supersymmetry, it has been found that there is a unique non-
maximal AdS, solution with unbroken N = 3 supersymmetry from compactifying
eleven-dimensional supergravity [28]. The internal manifold of this is a tri-sasakian
N with SU(2) x SU(3) isometry. The corresponding Kaluza-Klein spectrum
has been given in [29], and the structure of N = 3 multiplets is investigated in [30].
The possible N = 3 SCFT dual to M-theory compactified on AdS,x N°'0 is studied
in [B1]. The gravity dual to N =3 SCFT is also studied in many aspects [32] [33]
[B4] [B5] [B6] [B7]. These result in a significant match between N = 3 SCFT and
the AdS, solution from the compactification of eleven-dimensional configurations

in M-theory.

The eleven-dimensional supergravity compactified on the AdSyx N can be
described by an N = 3, SU(3) x SO(3) gauged supergravity as an effective theory
[29] [BO]. The theory with eight vector multiplets is constructed in [38] [39] [40].
Various deformations and supersymmetric vacua have been identified in [41]. The
eleven-dimensional configurations to these solutions might be obtained through a

consistent reduction ansatz if exists.
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4.1 N =3 (Gauged Supergravity

We first review four-dimensional N = 3 gauged supergravity. We follow most

notations used in [3§]. However, we use the mostly plus signature (— + ++).

Four-dimensional N = 3 supersymmetry contains twelve supercharges. The

field content of the supergravity multiplet is

(6271/};LA7AMA7X> (411)

which are given by a graviton ey, three gravitini ¢}, three vectors Aj,, and a spinor
field xy. We denote indices u,v = 0,...,3 as spacetime indices, a,b = 0,...,3 as

tangent space indices and A, B = 1,2,3 as SU(3)g R-symmetry triplets.

The supergravity multiplet can couple to n vector multiplets. Each of vector
multiplet field content
(AM,/\A,)\,ZA)i (4.1.2)

contains a vector field A,, four spinor fields (A4, A), which are a triplet and a
singlet of SU(3)g, and three complex scalar fields z4. The indices i,7 = 1,...,n
denote each of the vector multiplets. Spinors in the theory are subject to chirality

projection,

VsWua = Yua, VsX = X YsAA = A4, PsA = —A,
v = = YAt = =21 (4.1.3)

p o

When coupled to n number of vector multiplet, N = 3 gauged supergravity
has 3n complex or 6n real scalar fields. The scalar fields z,° parametrized the
coset space SU(3,n)/SU(3) x SU(n) x U(1). The coset can be parametrized by
the coset representative L(z),”, which transforms under the global SU(3.n) and
the local SU(3) x SU(n) x U(1) by the left and right multiplication, respectively.
The SU(3) x SU(n) indices A, ¥ = 1,...,n + 3 can split into (A4,7), A = 1,3,
i =1,...,n, which are the fundamental SU(3) x SU(n). Accordingly, the coset

representative Ly* can also be split into (L4, L?). The coset representative and
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its inverse are related by
(L™Na" = Jan ™ (Lu®)* (4.1.4)
where Jyyx is an SU(3,n) invariant tensor defined by

Jas = JM = (0ap, —04). (4.1.5)

There are n+ 3 vector fields, n from vector multiplet, and three from super-
gravity multiplet. Together with their n + 3 magnetic dual, they transform under
the fundamental representation of SU(3,n). We can also write the vector fields
of the fundamental SU(3,n) in the form of the fundamental SU(3) and SU(n),
Apn = (A, A;). Note that he Lagrangian, which contains n + 3 of vector fields,
is invariant only under the SO(3,n) subgroup of the duality symmetry SU(3,n).
There is an argument in [38] that the possible gauge groups are a subgroup of

SO(3,n), which transform the vector fields A, to themselves.

The bosonic Lagrangian of the N = 3 gauged supergravity, with only scalars

and the metric non-vanishing, is given by
-1 1 1 1A pu

where P4 is the vielbein of the SU(3,n)/SU(3) x SU(n) x U(1) coset, and given
by the (A, i)-components of the Mourer-Cartan one-form ;4 = (4%)*. Note that

the Mourer-Cartan one-form, in the presence of gaugings, is defined by
QA" = (LY ZdLs"™ + (L7YA" fs ™ Aq L™ (4.1.7)
The scalar potential is given by
ca , 2 a1l ia L i A
V = —2S54c58°" + guAu + BMAN + EM Mg

1 1 1
= SICPP+ 516, TR = £ (16470 - [Cel?) (4.1.8)
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where the fermion shift functions Sap, U4, N;4 and M, 4B are defined by

Sap = i (EBPQCAPQ + GABCCMMC)
= % (CAPQEBPQ + CBPQEAPQ> :
Ut = —i A Nia = _%GAPQOZ' Fe,
M = (550 —20,,7). (4.1.9)

Note that these functions are written in terms of "boosted structure constants”,

!

CNp = LAY (DY g™ and  C\1 = Ty ST (CNL )
(4.1.10)

where Cp = —Cppy M.

In order to find supersymmetric solutions, we need fermionic supersymmetry

transformations,
5%A 7~ D;LGA T SAB%LGB, (4.1.11)
oy = Ulen, (4.1.12)
Oh; = =P yfeq + Nise?, (4.1.13)
Shia = =B v eapce” + M Pep . (4.1.14)

Note that we are considering the case where only scalars and the metric non-
vanishing. By letting all fermions vanish, the bosonic supersymmetry transforma-
tions are automatically satisfied. The covariant derivative on the supersymmetry

parameter €4 is defined by

1 1
Dey = dey + Zwab’yabEA -+ QABEB + §nQ6A, (4115)

where Q47 and Q are the SU(3) x U(1) composite connections. These connections
can be obtained from components of the Mourer-Cartan one-form together with

the SU(n) composite connections Q7,
0.7 = Q4" —n65Q, Q7 = Q7 +30Q. (4.1.16)

Note that the connections have properties Q44 = Q;* = 0.
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4.1.1 Possible Gauge Groups

The idea of possible gaugings when we are dealing with o-model is that we can
gauge the symmetries inside the isometry of the scalar manifold. In this case,
the gauge group G must be a subgroup of the isometry group G = SU(3,n).
However, supergravity gives the restriction that G is also a group of the duality
transformations on the vector field strengths and their duals. The available gauge
fields (and their duals) are then an irreducible representation of G. In this case,

it is a fundamental 3 + n representation of SU(3,n).

To find possible gauge groups of SU(3,n), let D(T),* be a matrix repre-
sentation of the SU(3,n) generator 7. By (4.1.5) being the SU(3,n) invariant
tensor, it yields

DYT)J + JD(T) = 0. (4.1.17)
By decomposing D(T') into real and imaginary parts, D(T) = X(T) + Y (T'), we

have

XTI+ JX(T) =0 (4.1.18)
~Y'J+JY(T) =0. (4.1.19)

The equation (4.1.5) means there is an SO(3,n) C SU(3,n) subgroup that pre-
serve the invariant tensor J, which Y (T') = 0. By G being a duality group of
the vector fields, the electric potential Ay, and the magnetic potential B, are

transformed by

§Hy = D(T)\"Hsy, (4.1.20)

where

Hy = Ax + By, (4.1.21)

If we gauge only the electric potential, which is the real part of the complex vector
3 + n, the duality is broken into SO(3,n), therefore G is a subgroup of SO(3,n).
Another requirement is that when restricted to gauge group G, the 3 + n complex

representation D must split into adj @ adj,

D — adj @ adj. (4.1.22)
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In this case, 3 + n complex representation of SU(3, n) split into two fundamental,
real representations of SO(3,n) which become an adjoint representation of the
gauge group,

(B3+n)c— (3+n)g+ (3+n)r. (4.1.23)

When a particular gauge group G C SO(3,n) C SU(3,n) is gauged, the
global symmetry of the Lagrangian is broken down to GG. The gauge field strength
becomes non-abelian

Fy = dAx + fA7" As A Ap (4.1.24)

where f,*! are the structure constants of the gauge group. Gauge generators Ty

of the gauge group G satisfy the Lie algebra,
[Ta, Ts] = fas' Tt (4.1.25)

Note that we can also raise/lower SU(3,n) indices of the structure constants by
contract with the invariant matrix Jpy and its inverse. In the present case, we
are interested in semisimple gauge group with different couplings for each simple
factor. We should note that the Mourer-Cartan one form on the scalar manifold

is also modified in the presence of gaugings in the form of covariant derivative,
Op” = (L)AL + (L2 5™ Ao L™ (4.1.26)

However, we will drop all of the gauge fields in the following since we are only inter-

ested in supersymmetric solutions with only scalars and the metric non-vanishing.

Supersymmetry constraints the gauge group G by requiring the structure

constants to be totally antisymmetric

fasr = fas" Jor = fiasn- (4.1.27)

This can be satisfied by taking Jxr to be the Killing form of the (n+3)-dimensional
gauge group G. Since Jyy, has indefinite signs of the eigenvalues, the gauge group
G can be either compact or non-compact types. In this case, Jyx has three positive
eigenvalues and an arbitrary number of negative eigenvalues. Thus we can have at

most three compact or three non-compact directions. This restricts possible gauge
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groups G to be either G = SO(3) x H,, G = SO(3,1) x H,,_3, or SO(2,2) x H,,_3,
where H,, is a compact group of dimension n, as pointed out in [38] [80]. We
should mention that the consistency condition of the SO(3,n) global symmetry is
similar to the half-maximal gauged supergravity in seven dimensions constructed
in [81], with possible gauge groups listed in [82]. The possible gauge groups of
N = 3 gauged supergravity are expected to follow the same manner.

As mentioned in [82], all possible semisimple gauge groups take the form of

Go x H, where H is a compact group of dimension n + 3 — dim(Gy) while the

possible group Gy is one of the following,

SO(3), S0(3,1), S0(2,2), SO(2,1),
SO(2,1) x SO(2,2), SL(3,R). (4.1.28)

All of Gy above give structure constants which satisfy (), hence they are
suited to be gauge groups of N = 3 gauged supergravity coupled to vector multi-

plets.

4.2 AdS, Vacua, Masses, RG Flow Solutions

We now have enough ingredients to study the scalar potential and the BPS equa-
tions. In each gauge group, we will identify AdS, vacua from its scalar potential.
We then find solutions interpolating between each critical point by solving the

BPS equations.

There are 6n scalars parametrized the SU(3,n)/SU(3) x SU(n) x U(1). In
order to parametrize the coset, we introduce the notation for 6n non-compact

generators of the general SU(3,n)/SU(3) x SU(n) x U(1) coset,

A ~

Yia = €it3a+eaits and Yia = —iej3.4 +i€ai13 (4.2.1)

where i = 1,...,n and (epx)ra = dardsa.

To check unbroken supersymmetry and set up BPS equations to study do-

main wall solutions, we will consider fermionic supersymmetry transformations
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(|4.1.1]J)—(|4.1.14!). The AdS; metric ansatz is taken to be

ds® = 62A(T)da:f72 + dr?. (4.2.2)

All scalars are depended only on radial coordinate r, for simplicity. We will use
Majorana representation for gamma matrices, which all gamma matrices v* are

01,243

real. The chirality projection v° = i7%y'92~3 is then purely imaginary. We will

use the projection condition for parameters €4,
ey = etet (4.2.3)

where ¢! is a phase factor.

We are now analyzing various possible gauge groups, namely SO(3) x SO(3),
SO(3,1), SO(2,2), SO(2,1) x SO(2,2), and SL(3,R). For each gauge group, we
will consider various unbroken symmetries. The corresponding scalar potentials
are computed, and we find their critical points. Note that we are only interested in
AdS, vacua. Masses and the (dual) dimensions of the scalars will be given in each
subsection. We then move to set up the BPS equations from the supersymmetry
transformations. Solutions from these equations are interpreted as RG flows driven

by the corresponding operators.

4.2.1 SO(3) x SO(3) Gauge Group

This gauge group can be obtained from N = 3 supergravity coupled to three

vector multiplets. The structure constants are given by

fAEF = (QIGAB0792€i+3,j+3,k:+3)7 i) =1,2,3. (4.2.4)

In this case, there are 18 scalars parametrized by SU(3,3)/SU(3) x SU(3) x U(1)

coset manifold.

AdS; Vacua and RG Flows with SO(3) Symmetry

We are considering solutions preserving SO(3)ding C SO(3) x SO(3) symmetry.
The 18 scalars transform in representations (3,3)_5 + (3, 3)4 of the local SU(3) x
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SU(3) xU(1). Note that we will drop the U(1) charges from now on for simplicity.
By embedding SO(3) in SU(3), as 3 — 3 and 3 — 3, the 18 scalars transform in

the representations
3x3+3x3=(1+3+5)+(1+3+5). (4.2.5)
There are two singlets corresponding to SU(3,3) non-compact generators
Yy = Yii + Yoo + Yag, Yy = Yiy + Yoo + Yas. (4.2.6)
The coset representative can be parametrized by

L = ePM1eP22 (4.2.7)

The scalar potential is computed using (4.1.§),

Vo= —% cosh(2®5) [4 cosh(2®;)[1 + cosh(2®;) cosh(2®5)]%g7
+2sinh(29;) [cosh(4®;) — 3 + 2 cosh®(2®;) cosh(4®,)] g192

+4 cosh(2®;)[cosh(2®;) cosh(2®,) — 1]%g3] . (4.2.8)

We find two supersymmetric AdSy critical points from this scalar potential.
The first AdS, critical point occurs at ®; = &, = 0. The cosmological constant

Vo and the AdS, radius L are given by

3 3 1
Vo=—=¢ LP=——=-. 4.2.9
0 2917 2% g% ( )
The second AdS, critical point is given by
1 _
o, — —ln[u}, By =0,
2 92 + g1
30202 2 _ 2
Vo = ——A%_ B0 (4.2.10)
2(93 — 97) 919;

Note that reality of ®; requires g5 — g? > 0 to give AdS,; with V; < 0.

At the trivial critical point with all scalars vanishing, the SO(3) x SO(3)
symmetry is unbroken, and all scalars have the same masses with m?L? = —2. By
the relation A(A — 3) = m2L?, these masses correspond to dual operators with

dimensions A = 1,2 in the dual N =3 SCFT.
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At the SO(3)qiag critical point, scalar masses and their corresponding mass
dimensions are shown in Table Ell All of the scalar masses satisty the BF bound,
which is expected for a supersymmetric critical point. Note that three massless

Goldstone bosons indicates SO(3) x SO(3) — SO(3) symmetry breaking.

SO(3)giag representations m?L? A
1 4, -2 |4,(1,2)
3 O(x3), —2(x3) | 3, (1,2)
5 —2(x10) (1,2)

Table 4.1: Scalar Masses at the N = 3 supersymmetric AdSy critical point in
the SO(3) x SO(3) gauge group and their corresponding dimensions of the dual
operators in N = 3 SCFT

For the two singlet scalars @1, @5 depending only on the radial coordinate r,
the equation &y = 0 is already satisfied since Cy;M4 = 0 also implies that 44 = 0.

The equations for 0\; = 0 and d\;4 = 0 reduced to two equations

. 1
eMcosh(2B,)®) £ id)] = -t [sinh(2®;) + i cosh(2®; sinh(2®,))] x
[cosh ®4( gy cosh @ + g5 cosh @)

—1sinh @y (gq sinh @1 + g9 cosh ®4)] (4.2.11)

In the case with only two SO(3) singlets, the function Ssp is diagonal and
in the form,

Sap =Woag (4.2.12)

where the superpotential VW which is given by

W = —Jcosh ®; cosh @5 — isinh &4 sinh ®y) [cosh $; cosh $y + i sinh P4 sinh <I>2]2 g1
+ [sinh ®; cosh &9 — i cosh @y sinh @] [sinh &4 cosh 5 + i cosh @y sinh <I>2]2 go .

(4.2.13)
The equation 01,4 = 0, for u =0, 1,2, is then yield

%A’em +W=0. (4.2.14)
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By writing W = |[W|e™, the equation () can be separated into real and
imaginary parts,

1 1 o .
5A’+§|1/V\(ew—mJrca—W“A) = 0, (4.2.15)

1 S o
§|W|(e“”_“\ — ey =, (4.2.16)
respectively. The second equation gives e’* = +e™.

Equation () implies that ®, = 0 which is consistent with the field
equation requirement &, = 0. We will set 5 = 0 in the remaining analysis. This

also implies that W is real and w = 0. The phase factor is then e”* = 41 and

equations () and () become

@, = =Fsinh®; cosh ®;(g; cosh P; + go sinh @), (4.2.17)

A" = 4(g,cosh® ®; + gosinh® @y). (4.2.18)

These equations admit two AdSy critical points with N = 3 supersymmetry, which

are coincided with those identified previously. The corresponding Killing spinors

could be obtained from ;4 = 0, which gives €4 = e e(f). The constant spinors

¢ satisfy the condition y"€l) = £e@4,

The equations (ll?lzll) and (I&Zlg) are similar to those studied in [41]. The

solutions interpolating between the two supersymmetric AdS, critical points can
be solved similarly. We choose the upper signs of these equations to identify UV
critical point at ®; = 0 with »r — co. The solutions to these equations are then

given by

e®r —1

—24/¢% — g?tanh™! {e(bl, / ﬁ , (4.2.19)

A = & —In(1—€"") +In (2™ +1)g1 + (™ — 1)ga] . (4.2.20)

®q
e 1
gigaT = 2q1 tan~!e® 4 go In [ * }

Note that the integration constants are omitted.

We will now analyze the behavior of the solutions. At large r — oo, the

solutions behave

Oy ~ve I e Tov,  A~gir LLUV (4.2.21)
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The solutions are in the form of ®; ~ e 2"/L 4+ ¢(A=3)/L which implies that the
flow is driven by a relevant operator of dimension A = 1,2 in the UV. In the IR

r — —oo, we find

91927

2_2 A~ gi1goTr N r

_r_
d, ~eViaTa ~ elir i ;
V32— 91 Lir

which implies that the operator dual to ®; becomes irrelevant operator with di-

(4.2.22)

mension A = 4.

We will now consider flows to a large value of |®, |, which correspond to flows
from conformal field theory, identified with AdSy critical point, to non-conformal

gauge theories in IR. For ®; — 00, the solution () becomes

1
q)l N_gln[r(g1+92>+0]7 AN_(I)IJ

ds® = [r(g1 + g2) + Cladat, + dr?, (4.2.23)

where the constant C' can be removed by shifting the coordinate r.

For &; — —oo, the solution becomes

1
®1~§ln[r(gl—g2)+C], A~ Dy,
ds® = [r(g1 — g2) + C’]%dxiQ +dr?. (4.2.24)
This solution has a singularity at r ~ _gligz‘ In this limit, the scalar potential
() becomes
V(®, — £00, Py = 0) = —(g1 & g2)%00, (4.2.25)

which is physically acceptable according to the criterion of [77].

AdS; Vacua and RG Flows with SO(2) x SO(2) Symmetry

We will now consider solutions preserving SO(2)giag C SO(2) x SO(2) C SO(3) x
SO(3) symmetry. There are six singlets corresponding to non-compact generators
Yi = Vi, Yo=Yy o Ya=Yi 4V

Y, = Y+ Yo, Ys = Yoy — Vi, Y=Yy — Yis. (4.2.26)
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The coset representative is parametrized by

L = eP1Y1P2Y2PsY5 o PaYag®5)5 0 20Y5 (4.2.27)

The scalar potential is highly complicated. We will not present the full form of

scalar potential but rather show some of its consistent truncations.

We will discuss a truncation with only two SO(2) x SO(2) singlet scalars

corresponding to ®; and ®,. The scalar potential, in this case, is given by

1
V= _59%6*2% [62@1 + (1 + e4¢1)cosh(2<b2)} ) (4.2.28)

This potential has only a trivial critical point, ®; = ®3 = 0, which is SO(3) x
SO(3) critical point.

By following the same procedure, we will set up the relevant BPS equations.

In this case, the matrix S4p is given by

SAB = diag(Wl,Wl,Wg) (4.2.29)
where
W, = —g; cosh ®; cosh P,
W, = —gi(cosh ®; cosh @5 + i sinh @, sinh ®,). (4.2.30)

Note that when ®; = 0 or &5 = 0, W; = W,. For ®; # 0 and &, # 0, the W,
turns out to be the true superpotential since it provides the potential () in

the form of
1 ap0IWVe| OIS |
2 00, 0g

Scalar kinetic metric Gog, @, = (P1, P2), can be identified from the scalar kinetic

3
V= — §|W2|2. (4.2.31)

terms

Iy 1
—Epjl Pt = -3 [cosh?(2®,) DT + OF] (4.2.32)

which gives G = diag(— cosh?(2®,), —1). Note that G is the inverse of Gug.

The equation 01,4 =0, = 0,1, 2, gives

1
A = F2AW,| = +o0 V/2 + 2 cosh(2®,) cosh(2d,) (4.2.33)
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and the phase factor e’ = +¢*. For ®; and ®, non-vanishing, we have to set
€12 = 0 to satisfy the 01,4 = 0 equation, only the supersymmetry corresponding
to €3 can be preserved. Therefore, together with the 4" projection, the flow solution

preserves N = 1 Poincare supersymmetry in 3 dimensions.

By setting €; o = 0 the equations 0, 4 are identically satisfied. The equations
(S)\Z give

[e" [cosh(2P2) ) + i®)] + g1 (sinh ; cosh @y — i cosh @y sinh @) € = 0(4.2.34)

This will give flow equations for ®; and ®,. By using the previous result the phase

factor e = +e™, we have verified that the flow equations are in the form of

P! = iGaﬂa(i;TVY;l. (4.2.35)
The explicit forms are given by
o 2 fe sinh(2®, )sech(2®4) gy |
\/2 + cosh(2®;) cosh(2®,)
o, cosh(29,) sinh(2P4) gy ' (4.2.36)

\/2 + cosh(2®;) cosh(2®,)

We could not be able to solve these equations completely. However, we find a
relation between ®; and ®»
o201

coth(2Py) = ———. (4.2.37)

2 —2¢idn
The full flow solution requires some numerical analysis.

We will now discuss asymptotic behaviors of the solution. At large r, the

solution becomes

(I)l ~ q)z ~ €7g1r, (4238)

as expected for a UV fixed point, and this implies dual operators with dimension

A =1,2. In the limit &3 — *o0, we find

Dy ~ Dy, Dy ~ FIn(gi7)

ds® = r’dai , + dr® (4.2.39)
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where @ is constant. Note that we have put the singularity at » = 0 by choosing

an integration constant, for simplicity. For limit ®; — 400, we find

Q) ~ Fln(gi7r), Oy ~ Py,

ds* = T2da:i2 + dr?. (4.2.40)

All of these flows give V' — —oo hence they are physical.

As mentioned earlier, for ®; = 0 or &, = 0, the superpotentials W; and W,
coincide, W; = W,. This implies the eigenvalues of S5 degenerate. The BPS
equations obtained from d\;4 = 0 and d)\; = 0 are also identical. Therefore, the

resulting equations are symmetric for either ®; = 0 or &5 = 0 cases. We will let

®5 = 0 in the following analysis. The flow equations () and () reduce

to

q)/l = —01 sinh CI)I,

A" = gicosh®,. (4.2.41)

These equations can be solved by

en=¢ 41
& =75 {m} :
A = —gir+In(e? ¢ —1). (4.2.42)
At large r, the solutions become
Oy ~e A~ gy, (4.2.43)

which is expected for UV AdS, fixed point. Near the singularity at g;r ~ C, the

solutions become

¢y ~ +In(gir — C), A~ 1In(gr — C),

ds* = (g1 — C)?dxi, + dr? (4.2.44)

This solution is also physical and preserves N = 3 supersymmetry in three dimen-

sions.
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For flow solutions preserving SO(2) x SO(2) symmetry, there are two classes
of deformations. One is with both ®; and ®, non-vanishing, breaking N = 3
supersymmetry into N = 1 supersymmetry. Another is with either ®; or &,

non-vanishing, which preserved N = 3 supersymmetry.

AdS; Vacua and RG Flows with SO(2) Symmetry

For SO(2)giag symmetry, as mentioned before, there are six singlets. The scalar
potential and BPS equations are far more complicated than the previous SO(2) x
SO(2) case. We will give the result from &3 = &, = $¢ = 0 truncation. We
have verified that the result is consistent with both the BPS equations and the

corresponding field equations.

In this truncation, Sap is diagonal,
Sap = Wiag. (4.2.45)
The superpotential W is given by

1
W = —39 cosh ®1[1 + cosh(2®3)] cosh(2Ps5)

+g2[1 — cosh(2®3) cosh(2®5)] sinh @, . (4.2.46)

Note that in this case, the superpotential is real, W = |W|. With given scalar

kinetic terms,

1, 1 1
- BHotacongkorn UNRERSTTY 25 — 25 (4.2.47)
the scalar potential can be written in the form of (),
v o_ _1owjow] et W] oIW)| _1opwiow| §|W|2
209, 09, (1+e4)2 9By 0Py 4 0P5 0P5; 2
1
= 3 [—4[1 + cosh(2®3) cosh(2®5)] [2 cosh(2P3) cosh(2Ps5)

+ cosh(2®1)[1 + 3 cosh(2®3)] cosh(2®5)] g7
—6 [cosh(4®3) + 2 cosh®(2®3) cosh(4®5) — 3] sinh(2®1) gy go,
+2[2 cosh(2®3) cosh(2®5) — 2] [2 cosh(2P3) cosh(2P5)

+2 cosh(2®1)[1 — 3 cosh(2®3) cosh(2®s5)]] g3] - (4.2.48)
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Similar to SO(2) x SO(2) case, the equation 61,4 yields
A =+W|. (4.2.49)

Together with the projection 77e4 = +e?, the equations d\;4 and d)\; give

oW
9P,

1
= T3 [g1[1 + cosh(2®3) cosh(2®5)] sinh &,

+g5 cosh @1 [cosh(2®P3) cosh(2®5) — 1]], (4.2.50)
2¢1% QW

(1+ €'%)2 00,
285

o = +

- Tl sinh(2®3)[g; cosh @1 + g2 sinh @], (4.2.51)

10|W)|
+3 O

1
= ¥ cosh(2®3) sinh(2®5)[g1 cosh @1 + g, sinh @4]. (4.2.52)

Solutions to these equations preserve N = 3 supersymmetry in three dimensions.

There are two AdSy critical points to the above equations. One is a trivial

critical point with all scalars vanishing, all ®; = 0. The other one is given by

1
¢ =8 = - In Bﬁ—ﬂ . D5 =0, (4.2.53)
2 Y1

which is the SO(3)giag critical point. Hence, there is no new critical point for this

case.

We are not able to solve the equations () and () analytically

for general values of g; and ¢g. However, we found the analytic solution for the

truncation g; = g and &5 =0,
A =0 —lln(e@l —1)
1 9 )
d; = cosh! [e% 4/ cosh @1} ,

1 1
gir = tan'e® 4+ Z1In {e i } (4.2.54)

2 e®1 —1

For ®; ~ &3 ~ 0, the solution behaves,

Oy ~ e 2T O3 ~ eI A~ gyt (4.2.55)
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Near the IR singularity r ~ 0, the solution becomes

Oy ~ —In(g17), Py ~ Dy, A~ =0 ~1In(gir),

ds® = (g1r)%dai 5 + dr® (4.2.56)
for ®; > 0 and

&y ~ In(gi7), ®3 ~ constant, A~ &y ~In(gir),

ds® = (gir)%dai 5 + dr® (4.2.57)

for &; < 0. Both of these yield V' — —o0 hence they are physical. These solutions
describe RG flows from N = 3 SCFT with SO(3) x SO(3) symmetry to N = 3
gauged theory with SO(2) symmetry in three dimensions.

4.2.2 S0O(3,1) Gauge Group

We will consider N = 3 supergravity coupled to three vector multiplets with
SO(3,1) gauge group. The structure constants are given by fix' = faspJ' ',

where
fasr = gl€aBc, €i+3,j+3,4)- (4.2.58)

Note that we use the totally antisymmetric €13 j13 4 With €345 = €156 = €264 = 1.

AdS, Vacua and RG Flows with SO(3) Symmetry

We are now considering solutions preserving SO(3) C SO(3,1) symmetry. The
maximal compact subgroup SO(3) is embedding in SO(3,1) as a diagonal sub-
group of SO(3) x SO(3) C SO(3,3). Similar to , the 18 scalars transform in

the representations
3x3+3x3=(14+3+5)+(1+3+5). (4.2.59)

In this case, two of SO(3) singlets are given by SU(3, 3) non-compact generators,

Yy = Y, — Yy + Yag, Yo = Y11 — Yag + Ya3. (4.2.60)
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The coset representative can be parametrized by

[ = 21Y1,%2Y2

) (4.2.61)
which yields the scalar potential,

3 ,
vV = —6—4g26_6¢1 [2¢°%1 [13 cosh(2®1) + 3 cosh(6®;)] cosh(2®,)

+(e*® = 1)2 [(1 + €*®) cosh(6®5) — 16e>®* cosh?(2®,)]] . (4.2.62)

We found two AdS, critical points to the above scalar potential. One is a
trivial critical point where ®; = &y = 0, which the SO(3,1) gauge symmetry is
broken to the maximal compact subgroup SO(3). The cosmological constant and
AdSy radius are given by

3 5 5, 1

Scalar masses and their corresponding conformal dimensions are given in Table

@. There are three goldstone bosons which indicate one of SO(3) symmetry

breaking.
SO(3) representations m?L* A
1 4, -2 |4,(1,2)
3 O(x3)s —2(x3) | 3, (1,2)
53 —2(x10) (1,2)

Table 4.2: Scalar masses and corresponding conformal dimensions at the trivial,
N = 3 supersymmetric AdS, critical point with SO(3) symmetry for SO(3,1)

gauge group

Another AdS; critical point is at

447
3

1
q)lzéln

. D=0 (4.2.64)

which is a non-supersymmetric critical point. The cosmological constant and the
AdSy radius are given by

11 27
Vo=——g° L* = .
0 9 g, 2292

(4.2.65)
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Scalar masses are given in Table @ Note that this critical point is unstable due

to some of the scalar masses violate the BF bound.

SO(3) representations m?2L?
168 _ 36
1 TR
36
3 Ox3); _ﬁ|(x3)
5 _A _36
111(x5)’ 11 1(x5)

Table 4.3: Scalar masses at the N = 3 non-supersymmetric AdS, critical point

with SO(3) symmetry for SO(3,1) gauge group

We will set up the BPS equations to consider a supersymmetric RG flows to
non-conformal theories since there is no other supersymmetric critical point. The

equation 01,4 = 0 yields

1 !
§A/em +W=0. (4.2.66)
The equations dA\;4 = 0 and 0\; = 0 give
. 1
¢ [cosh(20,)®) +i®)] = gsinh® ®; cosh &y + 59 cosh @ [sinh(2®;) cosh(3P,)
—2i [1 — 2sinh® @; cosh(2®,)] sinh ] . (4.2.67)

This implies ®, = 0. Consistency with the second-order field equations also re-
quires that ®, = 0. The superpotential, in this case, is real which implies e** = +1.

By choosing ¢** = 1, the BPS equations are

1

(I)’l = Z673@1‘(] (62(131 + e6q>1 = 64«1)1 — 1) , (4.2.68)
1

A = _16—3@1 g (14 €% — 3™ — 3¢') . (4.2.69)

Note that the dual mass dimension of ®; is A = 4 which is corresponding to the
irrelevant operator. We then expect the AdS, critical point to appear in the IR
of the RG flow driven by ®;.

The solution to () is

e® —1 L 1+ /2% + 2
S —1In

e®r +1 V2 V2e®1 — 1 — 2%
A = & +In(e® —1) —In(1+e'™). (4.2.71)

: (4.2.70)

gr = ln{
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At ®; ~ 0, the solution behaves

Oy ~el, A~ % (4.2.72)

which is the AdS, critical point.

At large |®4|, the behaviors depend on the sign of ®;. For ®&; > 0, the

solution becomes

1
Dy~ —gln(gr + C), A~ =0,

ds* = (gr + C’)gdxiQ + dr?. (4.2.73)
For &, < 0, the solution becomes

1
(I)lNgh'l(C—g'f’), AN(I)l,

ds* = (C — gr)gdavi2 +dr?. (4.2.74)

Both of these solutions give V' — —oo hence they are physical.

AdSy Vacua and RG Flows with SO(2) Symmetry

In this case, there are six singlets given by SU(3,3) non-compact generators

}/1 = }A/337 YVQ :%37 )/3 :}A/ll _Y227

Y, = Yy — Yo, Y5 = Yis + Yo, Yo=Y+ Ys. (42.75)
The coset representative is parametrized by

L = 11222 PsY5 o PaYa @515 006 Y5 (4.2.76)

The result of scalar potential is highly complicated. We will again show for a

consistent truncation &, = ¢, = &g = 0 with the scalar potential

1
vV = ggz [16 cosh(2®5) sinh (2P, ) sinh(2®@3) — 3 cosh(2®1)[3 + cosh(4P3)]

+2[2 4 (2 — 3 cosh(2®;)) cosh(4®5)] sinh?(2®3)] . (4.2.77)

We have not found other supersymmetric critical points aside from the trivial

critical point.
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We now consider BPS equations. In this truncation, the matrix Sup is
diagonal and gives a real superpotential, YW = W with

W = —gcosh ®; + gcosh(2®5) sinh @, sin(2P3). (4.2.78)

Note that the scalar potential can be written in terms of W,

1L OWN° . woer o [OWN 1 (OWN\® 3,
V=g (o) o (G) —i(m,) e wem

The flow equations are then given by

oW
P = i@? = + [—gsinh ®; + g cosh ®; cosh(2®5) sinh(2P3)], (4.2.80)
1
) o OW
q)g = :f:2€4q>°(1+€4q>°) QF{)B
4et®s )
= imgcosh@@g) cosh(2®;) sinh 1, (4.2.81)
10W
oL = i§% = £gsinh @ sinh(2®3) sinh(2P;), (4.2.82)
5
A = F2W. (4.2.83)

We are not able to solve these equations analytically. We will only discuss the

asymptotic behaviors of the solution.

Near the AdS, critical point, the solution behaves
By~ By~ e el 5 ~ constant, A~ gr~ % : (4.2.84)

This implies that ®; and ®3 are dual to irrelevant operators with dimension A = 4
in three dimensions. The @5 is dual to a marginal operator with dimension A = 3

and is also a Goldstone boson.

There is a singularity at a large value of &3 — 400. This also gives ® =
0. We will choose &5 = 0 for simplicity. Near this singularity, the asymptotic

behavior of the flow solution is given by

1 3 1 3
¢1~:i:<133~:|:§ln0izgr, Awglan:Zgr,
2 3 s 2 2
ds” = C’izgr dryy +dr. (4.2.85)

This singularity is also physical.
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4.2.3 S0O(2,2) Gauge Group

We will consider N = 3 supergravity coupled to three vector multiplets with gauge

group SO(2,2) ~ SO(2,1) x SO(1,2). The structure constants are given by

fas' = (g1eappn”, g2eim'™) (4.2.86)
where A, B,... =1,2,6, 7,7,... = 3,4,5. The matrices n*® and 7" are defined
by

AP = diag(1,1,—1) 7" = diag(1, -1, —1). (4.2.87)

AdS,; Vacua and RG Flows with SO(2) Symmetry

We will consider RG flows with SO(2)g4iae symmetry. There are six singlets which

are given by

Y, = Vi, ¥ Yag, o Yo = Viy + Vas, Y3 = Vi,

Yy =Y, Y=Yy —Yi, Y5="Yy Y. (4.2.88)
The coset representative is parametrized by

REe = e e e s grseeYs (4.2.89)

The scalar potential is also complicated. We will give only the result from

a truncation &5 = &, = &4 = 0. The scalar potential in this truncation is

1
vV = 0 [4 cosh(2®1) cosh(2®5) [cosh(2®) cosh(2®5) (g7 — ¢3) + g7 + 93] —

2 cosh(2®3) [g7 + g5 + cosh(2®;) cosh(2®5)
x [3 cosh(2®1) cosh(2®5) (g7 + g3) + 4(97 — 93)]]
+3g1 g2 sinh(2®3) 2 cosh(4®5) cosh?(2®;) + cosh(4®) —3]] . (4.2.90)

There is an AdS, critical point at ®; = 0 with

3

. 4291
93 ( )

1
‘/0 = _§g%7 L2 =
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However, considering supersymmetry transformations gives
(S)\Z = 57;39163 and 5)\7,A = (5&,91(&4261 - (SA1€2). (4292)

Since the only way to satisfy 6\; = 0 and d\i4 = 0 is to set e# = 0, this implies
that it is a non-supersymmetric critical point. Scalar masses are given in Table

@. This critical point is not stable since some of its masses violate the BF bound.

S0O(2) x SO(2) representations m?L?
(1,1) —6, —6
(2,1) O(x2), _%‘(w)
(1,2) Oz 52 )
2 2
(2,2) N .

Table 4.4: Scalar masses at the non-supersymmetric AdS, critical point with

SO(2) x SO(2) symmetry for SO(2,2) gauge group

We will now consider a possible half-supersymmetric vacuum in the form
of a domain wall. By using the metric ansatz (4.2.2) and the similar procedures,
we found that the resulting BPS equations and the scalar potential are intensely
complicated. We will consider a simple case with SO(2) x SO(2) symmetry ob-
tained from a truncation with all ®; = 0 except ®3 and ®,. The scalar potential

in this truncation is

1
V= _5936_2% [(1+ €*®) cosh(2®,) — 23] . (4.2.93)

The matrix Sap is diagonal,
SAB = diag(Wl, Wl, WQ) (4294)

where the superpotentials W; and W, are given by

Wi = g¢;sin®3cosh @y, (4.2.95)

Wy = gy cosh ®4sinh @3 + igy cosh ®3sinh &y. (4.2.96)
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In this case, only supersymmetry corresponding to €3 is preserved. The BPS

equations are given by

o = toosh2(20,) WV _ 4 915ech@®)sinh(2Ps) -, 6
0P3 V24/cosh(2®3) cosh(2®,) — 1
h(2®3) sinh (2
o = :F8W _ g1 cosh(2®3) sinh(2d,) ’ (4.2.98)
04 V/2¢/cosh(2®3) cosh(2d,) — 1
A = FW (4.2.99)
where
W = [Ws| = v/2g11/cosh(2®3) cosh(2d,) — 1. (4.2.100)

There is no supersymmetric AdS, critical point to these equations. A solution for

A and @3 can be given as a function of Py,

1
®; = Sl {Z [csch(2®4)\/10 cosh(4®,) — 6 — 200th(2®4)H , (4.2.101)

1
A = —5Insinh(284) — iF(2i®s,5) (4.2.102)

where F' is the elliptic function of the first kind which is given by

(OF} d
iF(i®3,5) = / X (4.2.103)
0

/1 — 25sinh?® ¢ ‘
We are not able to solve for ®,.
For further analysis, we will consider ®, = 0. This gives |W;| = |[Ws|. The

BPS equations are reduced to

¢, = =g cosh P, (4.2.104)

A/ = j:gl SiIlh(I)g. (42105)

In this case, the supersymmetry is restored to N = 3. An analytic solution to

these equations is

gr+C

¢; = Intan [ } : A = —lnsin(g;r + C), (4.2.106)

ds* = sin*(gir + C)dai, + dr”. (4.2.107)

This solution preserves N = 3 Poincare supersymmetry in three dimensions.
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4.2.4 S0O(2,1) Gauge Group

This gauge group can be obtained by coupling N = 3 supergravity to one vector

multiplet. The structure constants are given by

fax' = geaspn”™ (4.2.108)

where A, B,... =1,2,4 and 145 = diag(1,1, —1).
For SO(2) C SO(2,1) invariant scalars, the resulting scalar potential and
BPS equations are the same as SO(2,2) case with go = 0. The scalar potential

also admits only a non-supersymmetric critical point where all scalars vanishing.

There is also a half-supersymmetric domain wall with SO(2) symmetry in the

form of ()

4.2.5 SL(3,R) Gauge Group

This gauge group can be obtained from coupling N = 3 supergravity to five vector
multiplets. The structure constants 5" = g f s are identified from the SL(3, R)
algebra

[Tk, T ="fis Tr 4 (4.2.109)

where the SL(3,R) generators Ty are given in a form of Gell-Mann matrices \;,

TA — (i)\z,i)\7,i)\5,)\1,)\3,)\4,)\6,)\8). (42110)

There are 30 scalars transforming as (3,5)+(3,5) under the SU(3) x SU(5)
local symmetry. The SO(3) maximal compact subgroup can be embedded in the
SL(3,R) as

3—+3, 8—3+5. (4.2.111)

The 30 scalars are then transformed under SO(3) as
(B3x5)+(3x5)=B+5+7)+(3+5+7), (4.2.112)

which gives no singlet under SO(3). We then consider singlets under the SO(2) C
SO(3) subgroup. By decomposing (), each representation gives one singlet,
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so there are six singlets under SO(2) symmetry. The corresponding non-compact

generators of SU(3,5) are given by

Y1 = ?244—5}33, Y2:Y23—f/?34, }/3:?15,

Y, = You+ Vs,  Yi=VYy—VYiy,  Yy=VYi. (4.2.113)

The coset representative is parametrized by

L = e®1Y1P2Y2p03Y3 o 2aYi o @5Y5 , D6Y5 (4.2.114)
The scalar potential is given by
1
Vo= —seiing [16\/562%(64% ~1)(€1® — 1) cosh(28,) cosh(2®s5) cosh(2)

+ cosh?(2®5) [3¢*® (2e*®2 — 3¢®*2 — 3) — 12¢*™ (¢**?)? cosh(4Dy)

+(1 4 €*) [2(3 4 €' + 3e>*?) + (9 — 2¢**2 + 9¢°%2) cosh(4P4)] cosh(2P) ]
+(1+ €**%) cosh(2®g) [3 + 4€®2 + 3e®*2 + (3 — 4€® + 3¢®*?) sinh® (295
—e”®3 [3 + 142 4 3¢ + 3(1 — 6 + €**?) sinh?(205)

—8v/3¢2%2(1 + ¢4%2) cosh(20,) sinh(4®;) sinh(2<1>6)” . (4.2.115)

We have not found other AdS, critical points besides the trivial critical
point. The cosmological constant and the AdS, radius at the trivial critical point

are given by

3915 9 1

The scalar masses are shown in Table @ Note that marginal deformations are

(4.2.116)

corresponding to the scalars in the 7 representation of the broken SO(3) symmetry

beside the Goldstone bosons in representation 5.

The BPS equations, in this case, is also complicated. We will consider a

truncation ¢, = &5 = &g = 0. This truncation gives a real superpotential W,
W = —g |cosh ®3 4 V3 sinh(2®,) sinh ®s| . (4.2.117)

The matrix Sap is diagonal, Sup = %(5 AsW. Follow the same procedures, the
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SO(3) representations m?L* A
3 10(x3), —2(x3) | 5, (1,2)
5 O(x5)s —2(x5) | 3, (1,2)
7 Ox7ys —2(x7y | 3, (1,2)

Table 4.5: Scalar masses and the corresponding dimensions of the dual operators at

the N = 3 supersymmetric AdSy critical point with SO(3) symmetry for SL(3,R)

gauge group

BPS equations are given by

P = 0, (4.2.118)
P, = i%%:2F\/§gcosh(2<1>2)sinh(fl>3), (4.2.119)
P, = i%v = Tg [\/§cosh®3sinh(2q>2)+smhc1>3], (4.2.120)
A = q:W.3 (4.2.121)

Note that with the scalar kinetic terms

1 1
—16—4‘1’2(1 4= 22292 o P2 — 5@5, (4.2.122)

the scalar potential () can also be written in terms of W,

1OW 1w 3,
V'= ~1%, 3230, 27

1
- —192 [2 + cosh(2®3) + cosh(4®y—)[9 cosh(2®3) — 6]

+8v/3 5inh (205) sinh(2<I>3)] . (4.2.123)

Note that we are unable to find an analytic solution for this case.

We now analyze asymptotic behaviors of the solution. Near the trivial AdSy

critical point, we find

3r \/§

1 r
ﬁ@g + (I)g ~ 6_391T ~ G_T, (Dg — 7@2 ~ €2glr ~ 6%, A~ qgir ~ % .
(4.2.124)

The combination %@2 + ®3 can be interpreted as a marginal operator. The

combination &3 — ‘/75(192 is dual to an irrelevant operator of dimension A = 5. We
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expect ®3 — @@Z to drive the flow since the marginal operator does not break
conformal symmetry. Note that in this case, the UV SCFT should appear in the

IR since the operator driving the flow is irrelevant at the fixed point.

For large |®,|, we find

1. |3v3gr 1
(I)gN(I)QN:thl[ 49]’ ANgth,
ds® = rida?, + dr® . (4.2.125)

This singularity is physical since it yields V' — —oo. This should describe an RG

flow in the dual supersymmetric field theory to a conformal fixed point in the IR.

4.2.6 S0(2,1) x SO(2,2) Gauge Group

The SO(2,1) x SO(2,2) ~ SO(2,1) x SO(2,1) x SO(2, 1) gauge group arises from
coupling NV = 3 supergravity to six vector multiplets. The structure constants for

this gauge group are given by
fas' = (geaon”, gem™, gsem'™) (4.2.126)
where A,B,---=1,4,5,14,7,---=2,6,7,1,7,--- = 3,8,9 and

nip = diag(1l,—1, 1), n; = diag(1l, -1, —1), ny; = diag(1, —1,—1).
(4.2.127)

There are 36 scalars in the full SU(3,6)/SU(3) x SU(6) x U(1) coset man-
ifold. However, we will consider only 12 singlets under SO(2) x SO(2) residue
symmetry, chosen to be the first two SO(2)’s. The corresponding non-compact

generators of the SU(3,6) are given by
i = Y, Yo=Y o Yo=Y, o Y=Y,

Vs = Yi, Yo=Y, Yi=Yy o Y=Y,

Yo = Yo, Yio = Yag, Y11 = Yas, Vi = Yag. (4.2.128)
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The coset representative is parametrized by

12
L=]]e". (4.2.129)
=1

The scalar potential is highly complicated. We will not give its explicit form
but rather note that the resulting scalar potential admits a Minkowski vacuum,
V' =0, for all scalars vanishing. It preserves SO(2) x SO(2) x SO(2) and N =3
supersymmetry. There are six Goldstone bosons arising from breaking SO(2,1) x

SO(2,2) into SO(2) x SO(2) x SO(2).



CHAPTER V

RG Flows from Four-dimensional

N =4 GGauged Supergravity

In this chapter, we first review four-dimensional N = 4 gauged supergravity. We
will then discuss N = 4 gauged supergravity obtained from type ITA and IIB
superstring compactifications. We also discuss the possible semisimple gaugings.
In each case, the scalar potential and its possible supersymmetric AdS, vacua will
be identified along with their possible holographic RG flows. Note that for type

ITB case, we also study examples of supersymmetric Janus solutions.

5.1 N =4 Gauged Supergravity

We first review four-dimensional N = 4 gauged supergravity. We follow the general
gauging in embedding tensor formalism given in [45]. Specific parametrizations

will be given later in each section.

The field contents of N = 4 supergravity multiplet are

(el pl, AT X', T) (5.1.1)

given by the graviton ef!, four gravitini ¢/, six vectors A7, four spinnor fields x’
and a complex scalar field 7 in the SL(2,R)/SO(2) coset. The complex scalar field
7 can be parametrized by two real scalar fields, a dilaton ¢, and an axion y. Note
that, in this chapter, we use u, v = 0, .. ., 3 for spacetime indices, 1,7 = 0,..., 3 for

tangent indices, 7,j = 1,...,4 for SU(4) fundamental indices, and m,n =1,...,6
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for SO(6) ~ SU(4) vector representation.

Supergravity multiplet can couple to an arbitrary number n of vector mul-

tiplets. Each vector multiplet in N = 4 supergravity,
(A A 9™), (5.1.2)

contains a vector field A, four gravitini \’, and six scalar fields ¢™. For n vector

multiplets, there are 6n scalar fields parametrizing the SO(6,n)/SO(6) x SO(n)

coset. Hence there are 2 4 6n real scalars parametrizing the S;(g%g) X SOf(SO);6é78(n)
coset. Note that we use a,b =1,...,n for SO(n) vector indices.

Fermionic fields and supersymmetry parameters in N = 4 gauged super-
gravity transform in the fundamental representation of the SU(4)r ~ SO(6)r

R-symmetry. The chirality projections of the fundamental fermions are given by
sl =W /st = =X A = N (5.1.3)
For the anti-fundamental representation of SU(4)g, we have

Voui = =WV VoXi = Xis VN = — i (5.1.4)

Gaugings of N = 4 supergravity can be described by using the embedding
tensor. The embedding tensor encodes all the information for embedding a gauge
group Gy in the global or duality group G = SL(2,R) x SO(6,n). Note that
gaugings in this formalism are covariant under the symmetry group G. A general
gauging can be described by two components of the embedding tensor, f,ynp and
Eam, With o, f = (4, —) denoting the fundamental representation of the SL(2,R),
and M, N = (m,a) denoting the fundamental representation of the SO(6,n). The

embedding tensor component O,y p can be written as

Oumne = famnpe + EaNTPIM, (5.1.5)

where nyy = diag(—1,—-1,—-1,-1,—1,—1,1,...,1) is the SO(6,n) invariant ten-

Sor.
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To define a consistent gauging, the gauge generators,
XOcM = GaMNPtNP - fﬁjtaﬁa (516)

must form a closed algebra. This implies that the embedding tensor has to satisfy

the quadratic constraints,

&M =0,

& faypun =0,

3farman forq)" + 26 faynrq) = 0,
(&7 fapmn + Eanan) =0,

P (famnrfarg" — & farpapnang = oS mpas + Sap famngs) = 0. (5.1.7)

The electric vector fields in ungauged Lagrangian appear as ATM = (A/T, AZ)
Together with the dual magnetic vector fields A=, they form a doublet under the
SL(2,R), denoted by A*. Note that the particular electric-magnetic frame can
always be chosen such that A™ and A~™ have charges +1 and —1, respectively,

under the SO(2).

When gauged, the covariant derivative can be written as
D, =V, — gAMO /N Ttnp + gAN €N E prtap. (5.1.8)
The generators of the SL(2,R) and SO(6,n) are chosen to be

(taﬁ)v(s - 25?«166)% (tun)p? = 25[612\477N]P, (5.1.9)

respectively, with €*® = —e%*. Note that the gauge coupling g can be absorbed in

the embedding tensor.

In our work, we will consider solutions with only the metric and scalars non-
vanishing. Furthermore, we will consider cases with only f,y/nvp components of
the embedding tensor non-vanishing. The quadratic constraints () are then

reduced to

FarinFapg =0, € farinrfopg™ = 0. (5.1.10)
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Note that for purely electric gauging, only f,/np non-vanishing, these constraints

reduce to the usual Jacobi identity for fynp = frunve [12] [43].

In general, a subgroup of both SL(2,R) and SO(6,n) can be gauged, with
only electric vector fields. However, it has been shown that the purely electric
gaugings do not admit AdS, vacua [43] [44] [83]. In this case, magnetic components
of the embedding tensor, f_p/nvp, are involved. Since we are interested in gauged
supergravity with AdS,; vacua, we will consider gaugings with both electric and

magnetic vector fields.

In N = 4 gauged supergravity, there are 2+6n scalars parametrizes the scalar
coset manifold SL(2,R)/SO(2)x SO(6,n)/SO(6) x SO(n). The coset representive
of the SL(2,R)/SO(2) sector V, can be parametrized by

1 7,
Vo = (5.1.11)
Im7 \ 1
This coset representative is equivalent to a symmetric 2 x 2 matrix,
1 17> Rer
Mg = Re(VQVE) = — . (5.1.12)

Im7 \ Rer 1

Note that Im(V,V3) = €45 The complex scalar 7 can also be written in terms of

the dilaton ¢ and the axion Y,
nEIvMa It (5.1.13)
The explicit form is then given by

Xg — Z’e_ipg

1

Va — 6‘Pg/2

(5.1.14)

The SO(6,1n)/SO(6) x SO(n) factor can be parametrized by the coset rep-
resentative V4, where A = (m,a), which transforming by left and right mul-
tiplications under SO(6,n) and SO(6) x SO(n), respectively. The matrix Vy*

satisfies the relation

nvN = _VMmVNm + VMQVNQ (5115)
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being an element of SO(6,n). The SO(6,n)/SO(6)xSO(n) can also be parametrized

by a symmetric matrix My, defined by

The specific forms of the SO(6,n)/SO(6) x SO(n) coset representative will be

given in each case.

With only the metric and scalars non-vanishing, the bosonic Lagrangian is
given by

1
4(ImT)?

1 1
6_1£ = ER + 1—68MMMN8“MMN — 8HT8MT* - V. (5117)

The scalar potential can be written in term of the coset representative M,y as

2 1 5
V = %6 faMNPfﬁQRSMaﬁ [gMMQMNRMPS + <§77MQ - MMQ) UNRUPS]
4
_§faMNPfBQRS€aﬁMMNPQRS] , (5.1.18)

where MMY is the inverse of My;y, and MMNPRES i5 defined by
MMNPQRS = 6'r7’l,’r'qu'r’.s]}]\4WL]}]\[ nVP PVQ (IVR TVS s, (5]_]_9)

with indices raised by n*¥.

Fermionic supersymmetry transformations of N = 4 gauged supergravity

are given by

. . 2 ii
5w; = 2Du€l — ggAlj"}/HEj, (5120)
. 4 ,
ox' = ie*VoD, Ve — 1947, (5.1.21)
SN, = 20V,MD, Ve + 2igA,, e . (5.1.22)
The fermion shift functions are defined by
AY = V)V V"V oM

g ‘ ., NP
A7 = eaBVaVklMVNZkVPJ fﬁM )

A ~j = EaﬁvavMaVN'kijkfﬁMNP7 (5123)

2a1 7
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where V)Y is defined in terms of t” Hooft matrices G% and Vy,™,
i Ly i
V' = §VM G (5.1.24)
The inverse VM,; is defined similarly,

1 -
VY = —§VM (Giay* (5.1.25)

i m

t” Hooft matrices G% convert an SO(6) vector index m to an anti-symmetric pair

of fundamental SU(4) indices [ij]. They satisfy the relations

’ 1
Gmij = —(G))" = —gﬁijleffl- (5.1.26)

The explicit form of t” Hooft matrices are given in Appendix [AE The scalar

potential can be written in terms of the fermion shift functions as

¥ LN 1
V= —gA?Alij + o A Agij + §A2aijA2alj : (5.1.27)

9

Together with the fermionic supersymmetry transformations, it follows that unbro-
ken supersymmetry corresponds to an eigenvalue of Aij , «, satisfying the relation
0(2

Vo = —%, where 14 is the value of the scalar potential at the vacuum.

5.2 RG flows from type IIB non-geometric com-

pactification

We will consider N = 4 gauged supergravity with six vector multiplets which arise
from a non-geometric compactification of type IIB theory on T°¢/Zy x Z,. This
involves the fluxes of NS and RR three-form fields (Hs, F5) and non-geometric
fluxes (P, Q).

We follow [46] and restrict ourselves to solutions preserving at least SO(3)
subgroup of the full gauge group. The residue SO(3) symmetry is embedding in
SO(6,6) as a diagonal subgroup of SO(3) x SO(3) x SO(3) x SO(3). Note that the
four factors of SO(3) are subgroups of SO(6) x SO(6) C SO(6,6). The 36 scalars
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in the SO(6,6)/S0O(6) x SO(6) sector transform as (6,6) under SO(6) x SO(6)
compact subgroup. The embedding of SO(3) x SO(3) into SO(6),

6 — (3,1)+(1,3), (5.2.1)
implies that the 36 scalars transform as
(6,6) >4 x (1+3+5), (5.2.2)

under the unbroken SO(3) ~ [SO(3) x SO(3) x SO(3) x SO(3)]diag- The four
singlets are denoted as (1, v2, X1, x2). We will use the explicit parametrization

given in [46]. The coset representative is given by
Y= ® I3 (5.2.3)

where the two 2 X 2 matrices e and B are given by

0
Bl |\ B e (5.2.4)

0 e —x1 O

e — e%(4,01+s02)

The explicit form of the coset representative is then given by

e2(p1te2) 0 0 0
3 (p1tp2) 3(P1—2) 0 0
ez X2 €2
V't=1| | ) : ) @13, (5.2.5)
eﬁ(‘Pl‘i"P?)XlXQ 65(9017@2))(1 675(@14’@2) _65(502*‘P1)X2

in terms of four SO(3) singlet scalars. Note that, in this form, it is clear that ¢, and

9 are singlets under SO(3) x SO(3) C [SO(3) x SO(3)]dgiag % [SO(3) x SO(3)] diag-

With these parametrizations and the definition ¢" = (¢4, ¥1, P2, Xg, X1: X2),

the scalar kinetic terms can be found to be
1 i
Lyin = —iKijamb o'’

1
g (@(pg@“gpg + 30,010"p1 + 30,020" 05 + €¥990,x40" X

+362“"18MX13”X1 + 362“028,»(20“)(2) , (5.2.6)
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where we have defined the scalar kinematic metric K;; for later convenience in

setting the BPS equations.

The four SO(3) singlets in SO(6,6)/SO(6) x SO(6) correspond to non-
compact generators of SO(2,2) C SO(6,6) that commute with the SO(3) sym-
metry. We can split the SO(6,6) indices M into SO(2,2) and SO(3) indices,
M = (AIl), A=1,2,3,4 and I = 1,2,3. This implies that the fundamental repre-
sentation of SO(6,6) can be decomposed as (4,3) under SO(2,2) x SO(3). The

embedding tensor can be written as

farinp = faarpicx = MaaBc€rix, (5.2.7)

where Ayapc = Aa(aey- The quadratic constraints () then read

€ Noas“Nsprc =0, Aas“Nsgypypc = 0. (5.2.8)

The SO(6, 6) fundamental indices M, N can also be decomposed into (m, m),
m,m =1,...,6. The index m is used to label the T° of the T°/Z, x Z, internal
manifold. It can split into m = (a,%) such that a = 1,3,5 and i = 2,4,6. The
index m can be decomposed similarly, m = (a,i). Altogether, the indices A, B
can be written such that A = (1,2,3,4) = (a,4,a,i). The indices I,J = 1,2,3
label the three T?’s inside T¢ ~ T? x T? x T2.

In this case, the SO(6,6) invariant metric and its inverse are chosen to be

0 I
nun =" = . (5.2.9)
I 0

Note that some extra projections are needed in order to extract the negative and
positive eigenvalues of ny,y. For example, to compute the scalar potential defined
in (), we need to project the second index of Vyr* by using the projection

matrix

R=— . (5.2.10)

Note also that, in this case, we will use the gauge coupling g = % as in [46].
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The results from [46] show that the effective N = 4 gauged supergravity
theory is not unique. We will only consider the gauged supergravity admitting
the maximally supersymmetric N = 4 vacua. In this case, all the gauge and

non-geometric fluxes lead to the following components of the embedding tensor

f—%jl?: = A—444 = _)\7 f+a136 - A+333 = >\,
foie = Ao ==\, foabe = N1z = A, (5.2.11)

with A\ being constant. The first and second lines correspond to (Hs, F3) and
(P, Q) fluxes, respectively. The gauge group that arises from this embedding is
ISO(3) x ISO(3) ~ [SO(3) x T3] x [SO(3) x T?]. This gauge group is embedded
in SO(6,6) via SO(3,3) x SO(3,3) subgroup.

By using the above gauging, the scalar potential is

Vv :iem—&pz—wg 2 [62901 — 3e%%2 4 GePr1t2rateg _ 18e3%2twe _ 3ode2t2py
32

— 22013200 (1 4 3\ T) 4 31 (y; — xp)? — 12677219033

+3e572x5 + 2179223 0 (xa — Bx1)? + 3e”P T3 (v — 2x1)” — BeP(Ptea)y?
+ 66901+4s02+s0g(1 + X%) a1 62(¢1+¢9)X3 ap. 362(¢1+w2+¢g)(xl _ X2)2X§

+ 3e892 1200\ 3 (—1 + xaxy)® + 312 tPa) (V) — 2x1 0¥y + X3X)”

_|_62(<,01+3</72+S09)[1 + ngg = 3X1X2(_1 —+ X?Xg)]ﬂ . (5.2‘12)

This potential admits a trivial critical point at which all scalars are vanishing.

The cosmological constant and the AdS, radius are given by

2/2
Vo= —gAQ, L= T\/_ (5.2.13)

The scalar masses and their corresponding dimensions of the dual operators are
given in Table EI Note that we have used a different convention for scalar masses
from [46]. The scalar masses given in Table @ are obtained by multiplying the
masses given in [46] by 3 due to some difference in convention. This critical
point preserves N = 4 supersymmetry, which could be checked via the Ailj tensor,

and has SO(3) x SO(3) symmetry, which is the maximal compact subgroup of
ISO(3) x ISO(3) gauge group.
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Scalar fields | m?L? A
©gs Xg —2 1,2
1, P2 4 4
X1, X2 0 3

Table 5.1: Scalar masses and their corresponding dimensions at the N = 4 super-

symmetric AdS, critical point with SO(3) x SO(3) symmetry

To set up the BPS equations, we will use the metric ansatz
ds® = eQA(T)dxf’Q + dr?. (5.2.14)

We will use Majorana representation for gamma matrices, all v* real and ~° purely
imaginary. This implies that ¢; is a complex conjugate of €’. All scalars are con-

sidered to be functions of only the radial coordinate r. The projection condition,

Vet = el (5.2.15)
is used to solve the oy’ = 0 and d\!, = 0 equations.

From the equation (WL =0, for p =0,1,2, we find
w

A =4W K= o 5.2.16

b e W ) ( )

where W = |W]|, and ' denotes r-derivative. The superpotential W is defined by
1

W= ga, (5.2.17)

where « is the eigenvalue of Ailj corresponding to the unbroken supersymmetry.
The definite signs for A’ equation and e”* will be chosen such that the N = 4
critical point identified with N =4 SCFT in the UV corresponds to r — oc.

For all four SO(3) singlet scalars non-vanishing, the N = 4 is broken into

N =1 corresponding to the Killing spinor €!. The superpotential is given by
1
W =—_e3(P17302—0g) [pP2[oP2t¢a(_P1te2 )\ _ 3)\(j + ¥ i+ eP?
™ [e#2] ( ( x1)( X2))

—ePI\ (i + €72 x2) (i + €79 xg) + 3A(i 4+ 7 x1) (i + €92 x2) (i + €97 x,)]] -
(5.2.18)
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The real superpotential is then

1
8v/2

+ ewg(ew _ 36902))(9 + 362“’2“’9(—69"1 + e‘pQ)X%Xg + 3€w1+¢le(_1

W:

Ae3(#1-32-00) [[(_3¢92 (—e#t 4 292 + e202H00 )y, — 130233

— P20 4 22232 4 272 P0y0x))? + [P (=1 + 3e*2x3)
_ e¢1+¢2+¢gx2(_3 + 62<P2X§)Xg + e¥2 (3 4 3eretes eP1H202teg
— 3e™x5 — 67T Pxaxg + 37 X (€ (24 €7y

—efrxy + e Ex))P) 2 (5.2.19)

The scalar potential can be written in terms of W as

L OW oW
V =—2KY—_—— — 3W> 5.2.20
0Pt Ol ( )
The BPS equations from dy’ = 0 and N\, = 0 take the form
7 L OW
Y =2K"Y— 5.2.21
¢ 960" ( )

where K% is the inverse of the kinetic metric defined in () Note that, in this

form, the BPS equations solve the second-order field equations.

We will first consider subtruncations which preserve some of SO(3)’s, and

later the full SO(3) singlet sector.

5.2.1 RG flows with N =4 supersymmetry

We now consider RG flows solutions preserving N = 4 supersymmetry to N = 4
non-conformal theories in the IR. Consistent truncations, in this case, should
satisfy the 09, = 0,0\, = 0, and 0x* = 0 without setting ¢’ zero. From the
analysis, there are two possibilities which preserve N = 4 supersymmetry; by

setting @19 = Xx1,2 = 0, and by setting x, = x1,2 = 0.

N =4 RG flows by relevant deformations

We will consider a truncation with only ¢4 and x, non-vanishing. The scalars ¢,

and x, are corresponding to relevant deformations by operators of dimensions 1
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or 2. The consistent truncation of the BPS equations gives

g

;o AeT T (M0 4Py — 1)
Yo 2V2 \/(1 +ev0)2 + engg’
Y = _/\e_%g Xy
g V2 \/(1+esag)2+e2sogxg’
_ %9
A = 2 Jq et €21y (5.2.22)

42
Since the ¢, and x, are scalars in SL(2,R)/SO(2), they are also singlets under
SO(6,6). Therefore, they are invariant under the SO(3) x SO(3) symmetry. The
solutions to the above equations preserve the full SO(3) x SO(3) symmetry.

Solutions to the BPS equations () preserve N = 4 supersymmetry. It
can be checked that with this truncation, the d\: = 0 satisfies identically. The

equations 07!, = 0 and )’ = 0 also held for all € satisfying the 4: projector
(6.2.13).

By setting x, = 0, we obtain simpler BPS equations,

)\ ¥Pg

' = ——e7 2 (e¥ — 1), 5.2.23
b/ et e - 1) (5229

A g
A = —e 2 (1+e%). 5.2.24
el BN (5224

The solution to these equations is given by
v, = In [e%w - 1} —In [eﬁw + 1] , (5.2.25)

A=l [em SN (5.2.26)

The integration constant C' can be removed by shifting the coordinate r. Note
that the integration constant for A is neglected since it can be absorbed by scaling

the dx?, coordinates.

At large r, we find the solution behaves as

Ar r

SOQ ~ 6_2\/5 ~ e_f

: (5.2.27)
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which is expected for the dual operators of dimensions A = 1,2. Near the singu-

2v/2C
A

larity r — — , we find

2v/2

- (5.2.28)

g~ A~In

This singularity is physical since the scalar potential is bounded above, V' — —oo0.
This solution describes an RG flow from the dual N =4 SCFT in the UV to an
N = 4 non-conformal field theory with unbroken SO(3) x SO(3) symmetry in the
IR. The metric in the IR is given by

ds® = (\r +2v20)%da? , + dr?. (5.2.29)

Note that we have absorbed some constants to daz:i2 coordinates.

To consider RG flows with y, # 0, we introduce a new variable p, defined

by

dp Xg
— = . (5.2.30)
dr \/1 + COxg \/1 X Xg<20 + Xg)

The BPS equations () can be solved by

1
Py = 3 In[1 —2Cx, — X2, (5.2.31)
1
A = —lny,+ Zln[l —2Cx, — X]
1
5 [1 — Cx, + \/1 — 20, — XgJ , (5.2.32)
3 1 14+C2+VI+C3HC +x,) |*
PAIL — xg(2C + x)1* = 4(2)5(C +xy — V1+C?) 1+ 02 ( d

(5.2.33)

o (135 u,+VIFC?-C
2471 474747 2m )

where 5 F7 is the hypergeometric function.

The solution above interpolates between N = 4 AdS, vacuum in the UV as
r — oo, and a singular geometry at a finite value of r in the IR. There are two
possibilities for singular in the IR. The first one is given by

V2r A (14 x2) — 4x0C
8X0

Xg ~ Xo, Pg ~ —21In

)

A~ =20 [V2rA(1 + y2) — 4xoC), (5.2.34)
L+ Xxo
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where xo is constant. In this case, we have ¢, — oo and x, — X0 such that

V2rA(1 + x2) — 4x0C. Note that the constant C' in these equations is not the

same as in the equations (|5.2.3]J), (15232i) and ()

Another possibility is given by

_ ¢
4C +V2\r’
A~ 1n(¢§m~ n 40) , (5.2.35)

Pg ~ 21n<\/§/\r+40>, Xg

There are singularities at v/2rA — —4C, which lead to g — —00 and x, — 00

depending on the sigh of the constant C. These singularities are physical.

N =4 RG flows by relevant and irrelevant deformations

We now consider N = 4 supersymmetric RG flows with x, = x1,2 = 0 truncation.
Solutions in this truncation should preserve SO(3) x SO(3) unbroken symmetry
since o and ¢y are SO(3) x SO(3) singlets. Note that the truncation with y; 2 =0
only consistent with y, = 0. This implies that N = 4 supersymmetry does not
allow the operators dual to x, and X1, to be turned on simultaneously with ¢,

and ¢; . It is interesting to find a description in the dual N =4 SCFT.

In this truncation, the BPS equations are given by

A1
U 3 (P1—=3p2—py) Y2 L1 9,202+ w1+3p2+pg
0, = ez (3e e 3e +e ), (5.2.36)
44/2
A
I w1 P2 2p2+pg p1+3p2+pg
¢ = —=(e e e +e ), (5.2.37)
44/2
A
T P2 LP1 202t pg p1+3p2+9g
oy = ——= (e e e +e ), (5.2.38)
44/2
A = — A e%(<f01—3502—<,0g) (6901 — 3eP2 — 3e2p2tea 4 6501+3<p2+809) '(5.2‘39)

8v/2

To solve these equations, we introduce new variables,

D1 = Q1 — P, Pa = P1 + pa. (5.2.40)
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The above BPS equations then become

A

5 = 3(P1+eg) (pP1 _
Q] = e2 (e 1), (5.2.41)
2v2
A1 .
5 — 5 (P2—pg) (P2
Py = —=e2 9 (e¥? — 1), (5.2.42)
2v2
/\ ¥g P2 3~ 1~ 3~
U -5 5 2%2 3P1t+P P1te
Y, = —ze 2 (36 3 —e2¥? — 3e2 9+ e2 g), (5.2.43)
V2
A = —%e—“’? (e%@ﬂ% +estr 3% - se%@ﬂ%) L (5.2.44)
8v2

Combinations of these equations give

dA 1d 3 —e#

s T S (5.2.45)
dg@l 2 ngl 2(6501 — ]_)

dA  1ldg, 3 — e¥?
— 7 - . 5.2.46
03y 2dg, — Aem—1) (5:2.49)

The above equations can be solved by
3 . /. - -
Py = 5(Pr—@2) =In(l —e?) +In(l —e), (5.2.47)
_ Py 3 P1

A = S50t In(1 —e?). (5.2.48)

Note that the integration constant for ¢, is chosen to be zero to obtain the AdS,
critical point with all scalars vanishing. The integration constant for A is irrele-

vant.

By substitute the ¢,, the combination of () and () gives

DL _ o). (5.2.49)
d(pg
which can be solved by
1 -
P1 = —Eln(e_Qm — (). (5.2.50)

Near the AdS, critical point, @1 ~ @y ~ 0, which give C} = 0. This implies that
$1 = P, which leads to g = 0 and ¢, = 0. We see that, in this case, the solution
is driven by only the irrelevant operator with dimension A = 4 dual to ;. We

expect that the N =4 SCFT dual to the AdS; critical point to appear in the IR.
Note that the equation () is consistent for ¢, = 0 only if ¢; = .



92

For ¢, = 0, the equation () becomes

7 = 7 e (P — 1). (5.2.51)

This equation can be solved for ¢;(r),
=2 % am(1-e ) —m(1+e¥) 10 5.2.52
- (5.2.5)

2\/0

There is a singularity as r — Asymptotic behavior of the equation near this

singularity gives

(5.2.53)

This singularity gives V' — 00; hence the solution is unphysical.

We now consider another consistent subtruncation with ¢1 = 0 or ¢y = 0.

This is equivalent to setting w9 = +¢;. In this case, the solution is found to be

e P — Che3¥1
(,Og = iln {—2 Wz 262901 :| )
A = 7 In(1 = 2<,01 11 1 C 41
= —5@14—5 Il( )+§ Il( — € )7
Ap E 1 = 1 _
Wi = e “"1+§ln(1—e = —§ln(1+€ 1)+ C, (5.2.54)

where we have introduced the new radial coordinate p, defined by dp = e~ 3 dr.
Note that, in this case, the ¢, is not trivial along the flow. The constant C; =1

is chosen to make the solution approach AdS, critical point. This gives

@, = tIncoshg; . (5.2.55)
The solution becomes singular as p — 4\fc with ¢; — 0o. Near this singularity,
we find
3Ap 1 3)\p]
~ £ ~—In|C — , A~=In|C— 5.2.56
pg~ o1 @ { 0 \/5} 5 { Vi ( )

These singularities are unphysical since they give V' — oo.
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5.2.2 RG flows with N =1 supersymmetry

We now consider RG flows with non-trivial y; and y,. This RG flow solutions
preserve N = 1 supersymmetry and break SO(3) x SO(3) symmetry to its diag-
onal subgroup. As in the previous N = 4 case, we will first consider consistent
subtruncations, then move to more general solutions. Note that the truncation
with only ¢ and Yy, non-vanishing is not consistent. It is interesting to find a

description in the dual field theory.

N =1 RG flows by marginal and irrelevant deformations

We begin with the truncation ¢, = x4 = ¢2 = x2 = 0. This RG flow solution is
driven by irrelevant and marginal operators with dimensions A = 4 and A = 3,

corresponding to ¢ and xp, respectively. We obtain the BPS equations,

A o1 (3= et €21 4 9x2e2e
0 = = 671( SRR + Ie?) (5.2.57)
2v/2 V(e#1 — 3)2 + 9xle2en
X, = 22 act (5.2.58)
! 2\/_\/ ev1 —3)2+9X262¢1’ o
A = —e T4/ (e?t — 3)2 4 9x2e%1 . 5.2.59
e =3 0] (52.59)

We are not able to analytically solve these equations in full generality. We will
give numerical solutions in this case.
Note that further truncation with x; = 0 yields the BPS equations,

,_)\
¥1 2\/—

The above equations can be solved by

eT(e” —1) and A =——"_¢7(e7 = 3). (5.2.60)

A
42

3
A = —5901—|—ln(1—e“01),
A %% +1 (1 *%> 1 <1+ *%) (5.2.61)
—_— = & n — € — In e . L.
2v/2

This is the same solution as in the previous section for ¢y = ;. Therefore, we

will not further discuss this solution.
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(a) Solution for ¢ (b) Solution for x
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(c) Solution for A

Figure 5.1: An N = 1 RG flow with irrelevant and marginal deformations from

type IIB compactification with A = 2

For non-vanishing ¢, and y;, we find an example of these solutions, which
is given in Figure @ At large ¢y, the asymptotic behavior of this solution can

be determined from the BPS equations,

2
X1~ Xos Y1~ —gln(r/\\/Z + 18x3 — 401),
1
A ~ 3 In (7‘)\\/2 + 18x3 — 4C’1), (5.2.62)

where Y is constant. This singularity gives V' — oo; hence it is unphysical.

N =1 RG flows by relevant, irrelevant and marginal deformations

We now consider RG flow solutions with all six SO(3) scalars non-vanishing. Due
to the complication, we will give an explicit form of the BPS equations in Ap-
pendix @ Note that there could be many possible IR singularities due to the
competition between various deformations by operators and vacuum expectation

values present in the UV SCFT, similar to the analysis in [84]. We give some ex-
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amples of the solutions in Figure @, which is given in three different values of .
The figure shows that the solutions reach the UV SCFT as r — oo and approach
a singularity at the left end of the flows. This singularity leads to V' — oo; hence

it is unphysical.

5.3 Supersymmetric Janus solutions from type

IIB compactification

In this section, we discuss another type of solutions with an AdSs-sliced domain

wall ansatz,

ds? = 240 (e%d:vil + d§2> +dr?. (5.3.1)

This type of solutions, called Janus solutions, describes a conformal interface of
co-dimension one within the SCFT dual to the AdSy critical point. This solution
breaks the three-dimensional conformal symmetry SO(2,3) to SO(2,2) on the

(1, 1)-dimensional interface.

In this case, we need to modify the BPS equations of the previous RG flow

cases. In the equation (WL = 0, we instead use a 7; projection,
Yper=riiite " (5.3.2)

The v; projection in the equations dA) = 0 and dx* = 0 is still given in ()7
but the phase e** modified to

, 4%
ezA

= —. 5.3.3
A+ e A ( )
The integrability of §¢f ; = 0 equations leads to
o, L o 2
A? § —e™A 2 (5.3.4)

/2
Note that in the limit £ — oo, we obtain A’ = £W and e** = % = :i:% as in the

RG flow cases.
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Figure 5.2: An N = 1 RG flow from type IIB compactification with all SO(3)

singlet scalars and A = 1 (purple), A = 1.2 (green) and A = 1.4 (red)
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The constant x, with x? = 1, imposes the chirality condition on the Killing
spinor corresponding to the unbroken supersymmetry on the (1, 1)-dimensional

interface. Note that the Killing spinors depend on both r and £ coordinates.

Note that we will not analyze the full BPS equations for supersymmetric
Janus solutions since they are usually more complicated than the RG flow cases.
We then consider some consistent truncations of the BPS equations. We will
consider the cases with (¢4, x4) and (¢1, x1) non-vanishing. As studied in [85] [86]
[87], the truncations without the axions or pseudoscalars are not consistent with

the Janus BPS equations.

5.3.1 N =4 Janus solution

We now consider the case with ¢, and x, non-vanishing. By setting ¢ = x1 =
0y = x2 = 0, the equation §\! = 0 is automatically satisfied. Together with
(), by solving the real and imaginary parts of the equation 6x* = 0 after
applying the phase (), we obtain the BPS equations,

gp’g = —A =g —

—2UA (29— 14 2x €% )~ drefs= Ay, (5:3.5)
B C(1+ ePa)? + x2e2%s] ’ o
A ow A ow
X, = —4d-—e % + 4/46_“"96——,
9 W Xy (W Oy,
ke A"%9(e2Ps — 1 4 x2e29) — 4y, A’
n, ( Xg€ ) — Alxg , (5.3.6)
C[(1+ eva)2 4 x2e204]
—24 2
0 = A%+ —— — —e ? [(1+e%) + xJe¥], (5.3.7)

where the real superpotential is given by

A ¢g
W = ——e"72 /(1 +e¥9)2 + y2e2¢9. 5.3.8
5¢ T (5:3.8)

Note that these equations are similar to the other four-dimensional Janus solutions
in [85] [86] [87]. Since the above equations solve the BPS equations for all €,
1=1,...,4, any solutions to these equations preserve N = 4 supersymmetry. An

example of numerical solutions is given in Figure @
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(c) Solution for A

Figure 5.3: An N = 4 Janus solution from type IIB compactification within a
truncation to ¢, and x, with A = x =1 and ¢ = 22

The solution in Figure interpolates between N = 4 AdS, vacua at r —
+00. This can be interpreted as a (1 + 1)-dimensional conformal interface within
the N =4 SCFT. The interface preserves N = (4,0) supersymmetry by choice of
the chirality condition x = 1. Note that the SO(3) x SO(3) symmetry remains

unbroken along the solution.

5.3.2 N =1 Janus solution

We now consider a truncation with ¢; and chi; non-vanishing. In this case, the
N = 4 supersymmetry is broken to N = 1 supersymmetry and the solution

preserves only the SO(3) diagonal subgroup of the full SO(3) x SO(3) symmetry.
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The BPS equations in this truncation are given by

. 4AOW 4 __ e oW

- =" _ = ©1
Y1 =

SWap, 3¢ IWoy
A (4e291 — 3 — 9x2e?e1 — 2e1) — 12Ke Ay

= 5.3.9
[(err — 37 1 93] B
—A
X/ = 4 Al 72&1 aW éﬁ;efgole_a_w
! 3w o (W 0p1’
Qe A=P1(3 — 4ert 201 4 Qy20201) — 120y A’

_ B—de? + e +9Ge) 120654

C[(err — 3)2 + 9x3e2e]

p, e N 2 2
0 = A”+ e 3—2@01 (e — 3)* 4+ 9xie*] (5.3.11)
where the real superpotential in this case is

W = —e T4/ (e = 3)2 4 9y 2e201, 5.3.12
ety e =37 10y (5312

Note that, in this case, after an intensive numerical search, we have not found
any solutions interpolating between AdS, vacua in the limits » — £oo. All of the
solutions found are singular Janus, which connect singular domain walls at two

finite values of the radial coordinate. An example of these solutions is shown in
Figure @

The solution in Figure @ should describe a conformal interface between
N = 1 non-conformal phase of the N = 4 SCFT. However, this solution is con-
sidered a bad type. An uplift to type IIB is needed to verify if the solution is

acceptable in the ten-dimensional context.

5.4 RG flows from type IIB GKP compactifica-
tion
There is another class of type IIB compactification, called GKP compactification.

It includes the background of (Hj, F3) and O3-plane and/or D3-branes in order

to cancel a flux-induced tadpole

/ (Hg/\Fg)/\C4) = N3 :Hg/\Fg, (541)
0d
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(a) Solution for ¢, (b) Solution for x4
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(c) Solution for A

Figure 5.4: An N = 1 Janus solution from type IIB compactification within a

truncation to ¢; and y; with A= x =1 and ¢ = 2v/2

for R-R gauge potential Cy. See [88] for more details.

Components of the embedding tensor from this compactification, with an

SO(3) truncation of half-maximal supergravity, are given in [46],

J1ijk = Nz = —aq, gk = Az = —by,
Jiije = Nyssa = ay, Jogr = Asza=0by,
Jrijn = Nysaa = —ay, Joijn = Azua= —by,
Fiige = Npasa = as, fom = Aoaaa = bs. (5.4.2)

By using the same parametrization and procedures as in the previous type
I1B non-geometric compactification case, the scalar potential is computed. How-
ever, we refrain from giving an explicit form of the scalar potential due to its
complexity. At all scalars vanishing, this scalar potential gives a cosmological
constant

Vi = 3%((@0 — b3)? 4+ 3(ay + b2)? 4 3(ag — b)) + (as + by)?). (5.4.3)
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As mentioned in [46], due to the stabilization of the imaginary part of the modulus

T, the H3 fluxed background is related to the F3 via
b3 = Qo, b2 = —daq, b1 = Qy, bo = —das. (544)

This gives a zero cosmological constant, which corresponds to the Minkowski vac-

uum. Therefore, we will not give any further analysis for this case.

5.5 RG flows from type IIA geometric compact-

ification

We now consider RG flows from a geometric compactification from type IIA the-
ory. We will repeat the same procedure with the same parametrization from the
previous type IIB compactification section. Type ITA compactification involves
gauge (Hs, Fo, Fo, Fy, Fy) and the geometric fluxes (w). The fluxes are more com-
plicated than one in the type IIB case. The components of the embedding tensor

given by these fluxes are

V6 3V10

Hiji ~ f_gpe = NA_333 = ?)\7 Fuivjer ~ frape = Nyssz = _T)\7
Faibj ~ f+a5;; = A+334 — \/76)\, Foi~ f+a315 = A+344 = @)\7

Fo ~ figr=Niaa = ?A, Hapre ~ frapr = Njoss = ?)\,
wij© ~ gk = Aosza = @M

Wra! = Wik’ = W ~ fraje = ok = Frabe = A2z = Az = VI0A. (5.5.1)

The N = 4 gauged supergravity from type IIA compactification has a non-
semisimple gauge group ISO(3) x U(1)%. It admits the minimal N = 1 AdS,

vacuum at which the gauge group is broken down to SO(3) compact subgroup.
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The superpotential for the unbroken N = 1 supersymmetry is given by

A
W = ﬂe%(@1—3¢2+§99) [Qewﬁr?wz—% [3\/52 + 62%02(\/3 + 3\/3X2) (1 + xg€7)

+18V/Be*?2 (i + €91 x1) (i + €22 xa) + 6/3ie?2 + 9/5e?1 H3¢2

61310y, — 9\/§Xge¢l+3*’2} . (5.5.2)

The scalar potential can be written in the form

1 . OWoW 3
=—-K9—— —“W?
V=3 D¢t O TR

(5.5.3)

where W = |W)|. An explicit form of the scalar potential is given by

V =gt )2 [20€?#1+42 4 952(P1Hea) _ 94091 T4 Hes 180 1¥2 200
192

+ 5e2e1He2400) (1 1 23/15x5 + 15x32) 4 1265229 (1 + 2/15x5 + 15x3)
+ 2217692 (4 4 83/15 x5 4 60x2) + e2#1+202729) (1802 — 12y (3V/15
+5x2(2 + V15x2) — 10x,) +3(9 + 4v/15xs — 4V/15x,) + 5[4V15x3
+15x3 — 8xaxy + 4X2 + x3(22 — 4V15x,)]] + e2#rH3eates) [135

— 54V 15X, 4+ 10V15x3 + 25x5 + 1215, — 4x3(3v/15 + 60x1 + 20x,)
+ 8x2(3x1 + xg) (18 + 3v/15x1 + V/15x,) — 5xa(—21 + 12v/15x,
+4v/1Bx,) + 4[9x (VI5 +x1) + 6x1 X0 + X2 + X2 [—9 — 40v/T5y,

+60[9x7 — 2x1(V15 — 3x,) + Xﬁ]”] : (5.5.4)
At the trivial N =1 AdS, critical point, the cosmological constant is
Vo = =A% (5.5.5)
At this critical point, masses of the six SO(3) singlet scalars are
m2L?:  0,-2,4+ 6, %(4& V159). (5.5.6)

Note that these masses agree with [46] after the change to our convention with a

factor of 3.
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In this case, we have verified that the BPS equations can be written as

A=W, = Kij%. (5.5.7)

Note that we refrain from giving explicit forms of the BPS equations since they
are far more complicated than the previous cases. We are not able to find any
consistent subtruncation for this set of equations. An example of RG flows from
N =1 SCFT dual to the AdSj critical point to non-conformal N = 1 field theory
in the IR is shown in Figure @

The numerical analysis near the singularity shown in Figure @ leads to

V' — oo. This implies that the singularity is unphysical.

5.6 RG flows from SO(4) x SO(4) gauged super-

gravity

We will now consider RG flows from N = 4 supergravity coupled to six vector
multiplets, with semisimple gauge groups in the form of simple product G; x Gj.
One of the two factors is embedded as the electric part of SO(3,3) C SO(6,6) while
another one is embedded as the magnetic part in another SO(3,3) subgroup of
the SO(6,6). We will study the cases of G1,Gs = SO(4),S0O(3,1),50(2,2). This
makes six different gauge groups, SO(4) x SO(4), SO(3,1) x SO(3,1), SO(2,2) x
S0(2,2), SO(4) x SO(3,1), SO(4) x SO(2,2), and SO(3,1) x SO(2,2). The

embedding tensors for these gauge groups are given in [89].

We first consider RG flows from N = 4 gauged supergravity with SO(4) x
SO(4) gauge group. Non-zero components of the embedding tensor for this gauge

group are given by
Frmip = V2(g1 — §1)€mps Fraie = V2(g1 + G1)€gies
fomnp = \/5(92 — J2)€miip, f_abe = \/5(92 + G2)€ap (5.6.1)

where M = (m,a)
a=10,11,12.

(v, M, a,d@), with i = 1,2,3, m = 4,5,6, @ = 7,8,9, and
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Figure 5.5: An N = 1 RG flow from type ITA compactification with A = 1 (purple),
A = 1.2 (green) and A = 1.4 (red)
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The procedure is the same as in the previous type IIB and type ITA sections.
However, we now use a different parametrization involving non-compact generators
of SO(6,6),

Yina = €m.at6 + Catb.ms (5.6.2)

where the 12 x 12 matrices e,y are defined by

(emn)PQ = dmPONG - (5.6.3)

There are 36 scalars in SO(6,6)/S0(6) x SO(6) transforming as (6, 6) under
the compact gauge group SO(6) x SO(6). These scalars transform as

(6,6) — (3,3,1,1) +(3,1,1,3) +(1,3,3,1) + (1,1,3,3), (5.6.4)

under the gauge group SO(4); x SO(4)_ ~ SO(3)} x SO(3)2 x SO(3)L x SO(3)2.
We will consider singlet scalars under the diagonal subgroup SO(4);,, ~ [SO(3)1 x
SO3)3]p x [SO(3)L x SO(3)?|p. The scalars transform as

2(1,1) + (3,1) +(1,3) +(1,5) + (5,1) + 2(3,3), (5.6.5)

under the SO(4);,,. Solutions with these two singlet scalars should describe RG
flows breaking the SO(4) x SO(4) symmetry to SO(4)iy ~ SO(3) x SO(3) sym-
metry, with each scalar corresponding to breaking each of the SO(4)’s. The two

singlets correspond to the SO(6,6) non-compact generators
Vi=Yii+ Yo+ Vs, Vo =Yg+ Ya5 + Yoo, (5.6.6)
The coset representative is given by

L = Vg9V (5.6.7)

Together with the scalars from the supergravity multiplet, the scalar poten-



106

tial is given by

V = 16—¢—6¢1—6¢2 [6¢+3¢2 [6¢+3¢2

8
—36¢+8¢1+3¢2(g% +2§%) +2€3¢1g1[92(1 +364¢2) — 2025 (3+€ ¢2)]

g% + e¢+12¢1+3¢2 36¢+4¢1+3¢2 (Qg% + g%)

+6e7 g1[ga(1 + 3¢??) — €222 G5(3 + €12)] — 66> §1[go (1 + 3¢*??)
2¢2 (3 + 64(;52) 2€9¢1§1 [92(1 + 364¢2) _ 2¢2 (3 + e4¢2)]]
591 [[L = 3642 (2 4+ €4)](1 + *x)g3 + 1602oe™ (1 + €x?)

+e'% [2(16e”g1g1 — 333x° — 6G5¢ x> + %2 X°53)

+(e% — 6e* — 3)35]]] - (5.6.8)

This scalar potential admits four supersymmetric AdS, critical points. One
is a maximally supersymmetric AdS, critical point with SO(4) x SO(4) symmetry

at

92 — §2
g =0l
We denote this AdS,; vacuum by critical point I. Without loss of generality, we

X=¢1=0¢,=0, ¢=1In (5.6.9)

can shift the dilaton such that the critical point occurs at ¢ = 0. This implies
Go=0g1+392— 1. (5.6.10)

The cosmological constant and the AdS, radius at this critical point are given by

1
Vo =3 tmsdotiunndnehses——— (5.6.11)
\/5(91 - g1)
where we have assumed that §; > g;. All scalars have masses m2L? = —2, which

correspond to relevant operators of dimension A =1, 2.

The remaining three supersymmetric AdSj critical points are listed below:

o II. Critical point with SO(3); x SO(4)_ symmetry

2./ 1
¢ — |: glgl:| — 1n [$:| y ng - 07
g1+ g1 "2 |;
~ \ 1
v 3(g1 + ) (91 — §1)? I (9191) (5.6.12)

V9191 ’ (G -9V F o
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o III. Critical point with SO(4); x SO(3)_ symmetry

24/ 020 1
gb = —hl|: 92«?2:| ) ¢2:—1n |:2:|7 ¢1:07
92+ g2 2 92
3(92 + G2) (g1 — 3n)? (9292)%
V et — — 5 L = — — . 5613
0 vV 9202 (91— 91)V 92 + 2 ( )

o IV. Critical point with SO(4);,, ~ SO(3), x SO(3)_ symmetry

9191 g2 + g2 1 g1 1 [92}
=1 < 3 =_1 =~ | =1 =~ |
’ n[\/92§291+§1 # n[ ] & 2

2 o g2

392+ 32)% (1 — 3n)? - \/5(91(519292)% .
Vi = — AU . L=— : (5.6.14)
2/913192- (31— 91)v/ (g1 + G1)(92 + G2)

Note that gs in the above equations can be replaced by () to make the critical
point I occurs at y = ¢ = ¢1 = ¢ = 0. Scalar masses and the corresponding

dimensions at each critical point are shown in Table @, Table @, and Table @,

respectively.

Scalar field representations | m?L? | A
(1,1,1) 2, | 1,2

(1,1,1) 4 | 4

(3,1,1) Oxs | 3

(1,3,3) Owxg 3
(5,1,1) —2«5 | 1,2
(3,1,3)+(3,3,1) —2x18 | 1,2

Table 5.2: Scalar masses and the corresponding dimensions of the dual operators
at the N = 4 supersymmetric AdSy critical point with SO(3) x SO(4)_ symmetry
(Critical point II)

As in Table , there are three massless scalars in the representation (3,1, 1)
which are Goldstone bosons indicating the symmetry breaking SO(4)_ x SO(4)+
to SO(3); x SO(4)_. Similarly, Table @ shows Goldstone bosons live in repre-
sentation (1,1,3) corresponding to the symmetry breaking SO(4)_ x SO(4)+ to
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Scalar field representations | m?2L> A
(1,1,1) —249 | 1,2
1,1,1) 4 4
1,1,3) Oxs | 3
3,3,1) Oxg 3
1,1,5) —245 | 1,2
(1,3,3)+ (3,1, 3) —2518 | 1,2

(
(
(
(

Table 5.3: Scalar masses and the corresponding dimensions of the dual operators
at the N = 4 supersymmetric AdS; critical point with SO(4), x.SO(3)_ symmetry
(Critical point I1I)

Scalar field representations | m?L? | A
(1,1) —240 | 1,2

(1,1) 4o 4
(1,5) + (5,1) —2410 | 1,2

(1,3) +(3,1) Oxe 3

(3,3) Ox1s 3

Table 5.4: Scalar masses and the corresponding dimensions of the dual operators
at the N = 4 supersymmetric AdS;, critical point with SO(4);,, ~ SO(3) x SO(3)
symmetry (Critical point IV)

SO(4)y x SO(3)_. This implies that ¢; and ¢, are corresponding to the deforma-
tion with the symmetry breaking SO(4), — SO(3), and SO(4)_ — SO(3)_, re-
spectively. Table @ also shows six massless scalars indicating both of the SO(4)’s
breaking simultaneously. Note that the remaining massless scalars in each case
are corresponding to marginal deformations in the SCFTs. These deformations
should break some amount of supersymmetry since the N = 4 AdS,; vacua have
no moduli preserving N = 4 supersymmetry [90]. Note that the vacuum structure
of this gauged supergravity is similar to two copies of SO(3) x SO(3) ~ SO(4)
gauge group considered in the previous N = 3 gauged supergravity Section .
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5.6.1 RG flows between N =4 SCFTs

We now consider holographic RG flows interpolating between the previous AdSy
vacua, I, II, ITI, and IV. By following the same procedure as in the previous type

IIB section, except that for the following the superpotential W is defined by

W = ga, (5.6.15)

where « is the eigenvalue of Aij corresponding to the unbroken supersymmetry.

For the case with SO(4),, singlet scalars, AY is diagonal and takes the form

of W,

A+ gw(sﬁ, (5.6.16)

where the superpotential is given by

1
e
42

+e31 (1 + e¢x) [g2(1 + 364¢) — §pe°?? 3+ e4¢2)]

[} AN .~
W — —5—3¢1—-3¢2 [3,Lgle¢+2¢1+3¢2 + Zgle¢+6¢l+3¢2

_Z'gle¢+3¢2 _ 3igle¢+4¢1+3¢>2] ) (5617)

The equation )\, = 0 gives the BPS equations

¢ = L _eiheE (gl 1) g, (5.6.18)

2v/2

1 .
Py = ———ete 23 (M2 _1)(e22G, — go)(e®y — ).  (5.6.19)

2v/2
The consistency of the equation () implies that the phase e* is purely imag-
inary, e* = +4. With this choice, the equation () requires y = 0. Note that,
with e** = 4, the superpotential given in () is purely imaginary, which is
in agreement with the phase defined in ()

We will choose the definite sign to identify the critical point I at the limit
r — oo. Together with the equation 6y’ = 0, the BPS equations with the above

conditions can be written in term of W as

2 2
V=0, ¢ =-2W gy ZOW o W

¢ =1 ~300," 396,
(5.6.20)

a_¢7
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Explicit forms of these equations are given by

1

6= et = ) — ) (5.6.21)
& = %633@(64@ — 1)(e22Gy — go), (5.6.22)
¢ = _2_\1/56—‘3—3%—3@ [3§1€¢+2¢1+3¢2 — g1e?t3%2 _ 3g, ettt H302

4GpePTOP1T302 4 30115, 0202(3 4 e92) — gy (1 + 3e4¢2)ﬂ , (5.6.23)
A = L 67273@173@ [3§1 ph 2014302 _ 7 b 362 _ 3 @ o P Hid1+3¢2

42

+gle¢>+6¢1+3¢2 + e391 [92(1 + 3e4¢>2> _ §2€2¢2(3 + e4¢2)H ) (5.6.24)

The scalar potential can be written in terms of W as

OWN? 2 /aWN 2 (oW’ )
V:4(a—¢) +§(8751) +§(0752> —3W2. (5.6.25)

We will not give the explicit form of the scalar potential due to its complexity.

Solution near the SO(4) x SO(4) critical point at r — oo behaves as

(b? ¢17¢2 Q7 e_LLla (5626)

which is expected since all of these scalars are dual to operators of dimensions

A =1,2. Note that L; is the AdS, radius at the critical point I given in ()

RG flow from critical point I to critical point II

The flow between critical points I and II can be solved from the BPS equations

() to () with ¢ = 0. By considering ¢ and A as functions of ¢y, the

BPS equations can be written as

a9 ~ (14 3e*) + 21 [4(g2 — G2)e™ 7 — gu(e' +3)]

_ N 5.6.27
dgn (e'r —1)(g1€* — g1) ( )
dA _ gi(143e") — e*'[4(g; — Go)e” "% + Gi(3 + €')] (5.6.28)
dgn 2(e*r — 1)(g1e*” — g1) -
The first equation can be solved by
_ 5 Cq(et —1
oo |2 Pt Gl ) (5.6.29)

gie3%1 — gren
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~2 7~
The integration constant C; = £ 1§(§Q_g§’2) is chosen to make the solution interpolate
1 1

between the SO(4) x SO(4) critical point with ¢ = 0 and the SO(3); x SO(4)_
with ¢ = In [—”’1571]. The equation () is then

g91+31

— 0 0. 0201) p— %1
¢ =In {(gz §2)(9: + Gt )e ] . (5.6.30)
91 — 9
With this solution, the second equation in (H.6.2§) can be solved by
1
A= % —In(1—€e") +In(g1 — G1e™”) + 3 In(g1 + §1e**). (5.6.31)

Note that an irrelevant additive integration constant has been removed.
To find a flow solution for ¢, we introduce a new radial coordinate 7, defined

by 4 = e2. The equation () becomes

dgbl I —3¢ 41 ~ 2
L = (et 1)(ge? — gy). 5.6.32
JF 5732 ( )(91 91) ( )

The solution to the above equation is given by

(91 — 3)r

V2

= (g1 —g1)tan ' e® — (g1 + §1) tanh ™" e
+21/g1g1 tanh ™! [« /@e%] . (5.6.33)
g1
Near critical point II at » — —o0, the scalars ¢ and ¢, behave as
pr~e i and gy~ eTn, (5.6.34)

This implies that the operator dual to ¢; becomes irrelevant with dimension A = 4.

The operator dual to ¢ remains relevant with dimensions A = 1, 2.

RG flow from critical point II to critical point IV

We now consider the flow between critical points II and IV. By using similar
analysis with ¢; =

of ¢y,

% In % along the flow, we find solutions of ¢ and A as functions

6 = In 2v9191(g2 + G2)e**
(91 + G1)(g2 + g2e?2) |’
05

A = 3 In(1 - 64¢2) + ln(§262¢2 —g2) + %110(92 + §262¢2)‘ (5.6.36)

(5.6.35)
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The solution for ¢s is given by

(91— 91)(g2 + §2)f

V2 = (G —g1)tan"te?? — (go + §o) tanh ™' %2

+2+/¢2Go tanh ™! [ 92] (5.6.37)

g2

where 7 is defined by — %

RG flow from critical points I to critical point III

The flow solution between critical points I and III is given by

¢ = 0, (5.6.38)
@2 >
¢ = In [ng?)} (5.6.39)
g2 + €223,
A = % —In(1—€e"?) 4+ In(e**g — g0) + —ln(g2 + §2€>7),
(5.6.40)
2
_% — (go — o) tan—te® L (g, + §p) tanh~! e
+2+/¢2Gs tanh ! {1 [ = ¢2] . (5.6.41)
92
RG flow from critical points III to critical point IV
The flow solution between critical points III and IV is given by
1 92}
= —In|=], 5.6.42
6 = 3|2 (5.6.42)
—¢1 P 5, p201
2(g1 + G1)V G292
. 1 .
A = % — ln(l 4¢1) + hl(gl ¢1gl) + 5 ln(g1 + 9162¢1),
(5.6.44)
(g —Q%) 1

= (g1 — 1) tan"" e — (g1 + 1) tanh ™" €™

+2/91G1 tanh ™" [, /ﬂe%] . (5.6.45)
91
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(a) Solution for ¢ (b) Solution for ¢9
20} A0

L L L Lo,
-10 -5 5 10

-0.02

(c) Solution for ¢ (d) Solution for A’

Figure 5.6: A numerical RG flow from critical point I to critical point IV with

G=1g=gp=2and g=3
RG flow from critical points I to critical point IV

In this case, we give a numerical solution describing RG flow from critical point I

to critical point IV in Figure @

RG flow from critical points I to critical point II to critical point IV

The numerical solution describing RG flow from critical point I to critical point

II, then to critical point IV is given in Figure @

Note that, by an intensive numerical search, we have not found a solution
flow from critical point I to critical point III to critical point IV. It would be

interesting to see this description in the dual N =4 SCFT.



114

L L
-10 10 20

(b) Solution for ¢

ol g
20

L n Loy
-10 10 20

(c) Solution for ¢ (d) Solution for A’

Figure 5.7: A numerical RG flow from critical point I to critical point II to critical

point IV with ¢y =1, g1 = g2 =2 and g5 = 3
5.6.2 RG flows to N =4 non-conformal theory

There is another consistent truncation for N = 4 supergravity with SO(4) x SO(4)
gauge group, which is obtained by setting ¢; = ¢ = 0. In this case, there are
only the scalars from the supergravity multiplet. As mentioned in the previous

section, the axion y cannot be turned on simultaneously with ¢, and ¢,.

In this case, the superpotential is given by

W= %6_ [(92 = G2)xe” —i(g2 — g2 + €(g1 — 1))] - (5.6.46)

[NsS

The scalar potential is given by

oW\ oW\
Vo= 4 47 — | —3W?
( 96 ) i ( o )
= —(g1 —G1)%e ?[L+4e? + (1 + )], (5.6.47)
where we have use go = g1 + g2 — g1 This scalar potential admits only one AdS,

critical point at ¢ = x = 0, which is the same as critical point I in the previous

section.
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The BPS equations, in this truncation, are given by

48W B V2(g1 — §1)[e® (14 x?) — 1]

! —4— = — ) 5.6.48
Y R 5049
L ¢
Y = g2V 2V2(g1 — G)e” i x , (5.6.49)
9x V(1 + e9)2 4 202
1
A = W=—(g—G1)e 2/(1+ e + 202, (5.6.50)
V2
Near the AdS, critical point, we find

qb ~ X ~ eiLLI’ (5651)

which implies that ¢ and x are corresponding to the relevant operators of dimen-

sions A =1, 2.

By considering ¢ and A as functions of y, we can combine the BPS equations

into
% 7/ /a8 ) N (5.6.52)
ax ox , 6.
dA° 1420 +e¥(1+ ) (5.6.53)
)7 3% . .6.
The above equations can be solved by
1
= -3 In(1 —2Cx —x?), (5.6.54)
1 1
A = —lnx+§ln[1 — OxF+v/1T=2Cx =% + 1111(1 —2Cx — X°).
(5.6.55)

Note that we have neglected an additive integration constant for A. However, we

keep the constant C' # 0 to obtain the correct behavior near the AdS, critical

point as given in ()
To solve for y as a function of r, we need to substitute () into (),

we find the equation for y/,

r_ 2(91 - §1)(1 —2Cyx — X2)3/4X
= (1 —Cx + (1 20y — x2)1/2)1/2 (5.6.56)

We are not able to solve the equation (@) for y analytically. We will then look
for a numerical solution. The equation () gives ¢ — 0 in the limit x — 0,
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which is corresponding to the AdSjy critical point I. The equation () also has
singularities at xo, which 1 —2Cxo — x2 = 0. This implies that ¢ flows from the
value of 0 at the AdS, critical point to the singular value ¢ — oo, while y flows
from the value of 0 to xo = —C £+/1 + C2. Examples of numerical solutions for
are given in Figure @ Note that the equation (@) also gives x’ = 0 at the value

of x = xo, which is in agreement with the fact that y flows between the values of

0 to Xo-

X
0.4
0.3
0.2
0.1
\ r

P B S — i N P | r

—4 -2 - 2 4

Figure 5.8: Solutions for y with gy =1, gy =2 and xyo =V1+C?—-C for C =1
(red), C' =5 (green) and C' = 10 (blue) in SO(4) x SO(4) gauging

Near the singularity ¢ — oo and x — xo, we find
X — xo ~ 14, 6~ —1Inr? A~Inr. (5.6.57)

The metric () is then
ds* = r’dai , + dr’. (5.6.58)

We find that V' — —oo near this singularity, regardless of the value of xy. Hence,
the singularity is physical. This solution should describe an RG flow from the N =
4 SCFT in the UV to a non-conformal field theory in the IR. Note that this RG
flow preserves the SO(4) x SO(4) symmetry and N = 4 Poincare supersymmetry

in three dimensions.
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5.7 RG flows from SO(3,1) x SO(3,1) gauged su-

pergravity

We now consider N = 4 supergravity coupled to six vector multiplets with the
gauge group SO(3,1)xS0O(3,1). The non-vanishing components of the embedding

tensor are given by

1 N
f+123 = f+189 = f+729 = _f+783 = —(91 - 91),

HS
NS S

firso = [r1s3 = firs = —[r120 = 7(91 + 1),

1 -
f7456 = f—4,11,12 = f710,5,12 —~ _f710,11,6 = —(92 - 92);

-5
') [\

f-10a1,12 = feanir = foi056 = —f-a512 = 7(92 + G2). (5.7.1)

We will follow the same procedure as in the previous sections.

To parametrize the coset SO(6,6)/S0O(6) x SO(6), we will use scalars that
are invariant under the SO(3) x SO(3) C SO(3,1) x SO(3,1) subgroup. In this
case, there are two SO(3) x SO(3) singlets which corresponding to SO(6,6) non-

compact generators
Vi=Yn+Ye—Ye, Yo=Y+ Ys— Y. (5.7.2)
The coset representative is parametrized by

L = eVighYs (5.7.3)



118

The scalar potential is given by

Vo — ée—¢—6¢1—6¢2 [2geP+3004962 (5015 _ 301621 _ 5 4 3641)
—6goe?T3OFE02 (g 691 3,021 — §) 4 3G,e7)
+6§2€¢+3¢1+7¢2(3g elo 39162¢1 +g166¢1 _ 571)
_2§26¢+3¢1+3¢2( _ 3916 — g+ 3§1€4¢1)
+3e50 %2 (192 (25 — GB) (1 + x*e™) — 3(g5 — 205) (1 + x*e™)]

+g2 6¢>1+6¢2(1 +X2 2¢>) +92 6¢>1(1 +X2 2¢)
+¢%%2 [3(2gf — §1)e2TE 1 16€% (9230 + €**(g1G1 + G2G2X7)]
+gie?? T2 2620 _ 3(g7 — 27)e? )] . (5.7.4)

This scalar potential admits an AdSy critical point at

1 = 2 ~2Y2 A2 ~2)\2
6 = tm [glgl(gg + 95)°(9t + 91) ]  y=o0,
9292
¢1 = 5 1 —E s ¢2 = 5 1 —g . (575)

Note that this critical point preserves N = 4 supersymmetry and SO(3) x SO(3)
maximal subgroup of the SO(3,1) x SO(3, 1) gauge group. We can also shift the
scalars to make the critical point occurs at ¢ = y = ¢; = ¢ = 0, which can be
done by setting

g1 = —a1, 92 = —Ga, g2 = —0g1- (5.7.6)
The cosmological constant and the AdS, radius with these values are given by

1

Vo=—6g; and L*=_—. (5.7.7)
291
Note that there is another choice with
g1 =—g1, J2= —g2, (5.7.8)

at which the critical point occurs at ¢ = x = ¢1 = ¢ = 0 but this is a dS,; with
Vo = 2¢7.

Scalar masses and their corresponding dimensions of the dual operators are

given in Table @ Note that these scalars are in the representation of the SO(3) x
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SO(3).

corresponding to ¢; and ¢, dual to the irrelevant operators of dimensions A = 4,

We see that there are two singlets scalars in the representation (1,1),

and six Goldstone bosons in the representation (1,3) + (3,1). This indicates
that the SO(3,1) x SO(3,1) breaks down into its maximal compact subgroup

SO(3) x SO(3).

Scalar field representations | m?L? | A
(1,1) —249 | 1,2

(1,1) 4yo 4
(1,5)+(5,1) —2x10 | 1,2
(1,3)+(3,1) Owxe 3

(3,3) Ox1s 3

Table 5.5: Scalar masses and their corresponding dimensions at the N = 4 su-
persymmetric AdS, critical point with SO(3) x SO(3) symmetry for SO(3,1) x

SO(3,1) gauge group

5.7.1 RG flows without vector multiplet scalars

Since there is only one supersymmetric critical point, there is no supersymmetric
flow between the dual SCFTs. We will instead consider RG flows from the SCFT
dual to N = 4 AdS, critical point. For a truncation ¢; = ¢ = 0, with SO(3) x

SO(3) symmetry, the superpotential in this truncation is given by

31

W= —2ﬁ916_3[1 +e?(1—ix)]. (5.7.9)
The scalar potential can be written in the form of W = |W]|,
16 (OW\® 16 oW\ 4
V = — | — o2 [ 20T o _W2
9<8¢)+96 (ax> 3
= —gle ?[1 +4e? + (1 4+ X)) (5.7.10)
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The BPS equations in this truncation are given by

89w _\/5916*2[62‘1’(1 +x%) — 1]

' = 5.7.11
¢ 3 0¢ \/(1 + e9)2 + 202 ( )

6

2V/2g1e” 2
Y = 8O 2V2gie iy , (5.7.12)

7 oy A rep e
3 &
A = W= —=qgie 2/ (1 +e?)2 + e2¢y2. 5.7.13
2\/591 \/( ) X ( )
The solution to the above equations near AdS, critical point behaves

(b ~ X ~ eiﬁng ~ 67%, (5714)

which is expected for the dual operators of dimensions A =1, 2.

Similar to the SO(4) x SO(4) case in Section , the solution to ()
to () is given by

1

¢ = —gh(l—x"-20x), (5.7.15)
3 3 3
= —ilnx+§ln(1—2Cx—x2)+Zln<1—Cx—|—\/m>.

(5.7.16)

We give an example of numerical solutions for y in Figure @ As shown in the
figure, the solution for y flows from y = 0 to y = xo = —C++/1 + C2. With these
values of y, the equation () implies that ¢ flows from ¢ — 0 to ¢ — oo. This
singularity gives Vy — —oo, hence it is physical. This solution should describe
an RG flow from N = 4 SCFT in the UV with SO(3) x SO(3) symmetry to a
non-conformal field theory in the IR.

5.7.2 RG flows with vector multiplet scalars

We now consider RG flows with non-vanishing ¢; and ¢,. Note that in this case,

we need to set x = 0 to make the solutions of the BPS equations consistent with
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Figure 5.9: Solutions for y with g1 =1, g1 =2 and xo=V14+C?—-C for C =5
in SO(3,1) x SO(3,1) gauging

the second-order field equations. The BPS equations, in this case, are given by
¢y = \/5916% cosh(2¢; ) sinh ¢4,

oy = ﬁgle_g cosh(2¢,) sinh ¢,
¢ = ﬂgle’g [¢? cosh ¢y (cosh(2¢1) — 2) — cosh ¢ (cosh(2¢,) —

5.7.17)
5.7.18)

Y

(
(
2)]
(5.7.19)
2)]-
(

-

1
A = gie”

72 [¢? cosh ¢y (cosh(2¢1) — 2) + cosh ¢ (cosh(2¢) —

5.7.20)

These equations can be solved numerically with suitable boundary conditions. An
example of numerical solutions is given in Figure . Note that the singularity
shown in Figure leads to V' — oo, hence the singularity is unphysical. We
will look at some consistent truncations in which the BPS equations can be solved

analytically.
We first consider a truncation with ¢ = 0 and ¢; = ¢5. The BPS equations
are then

¢ = \/2g1 cosh(26y)sinh ¢y, (5.7.21)
A" = /2g; cosh ¢[cosh(2¢,) — 2]. (5.7.22)
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(c) Solution for ¢ (d) Solution for A’

Figure 5.10: A numerical flow from AdS, critical point with g; = 1 in SO(3,1) X
SO(3,1) gauging

A solution to the above equations is given by

= h
2y = V2coshd | o it e, (5.7.23)
1+ +/2cosh 01
A = In(1+€*) —In(1 =€) —¢,. (5.7.24)

The solution for ¢; has a singularity at a finite value of r. Near this singularity,

we find

1 3 1 3
61~ £ n {C’ - 2“\’};} . A~—hn {C’ - 2‘%} , (5.7.25)

where C is a constant. Note that ¢; and ¢o are dual to irrelevant operators
of dimensions A = 4. In this case, the N = 4 SCFT should appear in the IR.

However, the singularity leads to V' — o0o; therefore, this singularity is unphysical.

Another truncation is obtained by setting ¢» = 0. The BPS equations in
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this truncation are

¢y = V2gie? cosh(2¢, ) sinh ¢, (5.7.26)
¢ = V2get (1 + e? cosh ¢y )[cosh(2¢,) — 2], (5.7.27)
A = Lgle’% [e? cosh ¢y (cosh(2¢;) — 2) — 1]. (5.7.28)

V2
A solution to the above equations is given by
1

¢ = In |cosh¢ — QC cosh(2¢ )cschoy | (5.7.29)
V2g7 = In[C — tanh(2¢1)], (5.7.30)

1

A = In[cosh(2¢;)] — 5 In(sinh ¢y)
1

5 In[C cosh(2¢y) — sinh(2¢1)] (5.7.31)
where the coordinate 7 is defined by % — ¢~%. The constant C # 0 is needed to

obtain the correct behavior of ¢ and ¢; near the AdS, critical point. Note that

this solution is singular at a finite value of 7. Near the singularity, we find

b2 ii In ‘\/ﬁglf _a, (5.7.32)

where C' is constant.

The behaviors of ¢ and A depend on the value of the constant C'. For the

case ¢ — 0o, we find

1 .
TNCEDR Zln‘\/ﬁgﬁ—c

9

1 s
A~ gi~—gln ‘\/iqlf —al, (5.7.33)
for C' =2, and
1 5 -
~ P~ —Zln’ﬂglr—C ,
1 3
A~ g~ —7n ’ﬁglf —al, (5.7.34)

for C' # 2. Both of these singularities lead to V' — oo. Therefore, they are

unphysical.
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For the case ¢ — —o0, we find

1 _
~ ¢ Nzln‘ﬂglf—C

A ~ —¢y ~ —i In )\/Eglf - é‘ , (5.7.35)
for C = —2 and
~ gy~ —iln Vagir - €|,
A~ —gy~ —iln ‘\/59177 - é’ (5.7.36)

for C' # —2. These singularities lead to V' — oo, hence they are unphysical. The

solutions in this particular truncation do not describe RG flows in N =4 SCFT.

A similar truncation with ¢; = 0 also leads to unphysical singularities. It
would be interesting to uplift these solutions to ten or eleven dimensions and

determine if these singularities are resolved.

5.8 RG flows from SO(2,2) x SO(2,2) gauged su-

pergravity

We now consider N = 4 supergravity coupled to six vector multiplets with SO(2,2) x
SO(2,2) gauge group. The components of the embedding tensor in this gauging
are given by

| { N
fri180 = ﬁ(% —0), firo3 = (g1 + 1),

1 1
_ = — + g2), _ = — — (g9). 5.8.1
f 10,5,6 \/5(92 92) f 4,11,12 \/§<92 92) ( )

Sl

We will consider four SO(2) x SO(2) x SO(2) x SO(2) singlet scalars cor-

responding to the SO(6,6) non-compact generators,
Yi=Yir, Yo=Yii, Ys=Yi, Yi=Yir (5.8.2)

The coset representative is parametrized by

[, — o911 p02Y2 03Ys 0aYa (5.8.3)
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The scalar potential in this gauging is given by

(sinh¢ (x> = 1) (G2 + 92) >+ (1 + g1) ?) + coshd (x> + 1) (g2 + g2) 2
(g1 4+ g1)%) +4 (31 + g1) (G2 + g2) (sinh ¢y sinh ¢3 cosh ¢4
— sinh ¢9 sinh ¢4 cosh ¢y)) . (5.8.4)

However, in order to obtain consistent BPS equations, we need to impose the

relation

G1=—G91, g2=—ga. (5.8.5)

This relation gives V' = 0 for any values of the scalars; hence this gauging gives
a Minkowski vacuum. We will not perform any further analysis since it does not

give a holographic description.

5.9 RG flows from SO(4) x SO(3,1) gauged super-

gravity

We now consider N = 4 supergravity coupled to six vector multiplets with SO(4) x
SO(3,1) gauge group. The SO(4) and SO(3,1) are electrically and magnetically
embedded in the SO(3,3) x SO(3,3), respectively. The components of the em-

bedding tensor in this gauging are given by

fr123 = \/5(91 — 1), Jirgo = \/5(91 + 1),

1

foas6 = f—4,11,12 = f—1075,12 = —f—10,11,6 = E(m - §2),

1 N
f—10,11,12 = f—4,11,7 = f—10,5,6 = —f—45,12 = E(QQ + 92)- (5'9'1)

We will consider scalars fields that invariant under SO(4);,, ~ SO(3) x
SO(3) C SO(4)xSO(3) C SO(4)xSO(3,1). These scalars correspond to SO(6, 6)

non-compact generators

Vi =Y+ Yoo + Yaz, Yo=Y+ Yis — Yee. (5.9.2)
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The coset representative is parametrized by

L = eV eh2, (5.9.3)

The scalar potential, in this case, is given by

Ly 6
VvV = ge ¢—6¢1—6¢2 [(gl+g2)2€2¢+12¢1+6¢2 —3(3gf+2g1g2+g§)e2¢+4¢1+6¢2

+e5 (g3 (1+ €2X7) (1 4 €'%)° + 16" [e** (g7 + g192 — 93X7) — 95]]
+8926¢+3¢1+6¢2 [g1(€2¢1 _ 1)3 + 9262¢1 (3 + 64¢1)] cosh ¢y X

[cosh(2¢s) — 2] — 3(3g7 + 4g1gs + 2g5)e*T8011092 4 g2e20T6%2] - (5.9.4)
Note that we have imposed the relations

G=091+0 and G2 = —g2 (5.9.5)

in order to obtain an N = 4 supersymmetric AdSy critical point with SO(4) x

SO(3) symmetry for all scalars vanishing.

This scalar potential admits two supersymmetric AdS, critical points with
N = 4 supersymmetry. The first is a trivial critical point, at which all scalars
are vanishing, with SO(4) x SO(3) symmetry. The cosmological constant and the

AdS, radius at this critical point are given by

Vo= —6g2, L= \;—j. (5.9.6)

Scalar masses and the corresponding dimensions of the dual operators are given

in Table @

Another one is a non-trivial critical point, which is given by

1 g1
= :07 :_1 )
P2 X # 2n{91+92}
1 4
6 = —ln{ 91(91+g22)]'
(201 + 92)

5.9.7
. (59.7)
At this critical point, the cosmological constant and the AdS, radius are given by

Vi — _w I _ V3(g1(91 + 92))% (5.9.8)

Vai(g +g2) 92(201 + g2)7

This critical point preserves an SO(3) x SO(3) symmetry. Scalar masses and the

corresponding dimensions of the dual operators are given in Table @
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Scalar field representations | m?2L> A
(1,1,1) —249 | 1,2

(1,1,1) 4 4

(1,1,3) Oxs 3

(3,3,1) Oxo | 3
(1,1,5) —245 | 1,2
(1,3,3)+ (3,1, 3) —2518 | 1,2

Table 5.6: Scalar masses and the corresponding dimensions of the dual operators
at the N = 4 supersymmetric AdS, critical point with SO(4) x SO(3) symmetry
for SO(4) x SO(3,1) gauge group

Scalar field representations | m?L? A
(1,1) ~2x2 | 1,2

(1,1) 4o 4
(1,5) + (5,1) —2410 | 1,2

(1,3) +(3,1) Oxe 3

(3,3) Ox1s 3

Table 5.7: Scalar masses and the corresponding dimensions of the dual operators
at the N = 4 supersymmetric AdSy critical point with SO(3) x SO(3) symmetry
for SO(4) x SO(3,1) gauge group

5.9.1 RG flow between SO(4) x SO(3) and SO(3) x SO(3)

critical points

We now consider a supersymmetric RG flow between the AdS, critical points with
SO(4) x SO(3) and SO(3) x SO(3) symmetries. As in the previous cases, we need
to set x = 0 in the presence of vector multiplet scalars.
With y = 0, the superpotential is given by
_ Le—%—?»m—&zu

NG [916

+¢26° (1 + €*)(1 — 4€* + €'%?) — (g1 + go)e? 01392 (5.9.9)

¢+3¢2 + 3gle¢+4¢1+3¢2 _ 3(91 + 92)e¢+2¢1+3¢2
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The scalar potential can be written as

aWN® 2 fow\? 2 [ow\? )
V:4(a_¢) +§(87)1> +§(87)2) —3W2. (5.9.10)

The BPS equations, in this case, are given by

¢ = —;g—z = —%eﬁ‘?’d’l(e% =D (g1 +92) —g1),  (5.9.11)
¢, = —%‘;—Z = 2—\1/5926—3—3%(@2@ —1)(e* + 1), (5.9.12)
¢ = —488—2/ — —%6—3—3% 4926 cosh o[cosh(2¢5) — 2]

+e? [[(e* — 1)%g1 + 21 (3 + ') g]] ] (5.9.13)
A = }1\/56—3—3% [2(e2" —1)2g1 + 21(3 + €11)g,]

—4g,€**" cosh ¢s[cosh(2¢5) — 2]] . (5.9.14)

Since both of the critical points have ¢ = 0, we can consistently truncate
¢ out. Note that ¢y is dual to an irrelevant operator with dimension A = 4,

which can also be seen from the linearized BPS equations,
b~ P ~eT, Py ~ €T . (5.9.15)
The solution with ¢, = 0 is given by

92291 + g2)7 = \/592 tan"le® + \/5(291 + 92) tanh ! e

—21/2¢1(g1 + g2) tanh™" {em, [9LE92 (59,16
g1

—¢1 1
o = |l +g2>} , (5.9.17)
201 + 92
1
A = §¢1 —In(1—e") 4+ In[(e*® — 1)g; + € go)]
1 2
+5 Infgr + (91 + g2)e™] (5.9.18)
where 7 is defined by % — ¢%. Note that this solution preserves N = 4 super-

symmetry in three dimensions. This should describe N = 4 RG flow from N =4
SCFT in the UV with SO(4) x SO(3) symmetry to another N = 4 SCFT in the
IR with SO(3) x SO(3) symmetry. Note that the flavor symmetry SO(3) in the
UV is broken by the relevant operator dual to ¢;.
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We can also truncate out the vector multiplet scalars. However, it leads
to a similar structure as in the previous case. Hence we will not consider this

truncation.

5.10 RG flows from SO(4) x SO(2,2) gauged su-

pergravity

We now consider N = 4 supergravity coupled to six vector multiplets with SO(4) x
SO(2,2) gauge group. The SO(4) and SO(2,2) are electrically and magnetically
embedded in the SO(3,3) x SO(3,3), respectively. The components of the em-

bedding tensor in this gauging are given by

frizs = V2(g1 = §1), Frrso = V2(g1 + §1),

1 1
_ = — + Go), A = — — g2). 5.10.1
f 10,5,6 \/5(92 92) v 4,11,12 \/5(92 92) ( )

We will consider four singlet scalars corresponding to the SO(6,6) non-

compact generators,
Yi=Yi7+Yos+Yzg, Yo=VYii0,Ys5=Y511+Y512, Yi=Y510—Y511.
The coset representative is parametrized by

Ly=f111e92Y2pP3Ys 000 Ya, (5.10.2)
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The scalar potential in this gauging is given by

1
VvV = §G—¢—6(¢1+¢2) (X262(¢+3¢1+6¢2) — 3y 252¢+6¢1+4¢2 (gg + 295)
3X2 2¢+6¢1+8¢p2 (293 + gg) + 16e2(¢+3(41+62)) <92X2§2 + 9191)

Te (¢>+6¢>1+3¢2)g Te 6(¢ 1+2¢2)g — 69, €¢>+5¢>1+3¢>2§1

_2g €¢+9¢1+3¢29 . 189 e¢+5¢1+7¢2g . 6g €¢+9¢1+7¢2§1
_3€2¢+4¢1+6¢2 (g% + 29%) _ 362¢+8¢1+6¢2 (25]% + g%)
—6g1 €¢>+3¢>1+5¢2 18916¢+7¢1+5¢2 291€¢+3¢>1+9¢2§2

—6gpe?TTO1T0%2g, 4 169266(¢1+¢2)§2 + 6e? N0 g, gy
—|—6e¢+5¢1+9¢2§1§2 + 18€¢+5(¢1+¢2)§1§2 + 26¢+9(¢1+¢2)§1§2
_3001+462 (gg 492 gg) _ 3¢6¢1+8¢2 (2§§ + gg) + 95 X2 2¢+6¢1
g% 4 g2e0 t 6g1gae® TN o Gy gyl IO

+2g1goe?TPOF0) L 180, gpe?TTOITR)) (5.10.3)

Note that, in order to find consistent BPS equations, we have to impose the

relation
G=91, G2= g (5.10.4)

This leads to the Minkowski vacuum, Vy = 0, for all scalars vanishing. We will

not perform any further analysis since it does not give a holographic description.

5.11 RG flows from SO(3,1) x SO(2,2) gauged su-

pergravity

We now consider N = 4 supergravity coupled to six vector multiplets with SO(3, 1) x
SO(2,2) gauge group. The SO(3,1) and SO(2,2) are electrically and magneti-
cally embedded in the SO(3,3) x SO(3,3), respectively. The components of the
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embedding tensor in this gauging are given by

1 -
f+123 = f+189 = f+729 = —f+783 = E(% - 91),

1 -
Jar80 = fr183 = farezs = —[1120 = E(Ql + 91),

1 1
_ = —(g2 + Go), _ = — — Gs). 5.11.1
f-1056 \/5(92 92) Joa1112 \/§(g2 92) ( )

We will consider eight singlet scalars corresponding to the SO(6,6) non-

compact generators,

Yi=Yir+Yes, Yo=-Yig+Yor, Ys=Y39, Yi=Y;5;9

Ys =Yy, Ys=VYi, Yo=Ysu +Ys12, Ys=VY512—Ysuu (5.11.2)

The coset representative is parametrized by

L = €¢1Y1 e¢2Y2 6<¢>3Y3 €¢4Y4 6¢5Y5 6¢6Ye €¢>7Y76¢8Y8 ) (5 113)

The scalar potential computed with these scalars is highly complicated. We
refrain from giving its explicit form here. However, in order to obtained N = 4
supersymmetric critical point with all scalars vanishing, we need to impose the
relation,

gi=0, §1=0, -Go=—g>. (5.11.4)

This leads to the Minkowski vacuum, V5 = 0. We will not perform any further

analysis since it does not give a holographic description.



CHAPTER VI

Summary

In this dissertation, we have mainly focused on the study of holographic RG flows
from N = 3 and N = 4 gauged supergravities in four dimensions. We have
reviewed the AdS/CFT correspondence, which includes N = 4 super Yang-Mills
theory, type IIB string theory on AdSs x S°. We have adopted the principle to
study holographic RG flows in the context of the AdS,/CFT; correspondence.
We have reviewed some general features of N > 2 gauged supergravities in four

dimensions, mainly focused on 2 < N < 4.

We have studied holographic RG flows from N = 3 gauged supergravity in
four dimensions. We have studied various types of semisimple gauge groups and
identified their vacua. For SO(3) x SO(3) gauge group, we have found two su-
persymmetric AdSy critical points. One is a supersymmetric AdS, critical point,
at which all scalars vanish, and a non-trivial AdS, critical point with SO(3)giag
symmetry and unbroken N = 3 supersymmetry. We have given a holographic RG
flow interpolating between SO(3) x SO(3) and SO(3)giag critical points. We have
also given a number of RG flows to non-conformal theories, preserving N = 3
or N = 1 supersymmetry. For SO(3,1) gauge group, we have found a super-
symmetric AdSy critical point and a non-supersymmetric AdS, critical point with
SO(3) symmetry. A supersymmetric RG flow to a non-conformal theory is given.
For SO(2,2) gauge group, we have found a non-supersymmetric AdS, critical
point when all scalars vanish. We have also given a half-supersymmetric domain
wall solution preserving N = 3 supersymmetry. For SO(2,1) gauge group, the

scalar potential admits only non-supersymmetric critical point. There is also a
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half-supersymmetric domain wall with SO(2) symmetry in the same form as in
SO(2,2) case. For SL(3,R) gauge group, we have found an N = 3 supersym-
metric AdS, critical point with SO(3) symmetry. For SO(2,1) x SO(2,2) gauge

group, the scalar potential admits a Minkowski vacuum with all scalars vanishing.

We have also studied holographic RG flows from N = 4 gauged supergravity
in four dimensions, obtained from type ITA and IIB string theories compactified
on T%/7, x 7, with non-semisimple gaugings. For the gauged supergravity from
type IIB compactification, the scalar potential admits a trivial AdSy critical point
which preserves N = 4 supersymmetry. In this case, we have given various RG
flows together with examples of supersymmetric Janus solutions. The scalar po-
tential obtained from type IIB GKP compactification admits only a Minkowski
vacuum when all scalars vanish. The scalar potential from the gauged supergrav-
ity obtained from type ITA compactification admits an N = 1 AdS, critical point

at all scalar vanishing. We have also given some examples of numerical flows.

We have considered the N = 4 gauged supergravity with various semisimple
gaugings. For SO(4) x SO(4) gauge group, we have found four supersymmetric
AdS, critical points, with SO(4) x SO(4), SO(3) x SO(4), SO(4) x SO(3), and
SO(4)diag symmetries. We have given a number of RG flows between these critical
points together with RG flows to N = 4 non-conformal theories. For SO(3,1) x
SO(3,1) gauge group, we have found a supersymmetric AdS, critical point and
discussed RG flows to non-conformal theories. The scalar potential for SO(2,2) x
SO(2,2) gives a class of Minkowski vacuum. For SO(4) x SO(3, 1), we have found
two supersymmetric AdSy critical points with N = 4 supersymmetry. The RG
flow between critical points with SO(4) x SO(3) and SO(3) x SO(3) is given.
For SO(4) x SO(2,2) and SO(3,1) x SO(2,2) gauge groups, we have found only

Minkowski vacua in both cases.

We would like to note that the gaugings considered in chapter 4 are electric
gaugings, in which only electric gauge fields are involving. It would be interesting
to apply the embedding tensor formalism to the N = 3 gauged supergravity,

similar to N = 4 gauged supergravity in chapter 5, and look for more general
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gaugings, such as magnetic or dyonic gaugings in which magnetic gauge fields

participate.

There are many possibilities for future investigations. It would be interesting
to identify the SCFTs or non-conformal gauge theories dual to the gravity solutions
obtained here. This should allow us to identify the dual operators driving the RG
flows obtained in this dissertation. It could be interesting to look for more general
solutions by restoring the truncated scalars or turn on more scalars. Uplifting the
solutions found in this dissertation to higher dimensions could be interesting, as it
will give new AdS, backgrounds in the context of string/M-theory. The unphysical
singularities found in this dissertation could be also checked by identifying the ggg
component of the ten-dimensional metric according to the criterion proposed by
Maldacena and Nunez. Finding other types of solutions, such as Janus solutions
or flows across dimensions to AdSs X s, with ¥y being a Riemann surface, could

be useful in the holographic study of defect SCFTs and black hole physics.
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APPENDIX A

Appendix

A.1 General relativity formula

A derivative of frame field de® = %(aue“,, — 0ye®,)dzt N dx” does not transform as
vector under local Lorentz transformation. We can add a term with spin connec-

tion w®, to restore the property,
de® 4wy A b =T, (A.1.1)

. . . . / . ’a o
which implies spin connection local Lorentz transformation w, , = A la dA¢, +
A1 e A%.. The torsion 2-form T® is now transformed as a vector under local

Lorentz transformation, 7°* = A=, T°.

The covariant derivative of an arbitrary tensor is defined by a partial deriva-
tive plus correction terms. For example the standard covariant derivative acts on

rank (1,1),
VuXpJ 3= 8uXpJ i FMPAX)\U e FMAUXP/\ . (A12)

We can also define a local Lorentz covariant derivative using the spin connection

in the same way the standard covariant derivative does, i.e.
DHXab — auXab + w“acch . Xacw,ucb ) (A13)

Note that for type (p, q) tensors, p connection terms contract on the left while the
remain ¢ connection terms contract on the right. One can show that it relates to

Christoffel connection by using V, V" = e*,D,V"

a a A v A a
w,y = e el —etp0uel s, (A.1.4)
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which is also known as "tetrad postulate” [91] by simple manipulation of .

In tetrad language, the Riemann curvature tensor can be written as (1, 1)-

tensor-valued two-form R%,,,,
R = dw®y + w AW . (A.1.5)
It is equivalent to the standard Riemann tensor,
Rfgp =0, + 1, 1% = 0,1, -1, (A.1.6)

which can be written in 2-form as

R, = Ry, dat A dx” . (A.1.7)
The Ricci tensor R, = R’\u)\y can be defined as a vector-value-1-form,
R®,dz", in vierbein language. The curvature scalar is then R = ¢"R,, =

ety R, (w).

A.1.1 Non-linear o-model

One of an important application of differential geometry is non-linear o-model
which describe dynamics of scalar fields in spacetime. In general, it is a field
theory in which fields are restricted to a manifold as a map from spacetime to
target space or internal space. For a map from coordinates z*, y=0,...,D — 1
of a flat spacetime Mp to local coordinates ¢'(z#), i = 1,...,n of n-dimensional

Riemannian manifold M,,. Hence it is a field theory with n scalar fields.

The action describing the dynamics of scalar fields (maps) is given by

1

ﬂ@z—g/f%%wmwmwaw (A.1.8)

where g;;(¢) is the metric tensor of local coordinates and 1), is the Minkowski

metric. The equations of motion are in the form

O¢" + Iy (9)0 ¢ 0,6" = 0. (A.1.9)
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A.2 Anti-de Sitter Space in Various Dimensions

Anti-de Sitter space (AdS) is an example of maximally symmetric space. A max-
imally symmetric space in D dimensions of arbitrary signature (i.e. Euclidean or
Minkowski) is a space with 3 D(D +1) Killing vectors. In our definition, its metric

obeys

Rynpg = k(9gmpgng — 9mQInp) (A.2.1)

where k is a constant known as curvature constant. Recall that

1
Ty = §9PQ(5M9QN + Ongom — Oggmn) (A.2.2)
Rynp® = 0yl p — ONTS 4+ TG TR, — T T8 L. (A.2.3)

Any two spaces with the same k and same signature are isomorphic.

The value of curvature constant k& determines the maximal space geometry.
In Euclidean signature, k > 0 is a sphere SP, k = 0 is a Euclidean space R”, and
k < 0 is a hyperbolic space HP. In Minkowski signature, ¥ > 0 is the de Sitter
space dSp, k = 0 is the Minkowski space RP'! and k < 0 is the anti-de Sitter space
AdSp.

A maximally symmetric space obeys Einstein equation with a cosmological

constant A,
1 A
Ryn — 5g—MNR+§gMN =0 (A.2.4)
which is given by a variation 65 = 0 of the action
1 D
By the definition , one can obtain Ricci tensor and scalar,

Ryn = gPQRMPNQ =k(D —1)gun (A.2.6)

R=g¢""Ryn=kD(D —1). (A.2.7)
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Therefore by , we can get the curvature constant as a function of cosmological

A

constant k = m

This relation is for D > 2 only. Thus we see that A > 0

for de Sitter space and A < 0 for anti-de Sitter space.

Maximally symmetric space can be embedded into a flat space one dimension

higher as hyperboloids RP? with invariant metric

n = diag(—1,...,—1,+1,...,1). (A.2.8)
—_———— ——

p q

A maximally symmetric space of signature (p, g — 1) can be embedded as
napY Y = — (V)" + (¥)* = I* (A.2.9)

where A,B=1,...,D+1and p+ q= D + 1. Its metric also be embedded as

ds” £/ i(in)2 + q (dY;)? (A.2.10)

i=1 j=1
for mostly negative signature. The space is manifest isometry SO(p, q) since it
is invariant under coordinate transformation Y4 = A45Y 5. List of embedded
spaces are shown in Table @ For example, the space S® has isometry SO(6)
and AdSs has isometry SO(4,2). Note that the cosmological constant A can be

written as
(D—-1)(D-2)
A== = . (A.2.11)
It can be found that the equation of motion for the action () is
D-1
R, =— 72 G- (A.2.12)

A.2.1 AdS; metric

Let’s discuss on AdSs metric. From the embedded space , we can write a

coordinate relation for AdSs,

—(Y1)? = = (Ya)? + (Y5)? + (V) = L*. (A.2.13)
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Relation Space [sometry
+(V1)? + (Y2)? + -+ (Ypar)® = L7 Sphere S SO(D +1)
M)+ (Y2)? 4+ -+ (Yp)* = L7 de Sitter dSp SO(1,D)

—(Y1)2 = = (Yp_1)> + (Yp)? + (Ypi1)? = L? | anti de Sitter AdSp | SO(D —1,2)
—(V)?2 == (Yp)2 + (Ypi1)? = L? Sphere SP SO(D,1)
—)?2+--—(Yp )2 =12 no solution

Table A.1: Relations of coordinates of D dimensions embedded in D-+1 dimensions

and their isometry

We can redefine the coordinate Y4 into 5-dimensional spacetime coordinates (¢, z")

by using

4
Y; =ra’, where Z(wZ)Q S

=1

Ys =V L2+ r2sin(t/L), Ye=VL?>+r2cos(t/L).

The metric is then

2 r’ 2 AN 2 2
ds*=— 14+ = |dt"+ {1+ — dr® + r“dQs

i L2

A patch of AdS5 metric can be written as

’1“2

L
ds* = 75 (de")* + =

dr?.

It is usually more practical to change variable r to z = L?/r for which

2_L2

ds* = = ((dz")* + dz?)

22

(A.2.14)

(A.2.15)

(A.2.16)

(A.2.17)

which makes it clear that the boundary z = 0 has a Minkowski signature. This

metric does not cover the whole hyperboloid
B La! La?

z

22

L2_ u2 LO
(B2,
z

L3
}/1__7 }/2:_7 }/é:i7
z

z 1+L2+m“2
2 22 )

(A.2.18)
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It is also possible to find a global metric covering the whole hyperboloid,

Yy = Lsinh pny, Y3 = Lsinhpngy, Y3 = Lsinh pngs,

Yy = Lsinh pny, Ys;Lcoshpcost, Yg= LcoshpsinTt (A.2.19)
with 72 = 1 parameterizing a 3-sphere. The metric is then
ds* = L* (— cosh® pd7® + dp® + sinh? pdQ3) . (A.2.20)

Notice that to have a mostly plus metric one must define ds? as the pull-back of

—nABdYAdYB for AdS.

A.2.2 AdS,; metric

For AdS, we repeat the same procedure. Starting from relation
(V)P = = (V) + (Ya)* + (Y6)* = L%, (A.2.21)

Redefine Y; as 4-dimensional spacetime coordinate

3
Y; = ra’, where Z(:v’)2 =1 (A.2.22)

=1

Y, =V L2+ r2sin(t/L), Ys=+VL?+r2cos(t/L). (A.2.23)

The AdS, metric is then

2 oy
ds® = — (1 + %) dt* + (1 + %) dr? + r2dS, (A.2.24)

A.3 ’t Hooft Matrices

To describe the SO(6) spinor representation in N° = 4 supergravity theory,
the SO(6) indices are converted to a fundamental SU(4) indices due to (4 ®
4) antisymmetric = 6. An SO(6) vector index m can be converted to a pair of anti-
symmetric SU(4) indices [ij] in the following ways

1 6

6
P = 5 Z[Gm]ijéﬁm, ¢ij = — Z[Gm]quﬁm (A.3.1)

m=1 m=1

N —
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where ¢,,, is a generic SO(6) vector, and G’s are the 't Hooft matrices with the

following explicit form

0 -1 0 0 00 -1 0
| 1 0 0 0 o0 0 -1
[Gh]Y = o Ge]Y = :
00 0 1 10 0 0
00 -10 01 0 0
0 0 0 —1 0 —i 0 0
. 0 1 0 i 0 00
Gs]” = , [G4]"7 = : (A.3.2)
0 -1 0 0 00 0 —i
1 0 0 0 0 0 i 0
0 0 —i 0 00 0 —i
1o 0 0 o0 —i o0
[G5]" = 7 [Ge]” =
i 0 0 0 0 i 0 0
0 —i 0 0 i 00 0

To be consistent with (¢;;)* = ¢, these matrices satisfy the relation

1

[Glij = —§€ijkl[Gm]kl = —([Gm]?)". (A.3.3)
Vi = % é[Gm]”VMm (A.3.4)
VM= —% > (Gl VM (A.3.5)
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A.4 BPS equations for type IIB compactification

In this section, we give the full BPS equations form the non-geometric compacti-

fication of type IIB theory. The BPS equations are given by

1
Spfq S W6¢1—3¢2—s&g )\2[—62“01 — ge2¥2 + Gerrter 4 e2(P1+3p2+0g)

+ gele2t20g _ Ger1t5p2t2pg + Ge3P2t20g (26991 — 3e¥2 _ o1t

+ 26(‘01+2¢2)X2Xg + 2€5s02+2<pg(66<p1 — 0e¥2 4 624P1+<P2)X§Xg + 62(¢J1+<pg)X§

+ 962(“’2“09))(3 — 66“”1“"2”“’9)(3 + 3etP2 (201 4 32 — 2e#1Te2)y (1

+ e2P0x2) 4 20PN (—1 + 2P\ 2) + 3?2 xS (— et — 677 + deft e

+ 3etr2t20g 4 o200 (62% + GeP2 _ 4es01+902)x3) + 962(W1+902)X%(1

+ €272 X3) (— 1+ Pt —2e@atealygy 4 20yl G (—1 4 €¥0xg))

— 662(%01+<P2)X1<_e2909<_1 +e¥2 )y, + M2t 20 2y et Ry

— Xa(1 4 2200 — 2P0\ %) 4 2622233 (—1 4 27X ) + *2 x5 (=1 + ¥ )]
(A41)

1 80—
X/g — _ ePl 3p2 gag)\2[3e3<pz<2ecp1 — 3e¥2 _ e2go1+<p2 4 26<p1+2<p2>x2

16W
+ edP2 (66“’1 —Qe¥2 62901+<P2)X§ 4 <6<p1 2 36@2)2X9 4 362902 (e2e01 4 662‘02

— 4eP )\ 2y 4 32 (21 + 36?9 — 2611 oy, + 27T Sy,
+ 962(¢1+¢2)X%(1 + 62“’2)(%)(—62“02)(2 +xg + 62¢2X%X9) _ 362(901+s02)xl(1

— e G — G + Xy TGN, +26X0N)] (A42)
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1
- _ ePL=3p2—pg )\2[€2<p1 + 3202 _ feP1tP2 _ fe11t202t9g + Ge3P2teg

/
2

32W

4+ e2(prt3v2teg) 4 9o201+30ateg _ foprtdpateg | godvat20g g op1t5eat2eg

+ 23721209 (4?1 — 3P — 3212 4 4eP1T202) oy + 267921200 (4

— 3e¥2 4 62¢1+¢2>X§Xg + 62(¢1+¢9)X3 + 362(5"2“”9))(3 _ 4e<p1+<p2+2<pgxz

4 21 T2y 01 4 62“”9)(3) + €272\ 2(3eP1 4 622 — 8eP1TP2 4 et

— G2 T3v2tey | ferrtivateg 4 gedeat2es 4 62“"9(362"91 + 6e22

— 86“°1+‘P2)X§) + et (36?1 4 3e?92 — 4eP1 P2 | Yo T2t

+ €27 (3¢7 + 3¢%2 — 4eP e )xT) + 9 TN (1 4 22X (1 + e r)?
— 26”200 o xg + €200 + 2P \F(L+ €7Fx2)) — 6> TPy (e (-1
+2)xg + €2y dx g — €T Paxdx g + e (1 + 20X 2)

+ 272\ 3(1 + #2194 62@9)(3) + Yo (1 + 2e#2t¥9 — 2e3P2tes

— 1Pt 4 200 2))] (A.4.3)

1
— 6‘/’1_3902_9051)\2[_62901 — 3€2<P2 + JePrtez + eP1t2p2+pg

32w

+ e2(prt3p2teg) _gopitdvateg 4 3odpat2pg _ fop1tBeat2eg 264<P2+2<Pg(_3

— €271 + 4eP1% ) x o), + 2679729 (4ePt — Qe + 291 TP2) By,

_ 62(901+s0g)X§ _S 362(¢2+¢9)X3 + 4esm+<pz+2sogxg + 62@1+6¢2X8<1 + 62%9(52;)

+ 62‘”)(%(—62% 1 6eP2 1 12e3%2TPs _ fe2p1t3vateg | Geritivatieg

4 9etP2 s _ 209 (201 662“"2)X§) + e*P2 x5 (€21 4 9e%P2 — fesrter

+ Gerrt2eateg 62«99(62@1 + 9e2P2 _ 46@1+¢2)X§) _ 262(@1“"2))(1(—62%(1
+ €°72)xg + 3e* TNy — 3eM NGy + 3¢ x5 (1 + €¥7) )

+ 262\ 3(1 4 2e92 00  2¢9 X;) — xa(1 + 4e372 7t | 3eteat2es 4 o209 X;))
+ 362(@1+¢2)X%(—1 + 2(p2teg) _ 262(<p2+<pg)x2xg _ 664@2“%)(%)(9 _ €2<PgX§

+ 36" X3 (1 4 €777X7) + €272 X3(2 4 4ef2T90 4 3e2(P2H00) 4 9700 7))
(A.4.4)
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x| = 161VV 6@1—@—%)\2[_62%(_1 + 62902)Xg + 64¢2+2<pgxgxg _ 64w2+2¢gX421Xg

+ €4¢2X2(1 + 62<ng3) + 262@2)(%(1 4 ef2tPs €2sogX3) + X2(1 4 2e¥2tPg

— ¢3¢ teg _ ple2t2pg 4 62“09)(3) — 3x1(1 4 e*2x3)((1 + e?2t%9)?

— 26*P )y xg + €97X0 + €75 (1 + €777X2))] (A.4.5)
Xlz = — ﬁ€¢13§92@g)\2 [6m+2<pg (26@1 — 3e¥2 — €2¢1+ap2 T 2€¢1+2¢2>X9

T e3P2t2¢pg (66“"1 — 0e¥2 1 €2<p1+s02)xgxg 4 e2<ﬂ1+4sozxg(1 4 e%@gxz)

+ X2(€2¢1 + Ge2P2 _ fePite2 + Ge3P2trs _ 92011302ty + 2e¥1tdpateg
+ 3etP2 s 4 o209 (21 4 Ge?P2 46“"1+‘p2)>(3) + 2623 (291 4 3242
— 2eP1TP2 | Qep1H202F 0 L o200 (0201 4 3202 26“01+‘P2)X§) —e*1x(1
4 eP2tPy _ 9pBPatey | pdeat2pg |y 942t X2Xg — 4ete2t2eg ngg

+ €292 + 5™ x5 (1 + 20X 2) + 6272 x5 (1 + 219 €209\ 2))

+ 3e2Prrey 3 (—eMoy, — 2P HP0) Iy + 2622 5(1 + €79y 2)

+ X2(2 + 269210 4 2P2400) | 9200y 2))] (A.4.6)

where W is given in ()
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