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## 5772866023 : MAJOR PHYSICS

KEYWORDS : HAWKING RADIATION / BLACKHOLES / QUANTUMFIELD

THEORY IN CURVED SPACETIME

KHEM UPATHAMBHAKUL : ADS4/CFT3 HOLOGRAPHY FROM

FOUR-DIMENSIONAL GAUGED SUPERGRAVITY. ADVISOR : PROF.

PARINYA KARNDUMRI, Ph.D., 156 pp.

We study holographic RG flows from N = 3 and N = 4 gauged super-

gravities in four dimensions. The scalar manifold of N = 3 gauged supergrav-

ity is in the form of the coset space G/H = SU(3, n)/SU(3) × SU(n) × U(1).

Possible gauge groups, in this study, are given by SO(3) × SO(3), SO(3, 1),

SO(2, 2), SO(2, 1) × SO(2, 2), and SL(3, R). We then study N = 4 gauged

supergravity from type II compactification on T 6/Z2 × Z2 with non-semisimple

gaugings. The scalar manifold of N = 4 gauged supergravity is in the form of

SL(2, R)/SO(2)× SO(6, n)/SO(6)× SO(n) coset. The gauge group arising from

non-geometric compactification of type IIB is ISO(3)× ISO(3), which is embed-

ded in SO(6, 6) via the SO(3, 3) × SO(3, 3) subgroup. We also consider N = 4

gauged supergravity from type IIB GKP (Giddings-Kachru-Polchinski) compact-

ification. We similarly study non-semisimple ISO(3) ⋉ U(1)6 gauge group aris-

ing from type IIA geometric compactification. For semisimple gaugings, we con-

sider SO(4)×SO(4), SO(3, 1)×SO(3, 1), SO(2, 2)×SO(2, 2), SO(4)×SO(3, 1),

SO(4) × SO(2, 2), and SO(3, 1) × SO(2, 2) gauge groups. A number of super-

symmetric AdS4 critical points for each gauge group are found. We give RG flow

solutions interpolating between these critical points together with possible flows

to non-conformal theories, in each gauge group. We also give examples of Janus

solutions for N = 4 gauged supergravity obtained from type IIB non-geometric

compactification.
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CHAPTER I

Introduction

In this chapter, we give an introduction to the background materials used in this

dissertation. We start with ideas and the motivations for quantum gravity. We

then move to the topic of the AdS/CFT correspondence, holographic renormaliza-

tion group (RG) flows and gauged supergravities. The aim of this dissertation is

to study holographic RG flows from four-dimensional gauged supergravities with

N = 3 and N = 4.

1.1 Quantum gravity

Quantum gravity is one of the most prevailing research in high energy physics. It is

an attempt to give a quantum description of gravity. Three of the four fundamental

forces are described in the framework of quantum theory. The standard model

successfully gives a quantum description of the electromagnetic, weak, and strong

interactions, along with the existence of elementary particles. The standard model

also successes in providing experimental predictions. By including a quantum

description of gravity, it is a hope to have a theory with a unification of the four

fundamental forces.

Besides quantum effects, general relativity provides a wonderful classical

framework for gravity. It describes gravitation as a geometry of spacetime. Gen-

eral relativity also gives precise predictions, including gravitational time dilation,

gravitational lensing, gravitational redshift. Recently, the gravitational wave from

merging of a binary black hole system, which is predicted in the theory was di-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

rectly observed using the Laser Interferometer Gravitational-Wave Observatory

(LIGO) [1].

There are no less than 16 major approaches proposed to give a quantum

description to general relativity [2]:

1. Canonical quantum gravity

2. Manifestly covariant quantization

3. Euclidean quantum gravity

4. R-squared gravity

5. Supergravity

6. String and brane theory

7. Renormalization group and Weinberg’s asymptotic safety

8. Non-commutative geometry

9. Twistor theory

10. Asymptotic quantization

11. Lattice formulation

12. Loop space representation

13. Quantum topology, motivated by Wheeler’s quantum geometrodynamics

14. Simplicial quantum gravity and null-strut calculus

15. Condensed-matter view: the universe in a helium droplet

16. Affine quantum gravity.
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The first eight approaches are based on the Lagrangian/Hamiltonian framework

which uses the action principle. String theory is the only one among the first

eight approaches that are not a field theory of conventional point particles and

spacetime is is required to have extended structures. The later eight approaches

use different mathematical structures of conventional pictures.

However, there are problems that obstruct the attempt to quantize the the-

ory of gravity. We often encounter divergences or some inconsistency of quantum

gravity theories. For example, field quantization in quantum field theory neglects

modes of fields that possess zero-point energy. The number of these mode is infi-

nite. The vacuum energy is then infinite implying infinite gravity which is coupled

to this energy. From observations, a cosmological constant which is corresponding

to the vacuum energy is small. This is a problem. Also from the viewpoint of field

theory in the unit with ℏ = c = 1, the gravitational coupling constant has a unit

of energy−2. Theories with coupling constant of positive dimensions usually turn

out to be finite, while theories with a dimensionless coupling constant are can-

didates to be renormalizable. Theories that have coupling constants of negative

dimensions, usually have divergences and they are not renormalizable. Quantum

description of general relativity falls into the last category.

In string theory, as the candidate for a quantum theory of gravity, the prob-

lem of non-renormalizability has been cured. One-loop diagrams in this theory are

finite and free of any ultraviolet divergences [3]. A solution to the cosmological

constant problem is possible [4]. String theory also provides a potentially powerful

tool, the AdS/CFT correspondence, to solve complex problems in various areas of

theoretical physics.

1.2 AdS/CFT correspondence

Recently, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence

(also known as gauge/gravity duality), which is proposed by Juan Maldacena

in 1997 [5], is one of the most outstanding developments in string theory with



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

exceed 14,700 citations [6]. It is a duality between conformal field theories, which

are the gauge theories, and string theory on anti-de Sitter spaces. With this

duality, one can study strongly coupled quantum field theories, which cannot

be described by perturbative expansion, via the gravitational theories which are

weakly interacting.

The AdS/CFT correspondence is not only interesting in the field of high

energy physics and string theories, but also used to study other areas, i.g. con-

densed matter physics and nuclear physics. Condensed matter physics also uses

the formalism of quantum field theory to describe exotic states of matter. How-

ever, some phenomena are described by strongly coupled field theories. Some

condensed matter physicists believe that we can study these phenomena by using

the AdS/CFT correspondence [7].

Recently, there has been a lot of studies using the AdS/CFT correspon-

dence and string theories in the fields of hadron physics [8] and condensed matter,

including superconductors [9] [10] [11] [12] [13] [14] and superfluids [15]. As con-

ventional superconductors are well-described by Cooper pair fluid in BCS theory,

the understanding of pairing mechanism for unconventional superconductors are

still incomplete since a normal state of some materials is not well-described by the

standard Fermi liquid theory. Recently, the AdS/CFT correspondence technique

is used to study unconventional superconductors by introducing a 3 + 1 dimen-

sional black hole with a charged scalar field dual to a strongly coupled gauge theory

on a layered unconventional superconductor. This is the well-known AdS4/CFT3

correspondence. With this technique, we can obtain some results for conductivity,

phase transition, and energy gap from Einstein-Maxwell scalar theory.

This correspondence can also be used to study the other side of the coin, as

it could give a microscopic description of black hole thermodynamics. The AdS/

CFT correspondence provides a wonderful framework to study a non-perturbative

definition in quantum gravity of asymptotically-AdS black hole, in the context of

a conformal field theory living on the boundary of the AdS space. The Bekenstein-

Hawking entropy of a class of BPS black holes could be reproduced in the dual
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CFT [16] [17] [18] [19] [20] [21].

AdS/CFT correspondence provides an excellent framework in the study of

the renormalization group flows in theories with a strongly interacting system,

which is a non-perturbative system. We can study a deformation in a CFT by

constructing a dual geometry in a gravity theory with an asymptotically AdS

background. The conjecture gives a one-to-one map between fields in the gravity

theory and operators in the conformal field theory. A map between the radial

coordinate of the AdS geometry to the energy scale in the CFT allows us to

holographically study a non-perturbative RG flows from the UV to IR fixed points.

1.3 Four-dimensional gauged supergravity

To study holographic RG flows, working in lower-dimensional gauged supergrav-

ities, as the effective theories of superstring theories or M-theory, has proven to

be useful and effective. There are geometries in the form of the AdS4 × X7,

identified with AdS4 vacua of the scalar potential of four-dimensional gauged su-

pergravity. The isometry of the internal manifold corresponds to gauge symmetry

at the AdS4 vacua. The effective four-dimensional N = 8 SO(8) gauged super-

gravity constructed in [22] results in the AdS4 ×S7 geometry preserving maximal

supersymmetry. Holographic study within this gauged supergravity has been in-

vestigated in [23] [24] [25] [26] [27]. These results give holographic descriptions of

the deformations leading to various types of RG flows in the superconformal field

theories in three dimensions.

In this dissertation, we study holographic RG flows from four-dimensional

gauged supergravities in the context of AdS4/CFT3 correspondence. Moreover,

we focus on gauged supergravities with N = 3, 4. We will study supersymmetric

solutions with only the metric and scalar fields non-vanishing. Supergravity the-

ories with N > 2 have enough supersymmetries to determine the geometry of the

scalar manifold in the form of the coset space G/H. We are also not interested

in supergravities with N > 4 since they have no matter multiplet. Thus, we only
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interested in gauged supergravities with N = 3 and N = 4.

In four-dimensional N = 3 gauged supergravity, there is a unique non-

maximal AdS4 solutions from a compactification of the eleven-dimensional super-

gravity [28]. The internal manifold is the tri-sasakian N010 with SU(2) × SU(3)

isometry. The corresponding Kaluza-Klein spectrum has been given in [29], and

the structure of N = 3 multiplets is investigated in [30]. A possible N = 3 SCFT

dual to M-theory compactified on AdS4 × N010 is studied in [31]. The gravity

dual to N = 3 SCFT is also studied in many aspects [32] [33] [34] [35] [36] [37].

These result in a significant match between N = 3 SCFT and the AdS4 solution

from the compactification of eleven-dimensional configurations in M-theory. The

eleven-dimensional supergravity compactified on the AdS4×N010 can be described

by an N = 3, SU(3)× SO(3) gauged supergravity as an effective theory [29] [30].

The theory with eight vector multiplets is constructed in [38] [39] [40]. Vari-

ous deformations and supersymmetric vacua have been identified in [41]. The

eleven-dimensional configurations to these solutions might be obtained through a

consistent reduction ansatz if exists.

Four-dimensional N = 4 Gauged supergravity has been studies for a long

time [42] [43] [44]. The embedding tensor formalism, which included all the de-

formations, has been given in [45]. There are also N = 4 gauged supergravity

obtained from the compactifications of type IIA and type IIB superstring theories

with various fluxes [46] [47] [48] [49].

1.4 Outline

This dissertation focuses on studying holographic RG flow solutions from N = 3

and N = 4 gauged supergravities in the context of AdS4/CFT3 correspondence.

In chapter 2, we give an introduction to AdS5/CFT4 correspondence. This in-

cludes reviews of N = 4 super Yang-Mills theory and type IIB superstring theory

on AdS5 × S5. We will later consider a generalization to the AdS4/CFT3 corre-

spondence and give holographic solutions of interest in chapter 4 and chapter 5.
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In chapter 3, we review some general structures of gauged supergravities in four

dimensions. The specific structures for N = 3 and N = 4 gauged supergravities

will be given in each corresponding chapter.

In chapter 4, we study holographic RG flows from N = 3 gauged supergrav-

ity in four dimensions. In chapter 5, we study holographic RG flows from N = 4

gauged supergravity obtained from the compactifications of type II string theories

with non-semisimple gaugings and also consider solutions from semisimple gauge

groups. We conclude the dissertation in chapter 6.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

AdS/CFT Correspondence

Anti-de Sitter/conformal field theory correspondence or AdS/CFT correspon-

dence, sometimes called Maldecena’s conjecture, is a relationship between D + 1-

dimensional quantum gravity theories with AdS background and quantum field

theories with conformal symmetry, living on D-dimensional boundary of the grav-

ity theories. As the boundary theories are similar to the Yang-Mills theories which

are gauge theories that describe elementary particles, the correspondence is some-

times called gauge/gravity duality.

The correspondence was proposed by Juan Maldacena in 1997 [5], as a re-

lation between type IIB string theory on AdS5 × S5 space and N = 4 super

Yang-Mills theory on 3 + 1-dimensional Minkowski space. It was showed later

that the conformal field theory lives on the boundary of the corresponding anti-

de Sitter space [50] [51]. This made the conjecture more precise and has more

physical aspects.

There are many ways the correspondence can be extended and generalized.

Generally, it is a duality between a gravitational theory on AdSD+1 and a D-

dimensional conformal field theory. There are also extensions in which nonconfor-

mal quantum field theories correspond to quantum gravity theories on the domain

wall backgrounds, called domain wall/QFT correspondence [52].

The AdS/CFT correspondence is now one of the largest areas of study in

string theory. Maldacena’s paper had become the most cited papers in high energy

physics by the year 2019, with more than 14,700 citations [6]. Although the

correspondence has not been concretely proved, the consecutive researches provide
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considerable evidences of the correspondence.

In this chapter, we review Maldacena’s conjecture which is a relation between

N = 4 super Yang-Mills theory on 3 + 1-dimensional Minkowski space and type

IIB string theory on AdS5 × S5 space. We first review N = 4 super Yang-Mills

theory, a system of D3-branes in type IIB string theory, and the conjecture.

We will later assume that the AdS4/CFT3 correspondence, which will be

used to discuss holographic RG flows, works in a similar way. Although there

is no formal mathematical proof for general cases, a large number of researches

from both AdS and CFT sides are in agreement to make it evident that the

correspondence could be generalized to various dimensions.

2.1 N = 4 super Yang-Mills theory

For a gauge group SU(N) with coupling constant gYM , each N = 4 vector su-

permultiplet consists of a gauge fields Aµ
A, four Weyl spinors λAαa and six real

scalar fields XAi, with SU(N) index A = 1, . . . , N2−1 = dim(SU(N)), spacetime

index µ = 0, . . . , 3 with signature η = diag(−1,+1,+1,+1), Weyl index α = 1, 2,

R-symmetry SU(4) ≃ SO(6) indices i = 1, . . . , 6, a = 1, . . . , 4. SU(N) generators

TA satisfy the algebra

[TA, TB] = ifAB
CT

C . (2.1.1)

All fields in vector multiplet can be written into a form of N ×N matrices,

Aµ ≡ Aµ
ATA, λαa ≡ λAαaT

A, X i ≡ XAiTA. (2.1.2)

Lagrangian for N = 4 vector multiplet is

LN=4 =
1

g2YM

tr

(
−1

2
F 2
µν − iλ̄a /Dλa − (DµX

i)2 (2.1.3)

+Cab
i λa[X

i, λb] + h.c+ 1

2
[X i, Xj]2

)
, (2.1.4)
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where the field strength tensor and covariant derivative are defined as

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (2.1.5)

DµX
i = ∂µX

i + i[Aµ, X
i]. (2.1.6)

Note that there are a possibly θ-term θ
16π2 trϵ

µνρλFµνFρλ with constant θ, and a

gauge fixing and ghost terms for quantum computations. The coefficients Cab
i

are needed to make a singlet form λa, λb and X i transforming respectively as 4,

4, and 6 of the global SU(4) R-symmetry. These coefficients can be derived by

dimensional reduction of N = 1 super Yang-Mills theory in 9 + 1 dimensions,

containing a ten-dimensional gauge field AM = (Aµ, X
i) and a Majorana-Weyl

spinor Ψσ = (λαa). The 10-dimensional Lagrangian is

L10 = − 1

g2YM

tr

(
−1

2
F 2
MN + iΨ̄ΓMDMΨ

)
, (2.1.7)

with 10-dimensional gamma matrices

ΓM ≡ (Γµ,Γi), (2.1.8)

where

Γµ = γµ ⊗ 1, Γi = γ(5) ⊗ γ̃i. (2.1.9)

The matrices γµ are the usual 4 Dirac matrices, γ(5) = iγ0γ1γ2γ3 and γ̃i are

8× 8 Dirac matrices of SO(6). In the Weyl representation, these matrices can be

written in the form of Pauli matrices σµ and the coefficients Ci
ab

γµ =

 0 σµ

σ̄µ 0

 , γ̃i =

 0 Ci

C̄i 0

 . (2.1.10)

These gamma matrices satisfy ten-dimensional Clifford algebra

{ΓM ,ΓN} = 2ηMN . (2.1.11)

Since Ci
ab are constructed to be invariant under SU(4), the lagrangian is

manifestly invariant under R-symmetry. The other manifest symmetries are gauge

SU(N) and Poincaré symmetries. However, there are also other symmetries. It is
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called the N = 4 super Yang-Mills theory because there are 4 supersymmetries,

by the transformations

Qa
αX

i → Ciabλαb (2.1.12)

Qa
αλβb → fαβδ

a
b + [X i, Xj]ϵαβCij

a
b (2.1.13)

Qa
αλ̄

b
β̇
→ Cab

i σ̄
µ

αβ̇
DµX

i (2.1.14)

Qa
αAµ → σµα

β̇λ̄a
β̇
, (2.1.15)

which can be also derived from 10 dimensions. The fαβ is the self-dual component

of Fµν written as fαβ = Fµνσ
µν

αβ. Note that Qa
α has the R-symmetry index a.

This is the general definition of an R-symmetry, a symmetry that acts on the

supercharges. The fundamental relations among supercharges are

{Qa
α, Q̄β̇b} = 2σµ

αβ̇
Pµδ

a
b , (2.1.16)

{Qa
α, Q

b
β} = [Pµ, Q

a
α] = 0. (2.1.17)

It can be shown that the β-function of N = 4 super Yang-Mills theory

vanishes at all loops. For example, the β-function to one loop is given by

β(gYM) = − 1

16π2

(
11

3
C(A)− 2

3

∑
λ

C(λ)− 1

6

∑
X

C(X)

)
g3YM (2.1.18)

where the second term on the right-hand side is a sum over all Weyl fermion and

the third term is a sum over all real scalars. For C(A) = C(λ) = C(X) = N ,

the right hand side can be factored out and gives zero. In a theory with β = 0,

there is no dynamical scale generated. Hence there are no ”particles”, and, strictly

speaking, no S-matrix, although one can talk about perturbative S-matrix for a

scattering of (gauge variant) gluons, gluinos, etc.. For theory with β = 0 the

Poincaré group has a larger bosonic extension known as a conformal group.

In any quantum field theory, the 2-point function of an operator Θ(x), let

it be scalar for simplicity, can be defined as

⟨0|T (Θ(x)Θ(0)) |0⟩ ≡ G(x2, µ, g) (2.1.19)
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where µ is a renormalization scale, g is a renormalized coupling and G(x2, µ, g)

is the renormalized (finite, well-defined) correlation function depending only on

x2 = xµx
µ to preserve Lorentz invariant. We have indicated that there are no

dependences on all other parameters.

Let Θ have engineering dimension DΘ, which is the mass dimension in ℏ =

c = 1 units, e.g.

Θ DΘ

Φ 1

Ψ 3/2

Aµ 1

Fµν 2

Φ3 3

F 2 4

Therefore, we can redefine G(x2, µ, g) as

G(x2, µ, g) = (x2)−DΘĜ(t, g) (2.1.20)

where the function Ĝ(t, g) depends on the dimensionless parameter t = 1
2
log(x2µ2).

The renormalization group (RG) equation tells us that[
∂

∂t
+ β(g)

∂

∂g
+ 2γ(g)

]
Ĝ(t, g) = 0. (2.1.21)

General solution: First find a solution to the auxiliary equation,

d

dt
ḡ(t, g) = β(ḡ(t, g)) (2.1.22)

with initial condition of the running coupling ḡ(0, g) ≡ g. Then we can solve the

RG equation for

Ĝ(t, g) ≡ ξ(ḡ(t, g))e−2
∫ t
0 dt′γ(ḡ(t′,g)). (2.1.23)

A critical point is given by β(g∗) = 0 for some g∗ then

Ĝ(t, g∗) = ξ(g∗)e−2γ(g∗)t (2.1.24)

= ξ(g∗)(µ2x2)−γ(g∗). (2.1.25)
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Note that the second line in the above equation came from dimensional analysis.

Hence

G(x2, µ, g) =
constant

(x2)DΘ+γ(g∗)
(2.1.26)

where γ(g∗) acts as an anomalous dimension. Such power-law behavior is typical

of conformally invariant theories.

For example, let’s consider a single bosonic field ϕ(x) in 4 dimensions with

a free action,

S =
1

2

∫
d4x∂µϕ∂

µϕ =
1

2

∫
d4x∂µϕ∂νϕη

µν (2.1.27)

The form of the action, including the explicit from of the metric η = diag(−1,+1,+1,+1),

is invariant under the spacetime translations xµ = x′µ + aµ and Lorentz transfor-

mation xµ = Λµ
νx

′µ as long as ϕ(x) transforms as a scalar, ϕ(x) = ϕ′(x′).

If we take a scale transformation into account, let xµ = Ax′µ where A is a

constant. This is clearly not a Lorentz transformation. The metric is then changes

η′µν = A2ηµν , ηµν =
1

A2
η′µν . (2.1.28)

Since the change is proportional to the metric itself, we also could try to compen-

sate by rescaling the fields,

1

2

∫
d4x

∂ϕ(x)

∂xµ
∂ϕ(x)

∂xν
ηµν =

1

2

∫
d4x′A4 1

A

∂

∂x′µ
ϕ(Ax′)

1

A

∂

∂x′ν
ϕ(Ax′)ηµν . (2.1.29)

The previous equation can be brought to the same form by letting

Aϕ(Ax′) = ϕ′(x′), Aϕ(x) = ϕ′(
1

A
x). (2.1.30)

The 2-point function is also the same,

⟨ϕ′(x′)ϕ′(0)⟩ = constant
|x′|2

=
A2constant

|x|2
(2.1.31)

= ⟨Aϕ(x)Aϕ(0)⟩ . (2.1.32)

This is an example where the mass dimension or scaling dimension equal to one

for a scalar field.
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In general, a conformal invariant condition applies if

Θ′(x′) = A∆ΘΘ(x) (2.1.33)

with the scaling dimension or mass dimension ∆Θ = DΘ + γΘ. In this case, one

can show

⟨Θ(x)Θ(0)⟩ = constant
|x|2∆Θ

. (2.1.34)

This can be proved by letting

⟨Θ(x)Θ(0)⟩ = f(|x|) = f(A|x′|). (2.1.35)

The 2-point function is then

⟨Θ(x)Θ(0)⟩ = 1

A2∆Θ
⟨Θ′(x′)Θ′(0)⟩ = 1

A2∆Θ
f(|x′|) (2.1.36)

By setting |x′| = 1, the scaling A give a relation for function f(|x|),

f(A) =
const
A2∆Θ

=
f(1)

A2∆Θ
. (2.1.37)

We got a lot of information by just considering a scale transformation, xµ =

Ax′µ where A = constant. In fact, there is another change of coordinates, special

conformal transformation, which is within a conformal group,

xµ =
x′µ + aµx′2

1 + 2x′νaν + a2x′2
. (2.1.38)

One can show that under the special conformal transformation, the metric trans-

forms as ηµν → e2ω(x)ηµν .

It is possible to rescale away ω(x). However, one can use the covariant

expression for the action

S =

∫
dDx

√
g

(
1

2
∂µϕ∂

µϕ+
D − 2

8(D − 1)
Rϕ2

)
. (2.1.39)

Let us see how it works in general. Suppose there is a coordinate transformation

xµ = xµ(x′), under which, by covariance,

g′µν(x
′) ≡ gρσ(x(x

′))
∂xρ

∂x′µ
∂xσ

∂x′ν
= e2ω(x

′)gµν(x
′). (2.1.40)
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In order to do this, it is convenient to think of the transformation of ϕ as a scalar

ϕ(x) = ϕ̃(x′) and Poincaré rescaling ϕ̃(x′) = e−
D−2
2

ω(x′)ϕ′(x′). Note that for D = 4,

eω = A is a constant, and we get ϕ′(x′) = Aϕ(x) as before.

Be general covariance, the action transforms as∫
dDx

√
g(x)

(
1

2
∂µϕ(x)∂

µϕ(x) +
D − 2

8(D − 1)
R(x)ϕ2(x)

)
=

∫
dDx′

√
g′(x′)

(
1

2
∂′µϕ̃(x

′)∂′µϕ̃(x′) +
D − 2

8(D − 1)
R′(x′)ϕ̃2(x′)

)
(2.1.41)

Now if the coordinate transformation is such that g′µν(x′) = e2ω(x
′)gµν(x

′), we have

R′(x′) = e−2ω(x′)
(
R(x′)− 2(D − 1)∇′2ω − (D − 1)(D − 2)∂′µω∂

′µω
)
. (2.1.42)

Letting ϕ̃(x′) = e−
D−2
2

ω(x′)ϕ′(x′), we get∫
dDx′

√
ge(D−2)ω

(
1

2
∂′µ(e

−D−2
2

ωϕ′)∂′µ(e−
D−2
2

ωϕ′)

+
D − 2

8(D − 1)

(
R− 2(D − 1)∇′2ω − (D − 1)(D − 2)∂′µω∂

′µω
)
ϕ′2
)

=

∫
dDx′

√
g

(
1

2
∂µϕ

′∂µϕ′ +
D − 2

8(D − 1)
Rϕ′2

)
+

∫
dDx′

√
g

(
−D − 2

2
∂′µωϕ

′∂′µϕ′+

+
1

2
(
D − 2

2
)2∂′µω∂

′µωϕ′2 − D − 2

4
∇′2ωϕ′2 − (D − 2)2

8
(∂′µω)2ϕ′2

)
. (2.1.43)

Note that everything in the above equation is at x′. The second and the fourth

terms in the second integral of the right-hand side cancel each other. The first

and third terms also cancel by integration by part.

Now we see what the connection with β = 0 is. In theories where β ̸= 0

a scale parameter will be generated in the quantum theory spoiling conformal

invariance even if it was present in the classical action (e.g. in QCD with massless

quarks [53].) In N = 4 SYM conformal invariance is exact. Let’s look at the

generators of the conformal group. Let A ∼= 1 + ϵ with ϵ ≪ 1. An infinitesimal

scale transformation is then

δϕ(x) = ϕ′(x)− ϕ(x) = (1 + ϵ)ϕ(x+ ϵx)− ϕ(x)

≃ ϵ(1 + xµ∂µ)ϕ(x) (2.1.44)
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which can be defined as a scale generator D = i(1 + xµ∂µ). Note that this can

be generalized to D = i(∆ + xµ∂µ). Similarly, we will get a set of conformal

generators (without spin),

Pµ = i∂µ (2.1.45)

Mµν = i(xµ∂ν − xν∂µ) (2.1.46)

D = i(∆ + xµ∂µ) (2.1.47)

Kµ = i(x2∂µ − 2xµx
ρ∂ρ − 2∆xµ) (2.1.48)

where Pµ and Mµν are Poincaré generators and Kµ denotes a special conformal

generator. These generators make a conformal group SO(4, 2) ≃ SU(2, 2).

The last thing to notice is that Kµ and Qa
α do not commute. Thus we

need to introduce 4 extra fermionic generators S̄a
α̇ = σµ

αα̇[Kµ, Q
aα] to close the

superalgebra. Hence the global symmetry of N = 4 super Yang-Mills theory is

PSU(2, 2|4), whose bosonic part is a product SU(2, 2) × SU(4) of a conformal

group and R-symmetry group.

2.2 Type IIB String Theory on AdS5 × S5

In flat Minkowski 9 + 1-dimensional space, type II string theory, after fixing the

world sheet metric, has an action

SWS = − 1

4πα′

∫
dσdτ

(
∂αXM∂

αXM − iΨ̄Mγα∂αΨM

)
(2.2.1)

where XM(τ, σ) and ΨM(τ, σ) denote bosonic worldsheet coordinates in 9 + 1 di-

mensional Minkowski space and ten 2-components Majorana fermions world sheet

fields respectively. The index α = 0, 1 is now the Lorentz index on the world

sheet, which can be raised/lowered with ηαβ = diag(−1,+1) (σ0 ≡ τ, σ1 ≡ σ.)

2-dimensional Dirac matrices are

γ0 =

 0 −i

i 0

 , γ1 =

 0 i

i 0

 . (2.2.2)
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Equations of motion of (2.2.1),

∂α∂
αXM = 0 (2.2.3)

iγα∂αΨ
M = 0, (2.2.4)

have a solution

XM = XM
+ (τ + σ) +XM

− (τ − σ) (2.2.5)

ΨM =

 ΨM
− (τ − σ)

ΨM
+ (τ + σ)

 . (2.2.6)

If we only look at closed strings, the left/right movers (τ ± σ) are completely

decoupled. For a string to be closed we need XM
± to be periodic, with period equal

to π conventionally. However, fermionic fieldsΨM
± can be either periodic (Ramond)

or antiperiodic (Neveu-Schwarz). We can express them as mode expansions, for

bosonic string,

XM
− =

1

2
xM + α′pM(τ − σ) + i

√
α′

2

∑
n ̸=0

αM
n e

−2in(τ−σ) (2.2.7)

XM
+ =

1

2
xM + α′pM(τ + σ) + i

√
α′

2

∑
n ̸=0

α̃M
n e

−2in(τ+σ). (2.2.8)

For fermionic strings, there are mode expansions for Ramond (R) sector,

ΨM
− =

∑
n∈Z

dMn e
−2in(τ−σ) (2.2.9)

ΨM
+ =

∑
n∈Z

d̃Mn e
−2in(τ+σ) (2.2.10)

and for Neveu-Schwarz (NS) sector

ΨM
− =

∑
r∈Z+ 1

2

bMn e
−2in(τ−σ) (2.2.11)

ΨM
+ =

∑
r∈Z+ 1

2

b̃Mn e
−2in(τ+σ). (2.2.12)

Since there are two (anti)periodic conditions for each endpoint, we have

four sectors, NS-NS, R-R, NS-R, and R-NS. The first two sectors are spacetime
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bosons and the other two are spacetime fermions. With the similar quantiza-

tion, α, α̃, d, d̃, b, b̃ become creation/annihilation operators generating the quanta

of spacetime fields.

Let’s look at the left movers (Xµ
− and Ψµ

−). The ground state of the NS sector

|0⟩NS has mass m2 = − 1
2α′ , which is a tachyon and removed by GSO projection.

Excited states bM− 1
2

|0⟩NS has m2 = 0 corresponding to massless vector fields in 8V

representation of SO(8) massless little group. The ground state of R sector |0⟩R
is massless. Other excitations of both sectors are massive.

Since elements of Clifford algebra {dM0 , dN0 } = 2ηMN acting as Dirac matri-

ces, the R ground state carries a representation of SO(8), i.e. it transforms like a

spinor 8S ⊕ 8C , where 8S has a positive chirality and 8C is a negative one. The

GSO projection removes one of these imposing a chirality condition for left/right

movers. Type IIA superstring theory results if we remove the opposite chiralities

from left/right movers (non-chiral theory) while type IIB superstring is obtained

by removing the same chiralities (chiral theory).

Let’s consider bosonic massless spectra of both theories. For type IIA theo-

ries, the massless bosonic spectra of NS-NS sector come from 8v⊗8v = 1⊕28⊕35

of SO(8) representation. The field content contains a dilaton ϕ, B-fields Bij =

−Bji and metric Gij = Gji corresponding to the trace, antisymmetric and sym-

metric traceless parts of the state bi− 1
2

b̃j− 1
2

|0⟩ ⊗ |0⟩. The R-R sector massless

spectra have 1-form Cµ and 3-form Cµνρ, corresponding to the decomposition

8S ⊗ 8C = 8v ⊕ 56v of SO(8).

NS-NS massless bosonic spectra of type IIB theories are the same as type

IIA. However, the bosonic R-R state |0⟩α ⊗ |0⟩β decompositions are 8C ⊗ 8C =

1′ ⊕ 28′ ⊕ 35′ of SO(8), which corresponds to scalar C, 2-form Cij, and 4+-forms

C+
ijkl. In particular, C+

ijkl are the physical components of a 4-form C+
µνρλ which has

a self dual field strength dC+
4 = ∗dC+

4 , i.e. ∂[µ1C
+
µ2...µ5]

= 1
5!
ϵµ1...µ10∂

[µ6C+µ7...µ10].

The fermionic degree of freedom comes from two gravitinos Ψi
M of positive

chirality and two dilatinos λi of negative chirality (i = 1, 2). The theory is chiral

but all anomalies cancel.
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String theory also contains an infinite number of massive fields, but in the

low energy limit, we can restrict ourselves to the massless fields with only leading

interactions. Thus we are considering type IIB supergravity. For κ ∼ α′2gs, gs =

eϕ∞ , the bosonic action is

S =
1

2κ2

∫ [
e−2ϕ

(
∗R + 4dϕ ∧ ∗dϕ− 1

2
H3 ∧ ∗H3

)
−1

2
F1 ∧ ∗F1 −

1

2
F̃3 ∧ ∗F̃3 −

1

4
F̃5 ∧ ∗F̃5 −

1

2
C+

4 ∧H3 ∧ F3

]
(2.2.13)

where

F1 = dC0, H3 = dB, F3 = dC2, (2.2.14)

F5 = dC+
4 , F̃3 = F3 − C0 ∧H3, (2.2.15)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B ∧ F3 (2.2.16)

and, strictly speaking, it is F̃5 which is self-dual, F̃5 = ∗F̃5. Note that this makes

the kinetic term ∗F̃5 ∧ F̃5 vanished. Strictly speaking, we cannot write an action

but we will do it anyway and impose F̃5 = ∗F̃5 at the level of the equation of

motions.

The action 2.2.13 is in the ”string frame.” One can go to the ”Einstein frame”

by setting ĜMN = e−ϕ/2GMN , with

S =
1

2κ2

∫ √
ĜR̂ + . . . (2.2.17)

For all our purposes this will not make a difference since the solutions we are

interested in have ϕ = 0. Note that ϕ is only the deviation from the asymptotic

value ϕ∞ that we have already used to define gs and absorbed into κ.

Certainly, flat spacetime GMN = ηMN with all other fields vanishing is a

solution that preserves all supersymmetry, 32 supercharges for ten-dimensional

N = 2 theories. Recall that from supersymmetric quantum field theory, for a

chiral superfield Φ = φ+
√
2ψθ + Fθ2, supersymmetry transformations are

δϵφ = [ϵQ, φ] = ϵψ, δϵ†φ = [ϵ†Q†, φ] = 0 (2.2.18)

δϵψ = [ϵQ, ψ] = ϵF, δϵ†ψ = [ϵ†Q†, ψ] = −iσµϵ†∂µφ (2.2.19)

δϵF = [ϵQ, F ] = 0, δϵ†F = [ϵ†Q†, F ] = iϵ†σ̄µ∂µψ (2.2.20)
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where ϵ is 2-component constant Grassmann Weyl spinor. If any of these things

get a vacuum expectation value (VEV) then the supersymmetry is broken. Since

unbroken supersymmetry implies Q |0⟩ = Q† |0⟩ = 0, to preserve Lorentz invari-

ance, the only one that can possibly get a VEV is F . In this case, F ̸= 0 for

broken supersymmetric theory. So we must always check fermion supersymmetry

transformations.

Let η be a 16 component Weyl constant Grassmann spinor, fermion trans-

formations are

δηλ = iΓMη∗PM − i

24
ΓMNPηGMNP + fermions (2.2.21)

δηΨM = DMη +
i

480
ΓNPQRSΓMFNPQRS

+
1

96
(ΓM

PQRGPQR − 9ΓNPGMNP )η
∗ + fermions. (2.2.22)

We will only be interested in solutions only with F̃5 ̸= 0, F5 ≡ F̃5. In this case

δλi = 0 is trivially satisfied since it does not depend on F5 whereas δΨi
M = 0

reduces to

DMη +
i

480
ΓNPQRSΓMFNPQRSη = 0 (2.2.23)

with

DMη = (∂M +
1

4
ωM

ABΓAB)η (2.2.24)

ωM
AB = eNA∂[Me

B
N ] − eNB∂[Me

A
N ] − eRAeSBeCM∂[ReS]C . (2.2.25)

Note that ωM
AB and eCM are spin connection and frame (zehnbein) in ten dimen-

sions.

Obviously flat 9+ 1 Minkowski space with F5 = 0 gives ∂Mη = 0 for 32 real

supersymmetries. However, there are other solutions. The one of interest here is

ds2 = ds2AdS5
+ ds2S5 (2.2.26)

F5 =
1

L
VolAdS5 +

1

L
VolS5 (2.2.27)
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where ds2AdS5
is the metric of AdS5 with radius L, VolAdS5 is its volume 5-form

and similarly for S5. More explicitly, we can write in Poincaré coordinates,

ds2AdS5
=
r2

L2
(ηµνdx

µdxν) +
L2

r2
dr2 (2.2.28)

ds2S5 = L2dΩ5 = L2ĝαβdθ
αdθβ (2.2.29)

F[0123r] =
r3

L4
, Fα1...α5 = L4

√
ĝϵα1...α5 . (2.2.30)

Note that F5 = ∗10F5. With this explicit form, we are able to investigate the

numbers of solutions of the equation D̃Mη = 0 where D̃M = DM + θ(F ), not just

∂Mη = 0. However, we should compute the integrability condition

[D̃M , D̃N ]η ≡ ΞMNη (2.2.31)

where an antisymmetric matrix ΞMN = −ΞNM is a matrix acting on η similar to

[DM , DN ] =
1
4
RMNPQΓ

PQη. The number of independent solutions to D̃Mη = 0

is the same as the number of zero eigenvalues of ΞMNη = 0. For our case, the

maximal supersymmetry implies that ΞMN = 0 and all 32R of η are allowed.

2.2.1 D3-brane

The existence of RR potentials, C0, C2, C
†
4 in type IIB and C1, C3 in type IIA, has

been known since the beginning of superstring theory. However, the fundamental

string is neutral under these fields. It was not clear how to describe the states

charged under such fields until 1995 [54]. In the same way as electron couples to

a 1-form electromagnetic potential via

e

∫
R
dτAµ(x(τ))ẋ

µ(τ). (2.2.32)

An n-form potential Cµ1...µn couples to a p = n − 1 dimensional extended object

spanning a p+ 1 = n dimensional world-volume

Tp

∫
Σp×R

dτdpσCµ1...µp+1(X(τ, σ⃗))∂τX
[µ1 . . . ∂σpXµp+1] (2.2.33)

Note that p is even in type IIA and odd in type IIB. The objects coupled to the

RR fields are known as Dp-branes.
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There are two types of descriptions for Dp-brane. First, they are solutions

to the supergravity equation [55],

ds2 = H−1/2
p (r)

(
−(dx0)2 +

p∑
i=1

(dxi)2

)
+H1/2

p (r)
(
dr2 + r2dΩ8−p

)
(2.2.34)

Fp+2 = dx0 ∧ dx1 ∧ · · · ∧ dxp ∧ dH−1
p (r), eϕ = H

3−p
4

p (r) (2.2.35)

where

Hp(r) = 1 + k
gsNα

′ 7−p
2

r7−p
(2.2.36)

with k being a numerical factor. Note that this solution preserves half of the

supersymmetry (16 supercharges).

Another description is Dp-brane being hypersurfaces on which open strings

are allowed to end. To explain this, let X0, X1, . . . , Xp lie on Dp-branes, as

in Figure 2.1. They will have usual Neumann-Neumann boundary conditions.

In other words, they can move freely on Dp-branes. However, the open string

ends are fixed to the branes. The directions Xp+1, . . . , X9 have Dirichlet-Dirichlet

boundary conditions. This makes the left and right movers coupled into standing

waves. The type of modding, integer for all XM and integer/half-integer for ΨM in

the R/NS sector respectively, remains the same. However, their mode expansions

are different since there is no p-dependence in the direction perpendicular to Dp-

brane. For example, mode expansions of a bosonic string are,

Xµ =
1

2
xµ + α′pµτ + oscillators;µ = 0, 1, . . . , p (2.2.37)

X i =
1

2
xi − diσ + oscillators; i = p+ 1, . . . , 9. (2.2.38)

Note that di = 0 if all Dp-branes are on top of each other. Moreover, GSO

projection works as before, removing the tachyon, and so on. Hence, the world-

volume theory is that of maximally super Yang-Mills theory in p+ 1 dimensions,

as we can map

bµ− 1
2

∣∣p0 . . . pp; IJ⟩
NS

→ Aµ
I
J (2.2.39)

bi− 1
2

∣∣p0 . . . pp; IJ⟩
NS

→ X i
I
J (2.2.40)∣∣p0 . . . pp; IJ⟩

R
→ λαI

J (2.2.41)
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Figure 2.1: The stringy point of view of the Dp-branes with ends of open strings

fixed on brane directions

with g2YM ∝ gSα
′ p−3

4 .

Now we are interested in the case when p = 3 or the IIB D3-brane. From the

string point of view, we have directly 3 + 1 dimensional N = 4 super Yang-Mills

theory with gauge group SU(N) and g2YM = gS. From the supergravity point of

view, we have eϕ = 1 which implies gs = eϕ∞ being a constant everywhere. The

metric of N -stack of D3-branes is

ds2 =

(
1 + 4π

gSNα
′2

r4

)−1/2

(dxµ)2 +

(
1 + 4π

gSNα
′2

r4

)1/2

(dr2 + r2dΩ2
5).

(2.2.42)

The illustration of this metric is shown in Figure 2.2. For the region gsNα′2

r4
≪ 1,

the metric become flat and reduces to 9 + 1 dimensional Minkowski space

ds2 = (dxµ)2 + dr2 + r2dΩ2
5, (2.2.43)

where the RHS represents R3,1 and R6 in spherical coordinates, respectively. For
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Figure 2.2: Illustration of the metric of N -stack of D3-brane (2.2.42) where the

region gsNα′2

r4
≪ 1 reduces to 9 + 1-dimensional Minkowski space, and the region

gsNα′2

r4
≫ 1 gives AdS5 × S5 throat

the region gsNα′2

r4
≫ 1, the metric is much more interesting,

ds2 =
r2√

4πgsNα′2
(dxµ)2 +

√
4πgsNα′2

r2
(dr2 + r2dΩ2

5)

=
r2√

4πgsNα′2
(dxµ) +

√
4πgsNα′2

r2
dr2 +

√
4πgsNα′2dΩ2

5 (2.2.44)

which is clearly a metric of AdS5×S5 with both of their radius L2 =
√

4πgsNα′2.

Hence the stack of D3-branes has made its appearance as AdS5 × S5 and the R3,1

is acting as its boundary.

Note that we can rescale r → L2r so that the metric (2.2.44) be

ds2 = L2dŝ2 = L2

(
r2(dxµ)2 +

dr2

r2
+ dΩ2

5

)
= L2

(
(dxµ)2 + dz2

z2
+ dΩ2

5

)
(2.2.45)

where recall that z = 1/r.

Let’s discuss on a naïve argument for the correspondence. In the string

picture, the total action consists of D3-brane action, interactions, and a bulk

action,

Stot = Sbrane + Sint + Sbulk. (2.2.46)
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D3-brane action contains gauge fields of SU(N) in N = 4 theory due to charges

they carried by the open string ends. Sint is an interaction term between gravi-

ton and gauge fields. The bulk action contains the low energy effective action

(supergravity) and other higher-order terms. To summarize,

Sbrane =SN=4 + Shigher order(
∼
∫
d4xF 2 + . . .

)
+

(
∼ α′2

∫
d4xF 4 + . . .

)
(2.2.47)

Sint ∼κd4xhF 2 + . . . (2.2.48)

Sbulk =SSUGRA + Shigherorder/massive(
∼
∫
(∂h)2 + κh(∂)2 + . . .

)
+

(
∼ κ6

∫
(∂h)8) + . . .

)
(2.2.49)

In low energy limits, the brane action is approximated by SN=4, no interaction

and the bulk action will be approximated by free supergravity action.

On the other hand, in the brane picture at low energy. As in the previous

discussion, there are two regions which strings can live, at the boundary R3,1

where gsNα′2

r4
≪ 1 and in the AdS5 × S5 throat where gsNα′2

r4
≫ 1. The string at

the boundary is decoupled from the brane since its cross-section on the brane is

vanishing σ ∼ ω3L8 ∼ 0 [56], where ω is the incident energy. Strings in AdS5×S5

are infinitely red shifted (gtt = 1/
√
1 + L4/r4 → 0 as r → 0) and have no enough

energy to come out. Thus, these two regions are decoupled form each other.

Hence, by comparing both pictures,

SN=4 + Sfree SUGRA ↔ SAdS5×S5 + Sfree SUGRA, (2.2.50)

we can naïvely map N = 4 super Yang-Mills theory on R3,1 to type IIB gravity

theory on AdS5 × S5.

2.3 The Conjecture

In this section, we will discuss on a one-to-one map between two physical theories,

N = 4 super Yang-Mills theory with gauge group SU(N) and coupling constant
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gYM(θ) and type IIB string theory on AdS5 × S5 with
∫
S5 F5 = N and gs = g2YM

(C0 ≡ θ).

One might object that there is no one who knows how to formulate the AdS

side, so this whole thing seems empty. However, there are various highly non-

trivial limits of the above conjecture where many things can be tested. If nobody

ever succeeds in formulating it or it turns out that there are ambiguities in the

formulation, we might turn the conjecture around and use the super Yang-Mills

side to define the AdS side.

To see how it all comes together, we must understand where the various

theories live. First of all, let’s take a stack of D3-branes and go deep into the

throat. The five-dimensional metric then looks like

ds2 ≃ r2

L2
(dxµ)2 +

L2

r2
dr2 + L2dΩ2

5 (2.3.1)

= L2

(
1

z2
(dx2 + (dxµ)2) + dΩ5

2

)
(2.3.2)

Thus, to the question where are the branes, one could answer that we are inside

it so it is everywhere. Remember that when we illustrated the picture of a brane

as a hyperplane this is an approximation. In fact, the brane curves spacetime at

r ̸= 0 as well. This is the space where type IIB closed strings live. They move

inside AdS5 × S5.

The next question is ”where is N = 4 super Yang-Mills?” One might say

that the open strings are attached to the branes so it would be the region r = 0,

but this is wrong. The N = 4 super Yang-Mills theory lives on the conformal

boundary of AdS, r → ∞ or z → 0. This seems like we are going away from the

brane, but it is not really. In a sense, it is a matter of the order of limits. Once we

are in the AdS limit, we cannot move away from the brane. We did throw away

the Minkowski region.

We will argue that there is no other place N = 4 could live. The conformal

boundary of AdS5 is four-dimensional Minkowski space Mink4. The isometry of

AdS5, SO(4, 2), acts as a conformal group on Mink4. As in A.1, we will write
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AdS5 as hyperboloid,

−Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = L2 (2.3.3)

Let rescale Yi = Λyi, 2.3.3 is then

−y2−1 − y20 + y21 + y22 + y23 + y24 =
L2

Λ2
. (2.3.4)

Let Λ → ∞ as we move to the conformal boundary, the RHS of 2.3.4 is going to

zero. Note that we can still write the identification yi ∼ syi for s > 0. If we set

u± = y−1 ± y4, our embedded space is then

u+u− − y20 + y21 + y22 + y23 = 0. (2.3.5)

We can use the equivalence to set u− = 1, or in other words, we can chose a

representative (
u+
u−
, 1,

y0
u−
,
y1
u−
,
y2
u−
,
y3
u−

)
≡
(
u+
u−
, 1, x0, x1, x2, x3

)
(2.3.6)

with u+

u−
= x20 − x21 − x22 − x23 and xµ independent from each other. The metric is

simply ds2 = (dxµ)2. Going to the previous coordinates,

Y−1 = L cosh ρ cos τ, . . . (2.3.7)

we see the Yi → ∞ limit corresponds to ρ → ∞ or ξ → π
2
. Thus the type IIB

theory lives in the bulk and N = 4 lives on the boundary.

To refine the conjecture and make some tests, let’s make a Wick rotation

in Y0 or x0. An AdS5 is turned into a hyperbolic plane or topologically a ball

H5 ≃ B5. Four-dimensional Minkowski space R1,3 changes into R4, and R × S3

changes into S4 = ∂B5. The AdS5 metric is now

ds2 = L2 (dx
µ)2 + dz2

z2
(2.3.8)

which is in a form of Euclidean space. The metric is invariant under the isometry z

xµ

 = A

 z′

xµ
′

 . (2.3.9)
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The metric cannot take the boundary form by simply taking the limit z → 0 since

it will blow up. However, if we rescale the metric by a conformal transformation

z2, we can take the boundary limit,

lim
z→0

z2ds2 = (dxµ)2 = ds2boundary. (2.3.10)

Note that ds2boundary is not invariant under 2.3.9. It transforms as

ds2boundary = A2ds
′2
boundary. (2.3.11)

2.3.1 Scalar Field in AdS Space

Let’s consider a scalar field in AdS5. Its action is

S =
1

2

∫
dzd4x

√
g
(
gMN∂Mϕ∂Nϕ+m2ϕ2

)
. (2.3.12)

By the definition of a scalar, it transforms as

ϕ′(z′, x′) = ϕ(z, x), (2.3.13)

ϕ′(Az,Ax) = ϕ(z, x). (2.3.14)

The equation of motion obtained from the action 2.3.12 is Klein-Gordon equation,

(−□+m2)ϕ = 0. (2.3.15)

By using

gMN =
1

z2
δMN , gMN = z2δMN ,

√
g =

√(
1

z2

)5

=
1

z5
, (2.3.16)

we expand the 4-gradient up to a subleading term

□ =
1
√
g
∂M

√
ggMN∂N = z5∂zz

3∂z + z2∂mu∂
mu. (2.3.17)

At z ≈ 0, the equation 2.3.15 can be approximated to

−z5∂zz−3∂zϕ+m2ϕ = 0. (2.3.18)
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We cannot hope to fix a scalar at boundary ϕ(z = 0, x) because ϕ(z, x) is

not a constant. Instead, let ϕ ∼ zα and set L = 1, then from 2.3.18 we get

−α(α− 4)zα +m2zα = 0 (2.3.19)

so that

−α(α− 4) +m2 = 0. (2.3.20)

Hence, the solutions are α± = 2±
√
4 +m2. Note that in general, we will get an

equation −α(α− d) +m2 = 0 for AdSd+1.

Thus there are two linearly independent solutions, which depend on zα± , at

z → 0. One linear combination is smooth in the bulk, so generically we can write

ϕ(z, x) ∼ zα− + subleading term. Therefore the best we can do is to define

ϕboundary(x) = lim
z→0

z−α−ϕ(z, x). (2.3.21)

By a scalar transformation ϕ′(z′, x′) = ϕ(z, x), the transformation (z, x) = (Az′, Ax′)

gives

ϕboundary(x) = lim
z→0

(Az′)−α−ϕ(Az′, Ax′)

= lim
z′→0

(Az′)−α−ϕ′(z′, x′)

= A−α− lim
z′→0

z
′−α−ϕ′(z′, x′)

= A−α−ϕ′
boundary(x

′). (2.3.22)

Thus ϕ′
boundary(x

′) = Aα−ϕboundary(x). ϕboundary behaves as an object of scaling

dimension α−. We interpret it as a source on the boundary coupling to a gauge-

invariant local operator Θ(x) by∫
dxϕboundary(x)Θ(x). (2.3.23)

A scale invariance of the interaction requires the scaling transformation of the

operator to be Θ′(x′) = A4−α−Θ(x),∫
dxϕboundary(x)Θ(x) =

∫
dx′A4A−α−ϕ′

boundary(x
′)A−(4−α−Θ′(x′)

=

∫
dx′ϕ′

boundary(x
′)Θ′(x′). (2.3.24)
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Thus a scalar field at the boundary ϕboundary is dual to an operator Θ of mass

dimension ∆ = 4− α− = α+ = 2 +
√
4 +m2.

Given a specific ϕboundary(x) we can actually find the bulk field ϕ(z, x) by

noticing that for an appropriate range of α,

lim
z→0

z4−2α

(z2 + |x|2)4−α
= Cαδ

4(x). (2.3.25)

A constant Cα is obtained by integration∫
d4x

z4−2α

(z2 + |x|2)4−α
=

∫
d4y

z8−2α

z2(4−α)(1 + |y|2)4−α
= Ω4

∫ ∞

0

dr
r3

(1 + r2)4−α

(2.3.26)

where we use xµ = zyµ. Therefore

Cα =
π2

6− 5α + α2
. (2.3.27)

Let’s consider

ϕ(z, x) =
1

Cα

∫
dx′

z4−α−ϕboundary(x
′)

(z2 + |x− x′|2)4−α−
(2.3.28)

= zα−ϕboundary(x) (2.3.29)

and check that it obeys the equation of motion

(
−z5∂zz−3∂z − z2∇2 +m2

) z4−α−

(z2 + |x|2)4−α−

=
(
4(4− α−)− (4− α−)

2 +m2
) z4−α−

(z2 + |x|2)4−α−

=
(
4α+ − α2

+ +m2
) z4−α−

(z2 + |x|2)4−α−

= 0 (2.3.30)

at x ̸= 0. Note that the last step is equal to zero by definitions of α±.

At this point, we get

ϕ(z, x) ≃
∫
dx′

z∆ϕboundary(x
′)

(z2 + |x− x′|2)∆
. (2.3.31)
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If we put it back into the action 2.3.12 and integrate by parts, we find

S =
1

2

∫
|z|≥ϵ

dzd4x∂M
(
ϕ
√
ggMN∂Nϕ

)
+ surface term

≃
∫
d4xϕ(ϵ, x)

1

ϵ5
ϵ2 ∂zϕ(z, x)|z=ϵ . (2.3.32)

To calculate the last step, we use ϕ(ϵ, x) ≃ ϵ4−∆ϕboundary(x),

∂zϕ(z, x)|z=ϵ
∼=
∫
dx′

∆z∆−1ϕboundary(x
′)

(z2 + |x− x′|2)∆
+ higher order|z=ϵ

∼= ∆ϵ∆−1

∫
dx′

ϕboundary(x
′)

|x− x′|2∆
+ higher order. (2.3.33)

All together, the action is then

S ≃
∫
d4xd4x′

ϕboundary(x)ϕboundary(x
′)

|x− x′|2∆
. (2.3.34)

Note that we can compute a 2-point function
δ

δϕboundary(x)

δ

δϕboundary(x′)
|ϕboundary=0 e

−S ≃ 1

|x− x′|2∆
(2.3.35)

≃ ⟨Θ∆(x)Θ∆(x
′)⟩ . (2.3.36)

We can extend this to an idea of the semiclassical partition function (on-shell) of

ϕ as

Z[ϕ0(x), ϵ] = e−S[ϕ] |ϕ→ϵα−ϕ0
(2.3.37)

where ϵα− acts as IR regulator. This is equal to the generating function of Θ⟨
e
∫
dxϕ0(x)Θ(x)

⟩
ϵ

(2.3.38)

with ∆ = 2 +
√
4 +m2 for a scalar. Note that ϵ is a UV regulator.

2.4 AdS5/CFT4 Summary

We have review the AdS/CFT correspondence for the type IIB supergravity from

coincident D3-branes and N = 4 supersymmetric Yang-Mills theory in flat space.

The background created by a stack of N D3-branes can be written as

ds2 = h(r)−1/2(dxµ)2 + h(r)1/2(dr2 + r2dΩ2
5) (2.4.1)

gsF5 = (1 + ∗)d4x ∧ dh−1(r) (2.4.2)
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where

h(r) = 1 +
L4

r4
, L4 = 4πgsNα

′2. (2.4.3)

In the near horizon limit, r ≪ L, we can approximate h(r) ≈ L4/r4. The space-

time geometry becomes AdS5 × S5. Thus, we can describe a system of N -stack

D3-branes in the near horizon limit by type IIB string theory on AdS5×S5 space-

time.

In the world volume point of view, let’s consider one D3-brane in flat space.

It is a free gauge theory in 3+1 dimensions in a low energy limit. The Lagrangian

describing the gauge theory is

L = −1

4
F 2
µν −

1

2

6∑
i=1

(∂µϕ
i)2 + fermionic terms. (2.4.4)

This corresponds to N = 4 supersymmetric U(1) gauge theory. Since it is a free

theory, the moduli space is simply R6.

The stack of N parallel D3-branes, in the low energy limit, gives the theory

with gauge group U(N). The lagrangian is

L = Tr

[
−1

4
F 2
µν − (Dµϕ

i)2 +
g2

4
[ϕi, ϕj]2

]
+ fermionic terms. (2.4.5)

The scalar fields ϕi transform in the adjoint representation of the gauge group

U(N). The moduli space is (R6)N/SN where SN is the permutation group of N

elements.

The gauge group U(N) is the same as U(1) × SU(N). One might think of

U(1) subgroup as a center of mass of a stack of N D3-brane. In a low energy

limit, when all fields are neutral, the remaining gauge group is SU(N) gauge

group. Therefore this system is basically an SU(N) supersymmetric Yang-Mills

theory.

At this point, a stack of N D3-branes has two points of view. In a string

theory point of view, the near horizon limit, it is a type IIB string theory on

AdS5 × S5 with N units of 5-form Ramond-Ramond flux. From the gauge theory
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point of view, the low energy limit gives an N = 4 supersymmetric Yang-Mills

theory with SU(N) gauge group. Thus, there are two descriptions of the same

theory, 4-dimensional gauge field, and the 10-dimensional strings.

2.4.1 Extension to AdS5 × Y 5

We can generalize the AdS5/CFT4 correspondence to more general geometry

AdS5 ×X5, where the X5 is an internal compact 5-dimensional manifold. One of

the interesting cases is when the dΩ5 in 2.4.2 is the base of the cone, as we place a

stack of D3-branes at the tip of a Ricci-flat cone. This is an Einstein manifold Y 5,

which gives the geometry AdS5×Y 5 in the r → 0 limit. If the cone is a Calabi-Yau

space, the base of the cone is a Sasaki-Einstein manifold which preserves N = 1,

supersymmetry of AdS5 × S5 [57].

Let’s repeat the same procedure for a D3-brane at the tip of the cone. Con-

sider the Calabi-Yau cone is a conifold C4 which is a complex manifold described

by a quadratic equation of complex variable ui,

u21 + u22 + u23 + u24 = 0. (2.4.6)

With this condition, it has 3 complex dimensions or 6 real dimensions. This is a

cone with S2 × S3 being its base [58]. A Ricci flat, Kähler metric of this conifold

can be written as

ds2 = dr2 + r2ds2T 11 (2.4.7)

where ds2T 11 denotes the metric of Einstein space T 11 which has the topology

S2 × S3,

ds2T 11 =
1

6

2∑
i=1

(dθ2i + sin θ2i dϕ2
i ) +

1

9
(dψ +

2∑
i=1

cos θidϕi)
2. (2.4.8)

The tip of the cone is singular. If we put a D3-brane at the singularity of

the conifold, gauge theory in the low energy limit is an N = 1 super Yang-Mills

theory with gauge group U(1)1 ×U(1)2. There are four chiral fields, z1, z2, w1, w2,
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in the theory transforming under gauge group U(1)1×U(1)2. The fields z1, z2 have

charge +1 under U(1)1 and −1 under U(1)2, and in the opposite way for w1, w2.

There is no superpotential for one D3-brane case, there are no F-term equa-

tions. Thus we have to solve only the D-term equation to determine the moduli

space. The moduli space of vacua can be obtained by imposing the vanishing of

D-terms and dividing by the gauge group. The D-term of one D3-brane on the

tip of this cone is in the form of auxiliary field D,

LD =
D2

g2
+D(|z1|2 + |z2|2 − |w1|2 − |w2|2)2. (2.4.9)

As usual, integrating out the D-term results in the scalar potential

VD = g2(|z1|2 + |z2|2 − |w1|2 − |w2|2)2 (2.4.10)

which gives the condition

|z1|2 + |z2|2 − |w1|2 − |w2|2 = 0, (2.4.11)

and the gauge invariance gives zi ∼ zie
iα and wi ∼ wie

−iα with α being a gauge

parameter. Thus this conifold is basically (SU(2) × SU(2))/U(1), which is often

referred to as T 11. Thus there are two flavor symmetries transforming the chiral

fields zi, wi as doublets and charged under U(1) which is the anti-diagonal sub-

group of U(1)1 × U(1)2. Note that the matter chiral fields are neutral under the

diagonal subgroup.

In the same way, this can be generalized to a stack of N D3-branes at

the tip of the cone. It is an N = 1 super Yang-Mills theory with gauge group

U(N)1 × U(N)2. The chiral fields zi, wi transform in the fundamental repre-

sentation of U(N)1 and U(N)2, respectively. As before, zi, wi transform in the

anti-fundamental representation of U(N)2 and U(N)1, respectively.

Since in this case there are multiple D3-branes, we have to modify the

superpotential. The only quartic function in the superfields and invariant under

SU(2)× SU(2) is

Tr(ϵACϵBDzAwBzCwD) = Tr(z1w1z2w2 − z1w2z2w1). (2.4.12)
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There are two U(1) factors from the gauge group U(N)1 × U(N)2. The

diagonal subgroup decouples and the anti-diagonal subgroup becomes a global

symmetry in low energy limit since the gauge coupling flows to zero. Thus we

have an N = 1 supersymmetric Yang-Mills theory with gauge group SU(N)1 ×

SU(N)2. This is corresponding to its stringy picture, the type IIB string theory

on AdS5 × T 1,1 with N Ramond-Ramond flux on T 1,1.

In the following chapters, we will generalize this principle to AdS4/CFT3

correspondence to study solutions from supergravity with the AdS4 vacuum in-

terpreted as renormalization group flows in CFT3. Similar to the AdS5/CFT4

description with a stack of D3-branes in the previous discussion, M2-branes play

an important role in describing the AdS4/CFT3 correspondence [57].

We will study supergravity solutions in the form of

ds2 = e2A(r)(−dt2 + dx2µ) + dr2

ϕi = ϕi(r), (2.4.13)

which we have assumed A(r) ∼ r/L, and ϕi(r) ∼ constant at large r. The geome-

tries in the form (2.4.13) arise in the gauged supergravity descriptions of certain

vacuum states of N = 4 super-Yang-Mills theory, and presume to be the gravity

duals of the renormalization group flows emerging from relevant deformations in

the CFT [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75]

[76].

The scalar potential V (ϕi) plays an important role in the study of holo-

graphic renormalization group flows. It should satisfy some conditions in order

to have solutions with AdS vacua of radius L. First, the V (ϕi) must have a sta-

tionary point, without loss of generality, at ϕi = 0. For gravity theory with AdS4

background, we get

V (ϕi = 0) = − 3

L2
. (2.4.14)

For ϕi ̸= 0, the V (ϕi) takes the form near r = 0

V (ϕi) = − 3

L2
+

1

2
m2ϕ2

i + . . . . (2.4.15)
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Note that the scalar masses obtained from (2.4.15) should satisfy the BF bound,

m2L2 ≥ −9
4
in order to maintain the stability of the solution.

It should be noted here that solving for supergravity solutions is sometimes

lead to singular solutions. However, these singularities do not necessarily imply

that the solutions are wrong, they mean the supergravity description fails. We

have to look into the dual description instead. The criterion to determine if a

singularity in the IR is allowed or not is proposed in [77], which states that large

curvature in geometries are allowed only if the scalar potential is bounded above in

the solution. The motivation for this criterion comes from a necessary condition

for a family of black hole solutions, with horizons hiding the singularity. The

Hawking temperature of the horizon is identified with a finite temperature in the

dual field theory. A naked singularity may indicate the absence of a well-defined

dual field theory or a field theory in an unphysical vacuum state. The criterion

for singularities in the IR also discussed in [78] with the condition that the gtt is

bounded such that it gives a proper energy excitation in the dual field theory. For

example, a Schwarzschild-like solution with a negative mass should not be allowed.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

Gauged Supergravity Basic

In this chapter, we review the construction of gauged supergravity in four di-

mensions. Note that we will only focus on the structure that can be used with

2 < N ≤ 4 supersymmetry. This chapter mainly follows [79]. We begin with

a discussion of bosonic Lagrangian of an ungauged four-dimensional supergravity

coupled to a non-linear σ-model together with its supersymmetry transformations.

We then discuss a procedure of gaugings some of the global symmetries of the un-

gauged Lagrangian in the notion of an embedding tensor.

3.1 Ungauged supergravity

Pure supergravity in four dimensions allows only for N ≤ 8 number of super-

symmetry. Theories with more supersymmetries must contain a massless particle

with spin higher than 2. The bound N ≤ 8 also imposes a condition on higher

dimensional theories, as the N = 8 supergravity can be found from a dimen-

sional reduction of eleven-dimensional supergravity. This restricts the number of

supercharge not to be greater than 32.

Scalar fields in extended supergravity can be described by a non-linear sigma

model. Supergravities with N > 2 have enough supersymmetries to determine the

geometry of the scalar manifold. The scalar fields in these theories are described

by a G/H coset space sigma-model. The group G is the global symmetry group

of the theory, which is a non-compact group, generally. The group H ⊂ G is its



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

N G/H

3 SU(3,n)
SU(3)×SU(n)

4 SL(2,R)
SO(2)

× SO(6,n)
SO(6)×SO(n)

5 SU(1,5)
SU(1)×SU(5)

6 SO∗(12)
U(1)×SU(6)

8 E7(7)

SU(8)

Table 3.1: Scalar manifolds of four-dimensional N > 2 extended supergravities

maximal compact subgroup, which is in the form

H = HR ×Hm, (3.1.1)

whereHR is the supersymmetry automorphism group or R-symmetry group, HR =

U(N) for N < 8, and Hm is a compact group acting on the matter fields. The

theories with N > 4 have no matter multiplet, thusH = HR. The scalar manifolds

of four-dimensional N > 2 extended supergravities are shown in Table 3.1.

The bosonic field content of four-dimensional supergravity theories withN >

2 consists of the metric gµν , scalar field ϕi, and abelian vector fields AM
µ . The

dynamics of these fields is described by the bosonic Lagrangian, which is given by

e−1LB =
1

2
R− 1

2
Gst(ϕ)∂µϕ

s∂µϕt − 1

4
IΛΣ(ϕ)F

Λ
µνF

µνΣ +
1

8
e−1RΛΣ(ϕ)ϵ

µνρσFΛ
µνF

Σ
ρσ,

(3.1.2)

where e =
√

| det gµν |. The kinetic term of the graviton is described by the

Einstein-Hilbert term where R is defined by contracting the Riemann tensor, R =

eµae
ν
bRµν

ab . The abelian field strength is defined by

FM
µν = ∂µA

M
ν − ∂νA

M
µ . (3.1.3)

The matrices RΛΣ and IΛΣ are real and imaginary parts of the matrix NΛΣ,

NΛΣ = RΛΣ + iIΛΣ. The indices s, t = 1, . . . , ns indicate all scalar fields from

both supergravity and vector multiplets. The indices Λ,Σ = 1, . . . , nv indicate all
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vector fields from both multiplets. Note that there is no scalar potential in an un-

gauged supergravity with N > 1. A non-trivial scalar potential can be introduced

without breaking supersymmetry through the gauging procedure.

The scalar fields ϕs are described by a non-linear σ-model. The positive

definite metric Gst(ϕ) describes the space whose coordinates are the scalar fields,

called target space. It encodes the geometry of the scalar field space. For N > 2

supersymmetry, consistent couplings of the scalar fields to the vectors and fermions

impose constraints on Gst(ϕ) such that the scalar manifold is in the form of coset

manifold Mscalar = G/H in which G is a semisimple group and H is a maximal

compact subgroup of G.

Fermionic fields transform under the holonomy group H, which contains

the R-symmetry group HR, of Mscalar. Since the action of H is local on the

scalar manifold, the covariant derivatives of the fermion fields require a composite

connection Qµ, which is defined in terms of the scalar fields ϕs and their derivatives

∂µϕ
s. Consistency of the transformation property of the fermionic fields gives an

additional structure on the scalar manifold.

The coset space can be parametrized by a coset representative L(ϕ), which

transforms under left and right multiplications of g ∈ G and h(x) ∈ H, respec-

tively,

L(ϕ) → L′(x) = gL(x)h(x). (3.1.4)

Note that the coset representative L(ϕ) can be parametrized by ns = dim(G) −

dim(H) scalar fields. This defines dim(G)−dim(H) coordinates of the coset space.

It should be noted here that we can make use of the left-invariant current

Jµ = L−1∂µL ∈ g ≡ LieG, (3.1.5)

to see the coset structure, as it can be decomposed to Qµ ∈ h and Pµ ∈ k,

Jµ = Qµ + Pµ, (3.1.6)

where h ≡ LieH and k denotes its complement. This implies that the Lie algebra

g can be decomposed into h and k,

g = h⊕ k. (3.1.7)
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The Lie algebra g is then described by Lie brackets,

[h, h] ⊂ h, [h, k] ⊂ k, [k, k] ⊂ h. (3.1.8)

This implies that the coset space k represents the subgroup H, and the generators

in the h and k are compact and non-compact generators, accordingly.

The geometry of the scalar manifold can be described by a Maurer-Cartan

1-form Ω ∈ g,

Ω = L−1dL, (3.1.9)

which satisfies the Maurer-Cartan equation,

dΩ + Ω ∧ Ω = 0. (3.1.10)

The Ω can be decomposed into a connection Q ∈ h and a vielbein P ∈ k,

Ω = Q+ P. (3.1.11)

We can define a covariant derivative of L(ϕ) by including the connection Q of the

internal symmetry H,

DL = dL− LQ = LP. (3.1.12)

The covariant derivative of the vielbein P satisfies

DP = dP +Q ∧ P + P ∧Q = 0. (3.1.13)

Covariant derivative for any field Φ(x), which transforms under H, is given by

DrΦ = ∂rΦ +Qr ◦ Φ, (3.1.14)

where Qr ◦ Φ is the connection Q acts on the field Φ. The scalar Lagrangian can

be written in terms of Pµ,

Lscalar = −1

2
eTr(PµP

µ), (3.1.15)

which is invariant under global G and local H transformations,

δL = gL− Lh(x). (3.1.16)
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The currents Qµ and Pµ transform as

δQµ = −∂µh+ [h,Qµ], δPµ = [h, Pµ], (3.1.17)

which implies that the connection Qµ acts as a gauge field under H. The current

Pµ transforms in a linear representation of H, thus it can be used to construct

H-invariant kinetic terms (3.1.15), and may be used to construct H-invariant

fermionic interaction terms.

There are several ways to parametrize the coset representative L(ϕ). In this

dissertation, we use unitary parametrization, which the matrix L(ϕ) is taken of

the form

L = exp{ϕsYs}, (3.1.18)

where the non-compact generators Ys span the space k, called coset generators. In

this parametrization, the scalars ϕs transform in a linear representation of H ⊂ G.

The global H-invariant of the Lagrangian is then manifest.

Fermionic fields in supergravities are depending on the numbers of super-

symmetries. In 2 < N ≤ 4 supergravity theories, there are fermionic fields from

supergravity and vector multiplets. For N = 3, there are ψµA and χABC from

the supergravity multiplet, and λAi, λABCi from vector multiplets. For N = 4,

there are ψµA and χABC from the supergravity multiplet and λAi from vector mul-

tiplets. Note that the indices A,B = 1, . . . , N indicate the group HR = U(N),

for 3 ≤ N ≤ 6. The indices i, j = 1, . . . , n indicate the fundamental indices of

Hm = SU(n) for N = 3, and Hm = SO(n) for N = 4.

Since fermionic fields transform under the group H, but not transform under

the group G, the fermionic Lagrangian, which invariant under H, should be in the

form of covariant derivatives with the connection Q, as the group H acts as a

gauge symmetry. The covariant derivative for arbitrary fermions is given by

Dµψ = Dµψ +Qµ ◦ ψ, (3.1.19)

where Dµ is the spacetime covariant derivative involving spin connection and

Christoffel connection, and Qµ = Qs∂µϕ
s. The term Qµ ◦ ψ is the connection Q



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

acts on the ψ. The fermionic kinetic term is then given by

Lf-kinetic =iϵ
µνρσ(ψ̄A

µ γνDρψAσ − ψ̄AµγνDρψ
A
σ )

− 1

12
e(χ̄ABCγµDµχABC + χ̄ABCγ

µDµχ
ABC)

+
1

2
e(λ̄AiγµDµλAi + λ̄Aiγ

µDµλ
Ai). (3.1.20)

The kinetic terms for fermionic fields λABCi = ϵABCλi, χ in the N = 3 case can

be obtained similarly.

The supersymmetry transformations for bosonic and fermionic fields can be

schematically described in the form

δBoson =
∑

Fermions
Fermion · ϵ,

δFermion =
∑

Bosons
∂Boson · ϵ. (3.1.21)

The general form of the supersymmetry transformations for the bosonic and

fermionic fields in the ungauged theory are given by

δeaµ = ϵ̄AγaψAµ + ϵ̄Aγ
aψA

µ , (3.1.22)

δAΛ
µ =

1

2
fΛ

ABO
AB
µ + fΛ

iO
i
µ + h.c., (3.1.23)

PABCD
s δϕs = ΣABCD, (3.1.24)

P iAB
s δϕs = ΣIAB, (3.1.25)

δψAµ = DµϵA +
i

8
F−
ρσABγ

ρσγµϵ
B, (3.1.26)

δχABC = PsABCD∂µϕ
sγµϵD +

3

4
iF−

µν[ABγ
µνϵC], (3.1.27)

δλAi = PsiAB∂µϕ
sγµϵ+

1

4
iF−

µνiγ
µνϵA. (3.1.28)

Note that for N = 3, there is an additional supersymmetry transformation for λi,

δλi =
1

2
PsiAB∂µϕ

sγµϵCϵ
ABC . (3.1.29)

The composite matrices PABCD
s and P iAB

s describe the spin-0 states in the gravi-

tational and vector multiplets, respectively. They are components of the k-valued

vielbein one-form Ps. The tensors ΣABCD, ΣIAB, OAB
µ , and Oi

µ are the components
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of the k-generator Σc. Note that the explicit forms of the fermionic supersymmetry

transformations for N = 3 and N = 4 will be given in the corresponding chapters.

3.2 Gauged supergravity

We now discuss the gauging of the supergravity theory, which is obtained by

promoting a subgroup G0 ⊂ G to a local symmetry group gauged by the vector

fields. The Lagrangian and the supersymmetry transformations are changed in

order to have the same supersymmetries as the original ungauged theory. In this

section, we will illustrate the construction of a gauged supergravity in an electric

frame. We will discuss a covariant formalism in which the possible gaugings are

encoded into an object call embedding tensor.

The gauging procedure starts by choosing a subgroup G0 of the global sym-

metry G of the ungauged Lagrangian. The condition for gauging is that the di-

mension of a gauge group G0 should not greater than the number of vector fields

in the theory, dimG0 ≤ nv. A subset {AΛ̂} of the vector fields become the gauge

vectors corresponding to the generators XΛ̂ of G0. Let Ωg be a gauge connection,

Ωgµ = gAΛ̂
µXΛ̂, (3.2.1)

where g is the gauge coupling. The XΛ̂ are generators of gauge group G0, which

satisfy the algebra

[XΛ̂, XΣ̂] = fΛ̂Σ̂
Γ̂XΓ̂. (3.2.2)

The structure constant fΛ̂Σ̂Γ̂ must obey the Jacobi identity,

f[Λ̂Σ̂
Γ̂f∆̂]Γ̂

Π̂ = 0, (3.2.3)

in order to make the gauge group G0 a closed subgroup.

In order to get the local invariance of the Lagrangian under G0, ordinary

derivatives are replaced by gauge-covariant derivatives,

∂µ → Dµ = ∂µ − Ωgµ = ∂µ − gAΛ̂
µXΛ̂. (3.2.4)
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This is where we introduce the minimal coupling of the vectors to the other fields.

For homogeneous scalar manifold, the Maurer-Cartan 1-form Ω introduced in

(3.1.9) is redefined by replacing the derivative,

Ωµ = L−1∂µL→ Ω̂µ ≡ L−1DµL = P̂µ + Q̂µ. (3.2.5)

The gauged vielbein and connection are given by

P̂µ = Pµ − gAΛ̂
µPΛ̂, Q̂µ = Qµ − gAΛ̂

µQΛ̂, (3.2.6)

where PΛ̂ and QΛ̂ are the projections of L−1XΛ̂L onto k and h, respectively. The

gauge-covariant derivative is acting on a generic fermionic field ψ as

Dµψ = Dµψ + Q̂µ ◦ ψ. (3.2.7)

Generally, the gauging procedure can be done by replacing all Pµ and Qµ with

their corresponding gauged forms,

Pµ → P̂µ, Qµ → Q̂µ. (3.2.8)

3.2.1 Embedding Tensor

In gauging some subgroup G0 ⊂ G, a G-invariant object Θ is introduced by

defining gauge generators as linear combinations of the global symmetry generators

ta of G,

XΛ̂ = ΘΛ̂
ata. (3.2.9)

Note that the indices Λ̂ = 1, . . . , nv and a = 1, . . . , dimG are adjoint indices of the

gauge group and the global symmetry group, respectively. The dimension of the

gauge group is given by the rank of ΘΛ̂
a. We expect that rank of the gauge group

should be less than the number of physical vector fields of the ungauged theory.

However, the gauging is not generally valid for an arbitrary choice of Θa
Λ̂
.

It needs to satisfy a set of constraints for consistency. We will not work out a
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complete set of constraints, however, it is useful to have some examples. One of

the constraints is obtained by the requirement that the embedding tensor must be

invariant under the action of the subgroup G0. This implies a quadratic constraint

in ΘΛ̂
a,

δΣ̂ΘΛ̂
a = ΘΣ̂

bδbΘΛ̂
b = ΘΣ̂

ˆ(t̂)Λ̂
Γ̂ΘΓ̂

a +ΘΣ̂
bfbc

aΘΛ̂
c = 0, (3.2.10)

which is equivalent to [XΛ̂, XΣ̂] = −XΛ̂Σ̂
Γ̂XΓ̂, where XΛ̂Σ̂

Γ̂ = ΘΛ̂
a(ta)Σ̂

Γ̂, due to

the fact that generators in the adjoint representation can be written in terms of

the structure constants. This also implies that fΛ̂Σ̂Γ̂ = −XΛ̂Σ̂
Γ̂ satisfy the Jacobi

identity,

f[Λ̂Σ̂
Π̂fΓ̂]Π̂

∆̂ = 0. (3.2.11)

In summary, generators of the global symmetry satisfy a Lie algebra,

[ta, tb] = fab
ctc, (3.2.12)

where fabc is the structure constant of the global symmetry. The gauge generators

also satisfy a Lie algebra [XΛ̂, XΣ̂] = fΛ̂Σ̂
Γ̂XΓ̂ since it forms a closed subgroup.

3.2.2 Lagrangian and supersymmetry transformations

In gauged supergravity, we modify the ungauged Lagrangian by promoting deriva-

tives to covariant derivatives. However, the modified action is not invariant under

the original supersymmetry transformation since there are additional gauge fields

from the covariant derivatives. In order to restore the supersymmetry of the the-

ory, we need to add coupling terms between scalars and fermions at first order in

g, called Yukawa term,

e−1LYukawa = g(−2ψ̄A
µ γ

µνψB
ν SAB + λ̄IγµψAµNI

A + λ̄IλJMIJ) + h.c.. (3.2.13)

This term is also called a fermion mass-like term. The tensors SAB, NI
A, andMIJ

can be identified in term of T-tensor. By adding the Yukawa term, the fermionic



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

supersymmetry transformations are modified to the form,

δψµA = ∇µϵA − gSABγµϵ
B + . . . , (3.2.14)

δλI = P̂A
µIγ

µϵA + gNI
AϵA + . . . . (3.2.15)

The tensors SAB, NI
A, andMIJ are sometimes called fermion-shift matrices. Note

that the bosonic supersymmetry transformations are the same as in the ungauged

theory.

Besides promoting derivatives to covariant derivatives and adding Yukawa

term, there are some terms left in the supersymmetry transformation of the La-

grangian. These terms can be canceled by adding a scalar potential term,

V (ϕ) =
1

N
g2(NI

AN I
A − 12SABSAB). (3.2.16)

This scalar potential plays an important role as its value at the given critical

point will be identified as the cosmological constant, which is crucial to the study

of holographic RG flows in the following chapters.

At this point, we are able to study supergravity solutions involving only the

metrics and scalars non-vanishing. This leads to non-trivial scalar potential and

fermionic supersymmetry transformations. The bosonic supersymmetry transfor-

mations are satisfied automatically with vanishing fermions. We can obtain a

set of differential equations from the fermionic supersymmetry transformations as

functions of scalar fields. For a given gauge group and a group of preserved sym-

metry, the differential equations can be solved for solutions interpolating between

critical points of the scalar potential. In the following chapters, we study solutions

interpolating between AdS4 vacua, V (ϕ) < 0, which are later interpreted as RG

flows between CFTs.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

RG Flows from Four-dimensional

N = 3 Gauged Supergravity

In this chapter, we first review four-dimensional N = 3 gauged supergravity. We

will then discuss possible semisimple gauge groups allowed by supersymmetry. In

each possible gauge group, the scalar potential and its possible supersymmetric

AdS4 vacua will be identified along with their possible holographic RG flows.

Among N > 2 supersymmetry, it has been found that there is a unique non-

maximal AdS4 solution with unbroken N = 3 supersymmetry from compactifying

eleven-dimensional supergravity [28]. The internal manifold of this is a tri-sasakian

N010 with SU(2) × SU(3) isometry. The corresponding Kaluza-Klein spectrum

has been given in [29], and the structure of N = 3 multiplets is investigated in [30].

The possibleN = 3 SCFT dual to M-theory compactified on AdS4×N010 is studied

in [31]. The gravity dual to N = 3 SCFT is also studied in many aspects [32] [33]

[34] [35] [36] [37]. These result in a significant match between N = 3 SCFT and

the AdS4 solution from the compactification of eleven-dimensional configurations

in M-theory.

The eleven-dimensional supergravity compactified on the AdS4×N010 can be

described by an N = 3, SU(3)×SO(3) gauged supergravity as an effective theory

[29] [30]. The theory with eight vector multiplets is constructed in [38] [39] [40].

Various deformations and supersymmetric vacua have been identified in [41]. The

eleven-dimensional configurations to these solutions might be obtained through a

consistent reduction ansatz if exists.
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4.1 N = 3 Gauged Supergravity

We first review four-dimensional N = 3 gauged supergravity. We follow most

notations used in [38]. However, we use the mostly plus signature (−+++).

Four-dimensional N = 3 supersymmetry contains twelve supercharges. The

field content of the supergravity multiplet is

(eaµ, ψµA, AµA, χ) (4.1.1)

which are given by a graviton eaµ, three gravitini ψi
µ, three vectors Ai

µ, and a spinor

field χ. We denote indices µ, ν = 0, . . . , 3 as spacetime indices, a, b = 0, . . . , 3 as

tangent space indices and A,B = 1, 2, 3 as SU(3)R R-symmetry triplets.

The supergravity multiplet can couple to n vector multiplets. Each of vector

multiplet field content

(Aµ, λA, λ, zA)
i (4.1.2)

contains a vector field Aµ, four spinor fields (λA, λ), which are a triplet and a

singlet of SU(3)R, and three complex scalar fields zA. The indices i, j = 1, . . . , n

denote each of the vector multiplets. Spinors in the theory are subject to chirality

projection,

γ5ψµA = ψµA, γ5χ = χ, γ5λA = λA, γ5λ = −λ,

γ5ψ
A
µ = −ψA

µ , γ5λ
A = −λA . (4.1.3)

When coupled to n number of vector multiplet, N = 3 gauged supergravity

has 3n complex or 6n real scalar fields. The scalar fields zAi parametrized the

coset space SU(3, n)/SU(3) × SU(n) × U(1). The coset can be parametrized by

the coset representative L(z)ΛΣ, which transforms under the global SU(3.n) and

the local SU(3)× SU(n)×U(1) by the left and right multiplication, respectively.

The SU(3) × SU(n) indices Λ,Σ = 1, . . . , n + 3 can split into (A, i), A = 1, ,̇3,

i = i, . . . , n, which are the fundamental SU(3) × SU(n). Accordingly, the coset

representative LΛ
Σ can also be split into (LΛ

A, LΛ
i). The coset representative and
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its inverse are related by

(L−1)Λ
Σ = JΛΠJ

Σ∆(LΠ
∆)∗ (4.1.4)

where JΛΣ is an SU(3, n) invariant tensor defined by

JΛΣ = JΛΣ = (δAB,−δij). (4.1.5)

There are n+3 vector fields, n from vector multiplet, and three from super-

gravity multiplet. Together with their n+3 magnetic dual, they transform under

the fundamental representation of SU(3, n). We can also write the vector fields

of the fundamental SU(3, n) in the form of the fundamental SU(3) and SU(n),

AΛ = (AA, Ai). Note that he Lagrangian, which contains n + 3 of vector fields,

is invariant only under the SO(3, n) subgroup of the duality symmetry SU(3, n).

There is an argument in [38] that the possible gauge groups are a subgroup of

SO(3, n), which transform the vector fields AΛ to themselves.

The bosonic Lagrangian of the N = 3 gauged supergravity, with only scalars

and the metric non-vanishing, is given by

e−1L =
1

4
R− 1

2
Pµ

iAP µ
Ai − V, (4.1.6)

where Pi
A is the vielbein of the SU(3, n)/SU(3)× SU(n)×U(1) coset, and given

by the (A, i)-components of the Mourer-Cartan one-form Ωi
A = (ΩA

i)∗. Note that

the Mourer-Cartan one-form, in the presence of gaugings, is defined by

ΩΛ
Π = (L−1)Λ

ΣdLΣ
Π + (L−1)Λ

ΣfΣ
ΩΓAΩLΓ

Π. (4.1.7)

The scalar potential is given by

V = −2SACS
CA +

2

3
UAUA +

1

6
NiAN iA +

1

6
MiB

AM A
iB

=
1

8
|C B

iA |2 + 1

8
|C PQ

i |2 − 1

4

(
|C PQ

A |2 − |CP |2
)

(4.1.8)
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where the fermion shift functions SAB,UA,NiA and M B
iA are defined by

SAB =
1

4

(
ϵBPQC

PQ
A + ϵABCC

MC
M

)
=

1

8

(
C PQ

A ϵBPQ + C PQ
B ϵAPQ

)
,

UA = −1

4
C MA

M , NiA = −1

2
ϵAPQC

PQ
i ,

M B
iA =

1

2
(δBAC

M
iM − 2C B

iA ). (4.1.9)

Note that these functions are written in terms of ”boosted structure constants”,

CΛ
ΠΓ = L Λ

Λ′ (L−1) Π′

Π (L−1) Γ′

Γ f Λ′

Π′Γ′ and C ΠΓ
Λ = JΛΛ′JΠΠ′

JΓΓ′
(CΛ′

Π′Γ′)∗,

(4.1.10)

where CP = −CPM
M .

In order to find supersymmetric solutions, we need fermionic supersymmetry

transformations,

δψµA = DµϵA + SABγµϵ
B, (4.1.11)

δχ = UAϵA, (4.1.12)

δλi = −P A
iµ γ

µϵA +NiAϵ
A, (4.1.13)

δλiA = −P B
iµ γ

µϵABCϵ
C +M B

iA ϵB . (4.1.14)

Note that we are considering the case where only scalars and the metric non-

vanishing. By letting all fermions vanish, the bosonic supersymmetry transforma-

tions are automatically satisfied. The covariant derivative on the supersymmetry

parameter ϵA is defined by

DϵA = dϵA +
1

4
ωabγabϵA +QA

BϵB +
1

2
nQϵA, (4.1.15)

where QA
B and Q are the SU(3)×U(1) composite connections. These connections

can be obtained from components of the Mourer-Cartan one-form together with

the SU(n) composite connections Qi
j,

ΩA
B = QA

B − nδBAQ, Ωi
j = Qi

j + 3δjiQ. (4.1.16)

Note that the connections have properties QA
A = Qi

i = 0.
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4.1.1 Possible Gauge Groups

The idea of possible gaugings when we are dealing with σ-model is that we can

gauge the symmetries inside the isometry of the scalar manifold. In this case,

the gauge group G must be a subgroup of the isometry group G = SU(3, n).

However, supergravity gives the restriction that G is also a group of the duality

transformations on the vector field strengths and their duals. The available gauge

fields (and their duals) are then an irreducible representation of G. In this case,

it is a fundamental 3 + n representation of SU(3, n).

To find possible gauge groups of SU(3, n), let D(T )Λ
Σ be a matrix repre-

sentation of the SU(3, n) generator T . By (4.1.5) being the SU(3, n) invariant

tensor, it yields

D†(T )J + JD(T ) = 0. (4.1.17)

By decomposing D(T ) into real and imaginary parts, D(T ) = X(T ) + Y (T ), we

have

XTJ + JX(T ) = 0 (4.1.18)

−Y TJ + JY (T ) = 0. (4.1.19)

The equation (4.1.5) means there is an SO(3, n) ⊂ SU(3, n) subgroup that pre-

serve the invariant tensor J , which Y (T ) = 0. By G being a duality group of

the vector fields, the electric potential AΛ and the magnetic potential BΛ are

transformed by

δHΛ = D(T )Λ
ΣHΣ (4.1.20)

where

HΛ = AΛ +BΛ. (4.1.21)

If we gauge only the electric potential, which is the real part of the complex vector

3 + n, the duality is broken into SO(3, n), therefore G is a subgroup of SO(3, n).

Another requirement is that when restricted to gauge group G, the 3 + n complex

representation D must split into adj ⊕ adj,

D →
G
adj ⊕ adj. (4.1.22)
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In this case, 3 + n complex representation of SU(3, n) split into two fundamental,

real representations of SO(3, n) which become an adjoint representation of the

gauge group,

(3 + n)C → (3 + n)R + (3 + n)R. (4.1.23)

When a particular gauge group G ⊂ SO(3, n) ⊂ SU(3, n) is gauged, the

global symmetry of the Lagrangian is broken down to G. The gauge field strength

becomes non-abelian

FΛ = dAΛ + fΛ
ΣΓAΣ ∧ AΓ (4.1.24)

where fΛΣΓ are the structure constants of the gauge group. Gauge generators TΛ
of the gauge group G satisfy the Lie algebra,

[TΛ, TΣ] = fΛΣ
ΓTΓ. (4.1.25)

Note that we can also raise/lower SU(3, n) indices of the structure constants by

contract with the invariant matrix JΛΣ and its inverse. In the present case, we

are interested in semisimple gauge group with different couplings for each simple

factor. We should note that the Mourer-Cartan one form on the scalar manifold

is also modified in the presence of gaugings in the form of covariant derivative,

ΩΛ
Σ = (L−1)Λ

ΣdLΣ
Π + (L−1)Λ

ΣfΣ
ΩΓAΩLΓ

Π. (4.1.26)

However, we will drop all of the gauge fields in the following since we are only inter-

ested in supersymmetric solutions with only scalars and the metric non-vanishing.

Supersymmetry constraints the gauge group G by requiring the structure

constants to be totally antisymmetric

fΛΣΓ = fΛΣ
Γ′
JΓ′Γ = f[ΛΣΓ]. (4.1.27)

This can be satisfied by taking JΛΓ to be the Killing form of the (n+3)-dimensional

gauge group G. Since JΛΣ has indefinite signs of the eigenvalues, the gauge group

G can be either compact or non-compact types. In this case, JΛΣ has three positive

eigenvalues and an arbitrary number of negative eigenvalues. Thus we can have at

most three compact or three non-compact directions. This restricts possible gauge
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groups G to be either G = SO(3)×Hn, G = SO(3, 1)×Hn−3, or SO(2, 2)×Hn−3,

where Hn is a compact group of dimension n, as pointed out in [38] [80]. We

should mention that the consistency condition of the SO(3, n) global symmetry is

similar to the half-maximal gauged supergravity in seven dimensions constructed

in [81], with possible gauge groups listed in [82]. The possible gauge groups of

N = 3 gauged supergravity are expected to follow the same manner.

As mentioned in [82], all possible semisimple gauge groups take the form of

G0 × H, where H is a compact group of dimension n + 3 − dim(G0) while the

possible group G0 is one of the following,

SO(3), SO(3, 1), SO(2, 2), SO(2, 1),

SO(2, 1)× SO(2, 2), SL(3,R). (4.1.28)

All of G0 above give structure constants which satisfy (4.1.27); hence they are

suited to be gauge groups of N = 3 gauged supergravity coupled to vector multi-

plets.

4.2 AdS4 Vacua, Masses, RG Flow Solutions

We now have enough ingredients to study the scalar potential and the BPS equa-

tions. In each gauge group, we will identify AdS4 vacua from its scalar potential.

We then find solutions interpolating between each critical point by solving the

BPS equations.

There are 6n scalars parametrized the SU(3, n)/SU(3)× SU(n)× U(1). In

order to parametrize the coset, we introduce the notation for 6n non-compact

generators of the general SU(3, n)/SU(3)× SU(n)× U(1) coset,

ŶiA = ei+3,A + eA,i+3 and ỸiA = −iei+3,A + ieA,i+3 (4.2.1)

where i = 1, . . . , n and (eΛΣ)Γ∆ = δΛΓδΣ∆.

To check unbroken supersymmetry and set up BPS equations to study do-

main wall solutions, we will consider fermionic supersymmetry transformations
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(4.1.11)-(4.1.14). The AdS4 metric ansatz is taken to be

ds2 = e2A(r)dx21,2 + dr2. (4.2.2)

All scalars are depended only on radial coordinate r, for simplicity. We will use

Majorana representation for gamma matrices, which all gamma matrices γa are

real. The chirality projection γ5 = iγ0γ1γ2γ3 is then purely imaginary. We will

use the projection condition for parameters ϵA,

γ r̂ϵA = eiΛϵA (4.2.3)

where eiΛ is a phase factor.

We are now analyzing various possible gauge groups, namely SO(3)×SO(3),

SO(3, 1), SO(2, 2), SO(2, 1)× SO(2, 2), and SL(3,R). For each gauge group, we

will consider various unbroken symmetries. The corresponding scalar potentials

are computed, and we find their critical points. Note that we are only interested in

AdS4 vacua. Masses and the (dual) dimensions of the scalars will be given in each

subsection. We then move to set up the BPS equations from the supersymmetry

transformations. Solutions from these equations are interpreted as RG flows driven

by the corresponding operators.

4.2.1 SO(3)× SO(3) Gauge Group

This gauge group can be obtained from N = 3 supergravity coupled to three

vector multiplets. The structure constants are given by

f Γ
ΛΣ = (g1ϵABC , g2ϵi+3,j+3,k+3), i, j = 1, 2, 3 . (4.2.4)

In this case, there are 18 scalars parametrized by SU(3, 3)/SU(3)×SU(3)×U(1)

coset manifold.

AdS4 Vacua and RG Flows with SO(3) Symmetry

We are considering solutions preserving SO(3)diag ⊂ SO(3) × SO(3) symmetry.

The 18 scalars transform in representations (3, 3̄)−2+(3̄,3)2 of the local SU(3)×
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SU(3)×U(1). Note that we will drop the U(1) charges from now on for simplicity.

By embedding SO(3) in SU(3), as 3 → 3 and 3̄ → 3, the 18 scalars transform in

the representations

3 × 3 + 3 × 3 = (1 + 3 + 5) + (1 + 3 + 5). (4.2.5)

There are two singlets corresponding to SU(3, 3) non-compact generators

Y1 = Ŷ11 + Ŷ22 + Ŷ33, Y2 = Ỹ11 + Ỹ22 + Ỹ33 . (4.2.6)

The coset representative can be parametrized by

L = eΦ1Y1eΦ2Y2 . (4.2.7)

The scalar potential is computed using (4.1.8),

V = − 3

32
cosh(2Φ2)

[
4 cosh(2Φ1)[1 + cosh(2Φ1) cosh(2Φ2)]

2g21

+2 sinh(2Φ1)
[
cosh(4Φ1)− 3 + 2 cosh2(2Φ1) cosh(4Φ2)

]
g1g2

+4 cosh(2Φ1)[cosh(2Φ1) cosh(2Φ2)− 1]2g22
]
. (4.2.8)

We find two supersymmetric AdS4 critical points from this scalar potential.

The first AdS4 critical point occurs at Φ1 = Φ2 = 0. The cosmological constant

V0 and the AdS4 radius L are given by

V0 = −3

2
g21, L2 = − 3

2V0
=

1

g21
. (4.2.9)

The second AdS4 critical point is given by

Φ1 =
1

2
ln
[
g2 − g1
g2 + g1

]
, Φ2 = 0,

V0 = − 3g21g
2
2

2(g22 − g21)
, L2 =

g22 − g21
g21g

2
2

. (4.2.10)

Note that reality of Φ1 requires g22 − g21 > 0 to give AdS4 with V0 < 0.

At the trivial critical point with all scalars vanishing, the SO(3) × SO(3)

symmetry is unbroken, and all scalars have the same masses with m2L2 = −2. By

the relation ∆(∆ − 3) = m2L2, these masses correspond to dual operators with

dimensions ∆ = 1, 2 in the dual N = 3 SCFT.
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At the SO(3)diag critical point, scalar masses and their corresponding mass

dimensions are shown in Table 4.1. All of the scalar masses satisfy the BF bound,

which is expected for a supersymmetric critical point. Note that three massless

Goldstone bosons indicates SO(3)× SO(3) → SO(3) symmetry breaking.

SO(3)diag representations m2L2 ∆

1 4, −2 4, (1, 2)

3 0(×3), −2(×3) 3, (1, 2)

5 −2(×10) (1, 2)

Table 4.1: Scalar Masses at the N = 3 supersymmetric AdS4 critical point in

the SO(3) × SO(3) gauge group and their corresponding dimensions of the dual

operators in N = 3 SCFT

For the two singlet scalars Φ1,Φ2 depending only on the radial coordinate r,

the equation δχ = 0 is already satisfied since CM
MA = 0 also implies that UA = 0.

The equations for δλi = 0 and δλiA = 0 reduced to two equations

eiΛ[cosh(2Φ2)Φ
′
1 ± iΦ′

2] = −1

2
[sinh(2Φ1) + i cosh(2Φ1 sinh(2Φ2))]×

[coshΦ2(g1 coshΦ1 + g2 coshΦ1)

−i sinhΦ2(g1 sinhΦ1 + g2 coshΦ1)] (4.2.11)

In the case with only two SO(3) singlets, the function SAB is diagonal and

in the form,

SAB = WδAB (4.2.12)

where the superpotential W which is given by

W = − [coshΦ1 coshΦ2 − i sinhΦ1 sinhΦ2] [coshΦ1 coshΦ2 + i sinhΦ1 sinhΦ2]
2 g1

+ [sinhΦ1 coshΦ2 − i coshΦ1 sinhΦ2] [sinhΦ1 coshΦ2 + i coshΦ1 sinhΦ2]
2 g2 .

(4.2.13)

The equation δψµA = 0, for µ = 0, 1, 2, is then yield

1

2
A′eiΛ +W = 0 . (4.2.14)
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By writing W = |W|eiω, the equation (4.2.14) can be separated into real and

imaginary parts,
1

2
A′ +

1

2
|W|(eiω−iΛ + e−iω+iΛ) = 0, (4.2.15)

1

2
|W|(eiω−iΛ − e−iω+iΛ) = 0, (4.2.16)

respectively. The second equation gives eiΛ = ±eiω.

Equation (4.2.11) implies that Φ′
2 = 0 which is consistent with the field

equation requirement Φ2 = 0. We will set Φ2 = 0 in the remaining analysis. This

also implies that W is real and ω = 0. The phase factor is then eiΛ = ±1 and

equations (4.2.11) and (4.2.14) become

Φ′
1 = ∓ sinhΦ1 coshΦ1(g1 coshΦ1 + g2 sinhΦ1), (4.2.17)

A′ = ±(g1 cosh3Φ1 + g2 sinh3 Φ1). (4.2.18)

These equations admit two AdS4 critical points with N = 3 supersymmetry, which

are coincided with those identified previously. The corresponding Killing spinors

could be obtained from δψiA = 0, which gives ϵA = e
A
2 ϵ

(0)
A . The constant spinors

ϵ
(0)
A satisfy the condition γrϵ(0)A = ±ϵ(0)A.

The equations (4.2.14) and (4.2.18) are similar to those studied in [41]. The

solutions interpolating between the two supersymmetric AdS4 critical points can

be solved similarly. We choose the upper signs of these equations to identify UV

critical point at Φ1 = 0 with r → ∞. The solutions to these equations are then

given by

g1g2r = 2g1 tan−1 eΦ1 + g2 ln
[
eΦ1 + 1

eΦ1 − 1

]
−2
√
g22 − g21 tanh−1

[
eΦ1

√
g2 + g1
g2 − g1

]
, (4.2.19)

A = Φ1 − ln
(
1− e4Φ1

)
+ ln

[
(e2Φ1 + 1)g1 + (eΦ1 − 1)g2

]
. (4.2.20)

Note that the integration constants are omitted.

We will now analyze the behavior of the solutions. At large r → ∞, the

solutions behave

Φ1 ∼ e−g1r ∼ e
− r

LUV , A ∼ g1r ∼
r

LUV

. (4.2.21)
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The solutions are in the form of Φi ∼ e−∆r/L + e(∆−3)r/L which implies that the

flow is driven by a relevant operator of dimension ∆ = 1, 2 in the UV. In the IR

r → −∞, we find

Φ1 ∼ e

g1g2r√
g22−g21 ∼ e

r
LIR , A ∼ g1g2r√

g22 − g21
∼ r

LIR

(4.2.22)

which implies that the operator dual to Φ1 becomes irrelevant operator with di-

mension ∆ = 4.

We will now consider flows to a large value of |Φ1|, which correspond to flows

from conformal field theory, identified with AdS4 critical point, to non-conformal

gauge theories in IR. For Φ1 → ∞, the solution (4.2.20) becomes

Φ1 ∼ −1

3
ln [r(g1 + g2) + C] , A ∼ −Φ1,

ds2 = [r(g1 + g2) + C]
2
3dx21,2 + dr2 , (4.2.23)

where the constant C can be removed by shifting the coordinate r.

For Φ1 → −∞, the solution becomes

Φ1 ∼
1

3
ln [r(g1 − g2) + C] , A ∼ Φ1,

ds2 = [r(g1 − g2) + C]
2
3dx21,2 + dr2 . (4.2.24)

This solution has a singularity at r ∼ − C
g1±g2

. In this limit, the scalar potential

(4.2.8) becomes

V (Φ1 → ±∞,Φ2 = 0) → −(g1 ± g2)
2∞ , (4.2.25)

which is physically acceptable according to the criterion of [77].

AdS4 Vacua and RG Flows with SO(2)× SO(2) Symmetry

We will now consider solutions preserving SO(2)diag ⊂ SO(2)×SO(2) ⊂ SO(3)×

SO(3) symmetry. There are six singlets corresponding to non-compact generators

Y1 = Ŷ33, Y2 = Ỹ33, Y3 = Ŷ11 + Ŷ22,

Y4 = Ỹ11 + Ỹ22, Y5 = Ŷ21 − Ŷ12, Y6 = Ỹ21 − Ỹ12 . (4.2.26)
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The coset representative is parametrized by

L = eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 . (4.2.27)

The scalar potential is highly complicated. We will not present the full form of

scalar potential but rather show some of its consistent truncations.

We will discuss a truncation with only two SO(2) × SO(2) singlet scalars

corresponding to Φ1 and Φ2. The scalar potential, in this case, is given by

V = −1

2
g21e

−2Φ1
[
e2Φ1 + (1 + e4Φ1) cosh(2Φ2)

]
. (4.2.28)

This potential has only a trivial critical point, Φ1 = Φ2 = 0, which is SO(3) ×

SO(3) critical point.

By following the same procedure, we will set up the relevant BPS equations.

In this case, the matrix SAB is given by

SAB = diag(W1,W1,W2) (4.2.29)

where

W1 = −g1 coshΦ1 coshΦ2

W2 = −g1(coshΦ1 coshΦ2 + i sinhΦ1 sinhΦ2). (4.2.30)

Note that when Φ1 = 0 or Φ2 = 0, W1 = W2. For Φ1 ̸= 0 and Φ2 ̸= 0, the W2

turns out to be the true superpotential since it provides the potential (4.2.28) in

the form of

V =
1

2
Gαβ ∂|W2|

∂Φα

∂|W2|
∂Φβ

− 3

2
|W2|2 . (4.2.31)

Scalar kinetic metric Gαβ, Φα = (Φ1,Φ2), can be identified from the scalar kinetic

terms

−1

2
PAi
µ P µ

iA = −1

2

[
cosh2(2Φ2)Φ

′2
1 + Φ′2

2

]
, (4.2.32)

which gives Gαβ = diag(− cosh2(2Φ2),−1). Note that Gαβ is the inverse of Gαβ.

The equation δψµA = 0, µ = 0, 1, 2, gives

A′ = ∓2|W2| = ±1

2
g1
√

2 + 2 cosh(2Φ1) cosh(2Φ2) (4.2.33)
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and the phase factor eiΛ = ±eiω. For Φ1 and Φ2 non-vanishing, we have to set

ϵ1,2 = 0 to satisfy the δψµA = 0 equation, only the supersymmetry corresponding

to ϵ3 can be preserved. Therefore, together with the γr projection, the flow solution

preserves N = 1 Poincare supersymmetry in 3 dimensions.

By setting ϵ1,2 = 0 the equations δλiA are identically satisfied. The equations

δλi give[
eiΛ [cosh(2Φ2)Φ

′
1 + iΦ′

2] + g1(sinhΦ1 coshΦ2 − i coshΦ1 sinhΦ2) ϵ
3 = 0 .(4.2.34)

This will give flow equations for Φ1 and Φ2. By using the previous result the phase

factor eiΛ = ±eiω, we have verified that the flow equations are in the form of

Φ′
α = ±Gαβ ∂|W2|

∂Φβ

. (4.2.35)

The explicit forms are given by

Φ′
1 = ∓ sinh(2Φ1)sech(2Φ2)g1√

2 + cosh(2Φ1) cosh(2Φ2)
,

Φ′
2 = ∓ cosh(2Φ1) sinh(2Φ2)g1√

2 + cosh(2Φ1) cosh(2Φ2)
. (4.2.36)

We could not be able to solve these equations completely. However, we find a

relation between Φ1 and Φ2

coth(2Φ2) =
e2Φ1

2− 2e4Φ1
. (4.2.37)

The full flow solution requires some numerical analysis.

We will now discuss asymptotic behaviors of the solution. At large r, the

solution becomes

Φ1 ∼ Φ2 ∼ e−g1r, (4.2.38)

as expected for a UV fixed point, and this implies dual operators with dimension

∆ = 1, 2. In the limit Φ2 → ±∞, we find

Φ1 ∼ Φ0, Φ2 ∼ ∓ ln(g1r)

ds2 = r2dx21,2 + dr2 (4.2.39)
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where Φ0 is constant. Note that we have put the singularity at r = 0 by choosing

an integration constant, for simplicity. For limit Φ1 → ±∞, we find

Φ1 ∼ ∓ ln(g1r), Φ2 ∼ Φ0,

ds2 = r2dx21,2 + dr2. (4.2.40)

All of these flows give V → −∞ hence they are physical.

As mentioned earlier, for Φ1 = 0 or Φ2 = 0, the superpotentials W1 and W2

coincide, W1 = W2. This implies the eigenvalues of SAB degenerate. The BPS

equations obtained from δλiA = 0 and δλi = 0 are also identical. Therefore, the

resulting equations are symmetric for either Φ1 = 0 or Φ2 = 0 cases. We will let

Φ2 = 0 in the following analysis. The flow equations (4.2.33) and (4.2.36) reduce

to

Φ′
1 = −g1 sinhΦ1,

A′ = g1 coshΦ1. (4.2.41)

These equations can be solved by

Φ1 = ± ln
[
eg1r−C + 1

eg1r−C − 1

]
,

A = −g1r + ln
(
e2g1r−2C − 1

)
. (4.2.42)

At large r, the solutions become

Φ1 ∼ e−g1r, A ∼ g1r, (4.2.43)

which is expected for UV AdS4 fixed point. Near the singularity at g1r ∼ C, the

solutions become

Φ1 ∼ ± ln(g1r − C), A ∼ ln(g1r − C),

ds2 = (g1r − C)2dx21,2 + dr2 . (4.2.44)

This solution is also physical and preserves N = 3 supersymmetry in three dimen-

sions.
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For flow solutions preserving SO(2)×SO(2) symmetry, there are two classes

of deformations. One is with both Φ1 and Φ2 non-vanishing, breaking N = 3

supersymmetry into N = 1 supersymmetry. Another is with either Φ1 or Φ2

non-vanishing, which preserved N = 3 supersymmetry.

AdS4 Vacua and RG Flows with SO(2) Symmetry

For SO(2)diag symmetry, as mentioned before, there are six singlets. The scalar

potential and BPS equations are far more complicated than the previous SO(2)×

SO(2) case. We will give the result from Φ2 = Φ4 = Φ6 = 0 truncation. We

have verified that the result is consistent with both the BPS equations and the

corresponding field equations.

In this truncation, SAB is diagonal,

SAB = WδAB. (4.2.45)

The superpotential W is given by

W = −1

2
g1 coshΦ1[1 + cosh(2Φ3)] cosh(2Φ5)

+g2[1− cosh(2Φ3) cosh(2Φ5)] sinhΦ1 . (4.2.46)

Note that in this case, the superpotential is real, W = |W|. With given scalar

kinetic terms,

−1

2
P iA
µ P µ

Ai = −1

2
Φ′2

1 − 1

4
e−4Φ5(1 + e4Φ5)2Φ′2

3 − Φ′2
5 , (4.2.47)

the scalar potential can be written in the form of (4.2.31),

V = −1

2

∂|W|
∂Φ1

∂|W|
∂Φ1

− e4Φ5

(1 + e4Φ5)2
∂|W|
∂Φ3

∂|W|
∂Φ3

− 1

4

∂|W|
∂Φ5

∂|W|
∂Φ5

− 3

2
|W|2

=
1

32
[−4[1 + cosh(2Φ3) cosh(2Φ5)] [2 cosh(2Φ3) cosh(2Φ5)

+ cosh(2Φ1)[1 + 3 cosh(2Φ3)] cosh(2Φ5)] g
2
1

−6
[
cosh(4Φ3) + 2 cosh2(2Φ3) cosh(4Φ5)− 3

]
sinh(2Φ1)g1g2,

+2[2 cosh(2Φ3) cosh(2Φ5)− 2] [2 cosh(2Φ3) cosh(2Φ5)

+2 cosh(2Φ1)[1− 3 cosh(2Φ3) cosh(2Φ5)]] g
2
2

]
. (4.2.48)
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Similar to SO(2)× SO(2) case, the equation δψµA yields

A
′
= ±|W|. (4.2.49)

Together with the projection γrϵA = ±ϵA, the equations δλiA and δλi give

Φ′
1 = ±∂|W|

∂Φ1

= ∓1

2
[g1[1 + cosh(2Φ3) cosh(2Φ5)] sinhΦ1

+g2 coshΦ1[cosh(2Φ3) cosh(2Φ5)− 1]] , (4.2.50)

Φ′
3 = ± 2e4Φ5

(1 + e4Φ5)2
∂|W|
∂Φ3

= ∓ e2Φ5

1 + e4Φ5
sinh(2Φ3)[g1 coshΦ1 + g2 sinhΦ1], (4.2.51)

Φ′
5 = ±1

2

∂|W|
∂Φ5

= ∓1

2
cosh(2Φ3) sinh(2Φ5)[g1 coshΦ1 + g2 sinhΦ1]. (4.2.52)

Solutions to these equations preserve N = 3 supersymmetry in three dimensions.

There are two AdS4 critical points to the above equations. One is a trivial

critical point with all scalars vanishing, all Φi = 0. The other one is given by

Φ1 = ±Φ3 =
1

2
ln
[
g2 + g1
g2 − g1

]
, Φ5 = 0, (4.2.53)

which is the SO(3)diag critical point. Hence, there is no new critical point for this

case.

We are not able to solve the equations (4.2.49) and (4.2.52) analytically

for general values of g1 and g2. However, we found the analytic solution for the

truncation g1 = g2 and Φ5 = 0,

A = Φ1 −
1

2
ln
(
e4Φ1 − 1

)
,

Φ3 = cosh−1
[
e

Φ1
2

√
coshΦ1

]
,

g1r = tan−1 eΦ1 +
1

2
ln
[
eΦ1 + 1

eΦ1 − 1

]
. (4.2.54)

For Φ1 ∼ Φ3 ∼ 0, the solution behaves,

Φ1 ∼ e−2g1r, Φ3 ∼ e−g1r, A ∼ g1r . (4.2.55)
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Near the IR singularity r ∼ 0, the solution becomes

Φ1 ∼ − ln(g1r), Φ3 ∼ Φ1, A ∼ −Φ1 ∼ ln(g1r),

ds2 = (g1r)
2dx21,2 + dr2 (4.2.56)

for Φ1 > 0 and

Φ1 ∼ ln(g1r), Φ3 ∼ constant, A ∼ Φ1 ∼ ln(g1r),

ds2 = (g1r)
2dx21,2 + dr2 (4.2.57)

for Φ1 < 0. Both of these yield V → −∞ hence they are physical. These solutions

describe RG flows from N = 3 SCFT with SO(3) × SO(3) symmetry to N = 3

gauged theory with SO(2) symmetry in three dimensions.

4.2.2 SO(3, 1) Gauge Group

We will consider N = 3 supergravity coupled to three vector multiplets with

SO(3, 1) gauge group. The structure constants are given by f Γ
ΛΣ = fΛΣΓ′JΓ′Γ,

where

fΛΣΓ = g(ϵABC , ϵi+3,j+3,A). (4.2.58)

Note that we use the totally antisymmetric ϵi+3,j+3,A with ϵ345 = ϵ156 = ϵ264 = 1.

AdS4 Vacua and RG Flows with SO(3) Symmetry

We are now considering solutions preserving SO(3) ⊂ SO(3, 1) symmetry. The

maximal compact subgroup SO(3) is embedding in SO(3, 1) as a diagonal sub-

group of SO(3)× SO(3) ⊂ SO(3, 3). Similar to 4.2.5, the 18 scalars transform in

the representations

3 × 3 + 3 × 3 = (1 + 3 + 5) + (1 + 3 + 5). (4.2.59)

In this case, two of SO(3) singlets are given by SU(3, 3) non-compact generators,

Y1 = Ŷ11 − Ŷ22 + Ŷ33, Y2 = Ỹ11 − Ỹ22 + Ỹ33 . (4.2.60)
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The coset representative can be parametrized by

L = eΦ1Y1eΦ2Y2 , (4.2.61)

which yields the scalar potential,

V = − 3

64
g2e−6Φ1

[
2e6Φ1 [13 cosh(2Φ1) + 3 cosh(6Φ1)] cosh(2Φ2)

+(e4Φ1 − 1)2
[
(1 + e4Φ1) cosh(6Φ2)− 16e2Φ1 cosh2(2Φ2)

]]
. (4.2.62)

We found two AdS4 critical points to the above scalar potential. One is a

trivial critical point where Φ1 = Φ2 = 0, which the SO(3, 1) gauge symmetry is

broken to the maximal compact subgroup SO(3). The cosmological constant and

AdS4 radius are given by

V0 = −3

2
g2, L2 =

1

g2
. (4.2.63)

Scalar masses and their corresponding conformal dimensions are given in Table

4.2. There are three goldstone bosons which indicate one of SO(3) symmetry

breaking.

SO(3) representations m2L2 ∆

1 4, −2 4, (1, 2)

3 0(×3), −2(×3) 3, (1, 2)

5 −2(×10) (1, 2)

Table 4.2: Scalar masses and corresponding conformal dimensions at the trivial,

N = 3 supersymmetric AdS4 critical point with SO(3) symmetry for SO(3, 1)

gauge group

Another AdS4 critical point is at

Φ1 =
1

2
ln
[
4±

√
7

3

]
, Φ2 = 0 (4.2.64)

which is a non-supersymmetric critical point. The cosmological constant and the

AdS4 radius are given by

V0 = −11

9
g2, L2 =

27

22g2
. (4.2.65)
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Scalar masses are given in Table 4.3. Note that this critical point is unstable due

to some of the scalar masses violate the BF bound.

SO(3) representations m2L2

1 −168
11

, −36
11

3 0(×3), −36
11

∣∣
(×3)

5 −24
11

∣∣
(×5)

, −36
11

∣∣
(×5)

Table 4.3: Scalar masses at the N = 3 non-supersymmetric AdS4 critical point

with SO(3) symmetry for SO(3, 1) gauge group

We will set up the BPS equations to consider a supersymmetric RG flows to

non-conformal theories since there is no other supersymmetric critical point. The

equation δψµA = 0 yields
1

2
A′eiΛ +W = 0 . (4.2.66)

The equations δλiA = 0 and δλi = 0 give

eiΛ [cosh(2Φ2)Φ
′
1 ± iΦ′

2] = g sinh3Φ1 coshΦ2 +
1

2
g coshΦ1 [sinh(2Φ1) cosh(3Φ2)

−2i
[
1− 2 sinh2 Φ1 cosh(2Φ2)

]
sinhΦ2

]
. (4.2.67)

This implies Φ′
2 = 0. Consistency with the second-order field equations also re-

quires that Φ2 = 0. The superpotential, in this case, is real which implies eiΛ = ±1.

By choosing eiΛ = 1, the BPS equations are

Φ′
1 =

1

4
e−3Φ1g

(
e2Φ1 + e6Φ1 − e4Φ1 − 1

)
, (4.2.68)

A′ = −1

4
e−3Φ1g

(
1 + e6Φ1 − 3e2Φ1 − 3e4Φ1

)
. (4.2.69)

Note that the dual mass dimension of Φ1 is ∆ = 4 which is corresponding to the

irrelevant operator. We then expect the AdS4 critical point to appear in the IR

of the RG flow driven by Φ1.

The solution to (4.2.69) is

gr = ln
[
eΦ1 − 1

eΦ1 + 1

]
+

1√
2
ln
[
1 +

√
2eΦ1 + e2Φ1

√
2eΦ1 − 1− e2Φ1

]
, (4.2.70)

A = Φ1 + ln
(
e2Φ1 − 1

)
− ln

(
1 + e4Φ1

)
. (4.2.71)
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At Φ1 ∼ 0, the solution behaves

Φ1 ∼ e
r
L , A ∼ r

L
(4.2.72)

which is the AdS4 critical point.

At large |Φ1|, the behaviors depend on the sign of Φ1. For Φ1 > 0, the

solution becomes

Φ1 ∼ −1

3
ln(gr + C), A ∼ −Φ1,

ds2 = (gr + C)
2
3dx21,2 + dr2. (4.2.73)

For Φ1 < 0, the solution becomes

Φ1 ∼
1

3
ln(C − gr), A ∼ Φ1,

ds2 = (C − gr)
2
3dx21,2 + dr2 . (4.2.74)

Both of these solutions give V → −∞ hence they are physical.

AdS4 Vacua and RG Flows with SO(2) Symmetry

In this case, there are six singlets given by SU(3, 3) non-compact generators

Y1 = Ŷ33, Y2 = Ỹ33, Y3 = Ŷ11 − Ŷ22,

Y4 = Ỹ11 − Ỹ22, Y5 = Ŷ12 + Ŷ21, Y6 = Ỹ12 + Ỹ21 . (4.2.75)

The coset representative is parametrized by

L = eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 . (4.2.76)

The result of scalar potential is highly complicated. We will again show for a

consistent truncation Φ2 = Φ4 = Φ6 = 0 with the scalar potential

V =
1

8
g2 [16 cosh(2Φ5) sinh(2Φ1) sinh(2Φ3)− 3 cosh(2Φ1)[3 + cosh(4Φ3)]

+2[2 + (2− 3 cosh(2Φ1)) cosh(4Φ5)] sinh2(2Φ3)
]
. (4.2.77)

We have not found other supersymmetric critical points aside from the trivial

critical point.
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We now consider BPS equations. In this truncation, the matrix SAB is

diagonal and gives a real superpotential, W = W , with

W = −g coshΦ1 + g cosh(2Φ5) sinhΦ1 sin(2Φ3). (4.2.78)

Note that the scalar potential can be written in terms of W ,

V = −1

2

(
∂W

∂Φ1

)2

− e4Φ5(1 + e4Φ5)−2

(
∂W

∂Φ3

)2

− 1

4

(
∂W

∂Φ5

)2

− 3

2
W 2 . (4.2.79)

The flow equations are then given by

Φ′
1 = ±∂W

∂Φ1

= ± [−g sinhΦ1 + g coshΦ1 cosh(2Φ5) sinh(2Φ3)] , (4.2.80)

Φ′
3 = ±2e4Φ5(1 + e4Φ5)−2 ∂W

∂Φ3

= ± 4e4Φ5

(1 + e4Φ5)2
g cosh(2Φ3) cosh(2Φ5) sinhΦ1, (4.2.81)

Φ′
5 = ±1

2

∂W

∂Φ5

= ±g sinhΦ1 sinh(2Φ3) sinh(2Φ5), (4.2.82)

A = ∓2W . (4.2.83)

We are not able to solve these equations analytically. We will only discuss the

asymptotic behaviors of the solution.

Near the AdS4 critical point, the solution behaves

Φ1 ∼ Φ3 ∼ egr ∼ e
r
L , Φ5 ∼ constant, A ∼ gr ∼ r

L
. (4.2.84)

This implies that Φ1 and Φ3 are dual to irrelevant operators with dimension ∆ = 4

in three dimensions. The Φ5 is dual to a marginal operator with dimension ∆ = 3

and is also a Goldstone boson.

There is a singularity at a large value of Φ3 → ±∞. This also gives Φ′
5 =

0. We will choose Φ5 = 0 for simplicity. Near this singularity, the asymptotic

behavior of the flow solution is given by

Φ1 ∼ ±Φ3 ∼ ±1

3
ln
∣∣∣∣C ± 3

4
gr

∣∣∣∣ , A ∼ 1

3
ln
∣∣∣∣C ± 3

4
gr

∣∣∣∣ ,
ds2 =

(
C ± 3

4
gr

) 2
3

dx21,2 + dr2 . (4.2.85)

This singularity is also physical.
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4.2.3 SO(2, 2) Gauge Group

We will consider N = 3 supergravity coupled to three vector multiplets with gauge

group SO(2, 2) ∼ SO(2, 1)× SO(1, 2). The structure constants are given by

f Γ
ΛΣ = (g1ϵĀB̄D̄η

D̄C̄ , g2ϵīj̄ l̄η
l̄k̄) (4.2.86)

where Ā, B̄, . . . = 1, 2, 6, ī, j̄, . . . = 3, 4, 5. The matrices ηĀB̄ and ηīj̄ are defined

by

ηĀB̄ = diag(1, 1,−1) ηīj̄ = diag(1,−1,−1). (4.2.87)

AdS4 Vacua and RG Flows with SO(2) Symmetry

We will consider RG flows with SO(2)diag symmetry. There are six singlets which

are given by

Y1 = Ŷ11 + Ŷ22, Y2 = Ỹ11 + Ỹ22, Y3 = Ŷ33,

Y4 = Ỹ33, Y5 = Ŷ21 − Ŷ12, Y6 = Ỹ21 − Ỹ12. (4.2.88)

The coset representative is parametrized by

L = eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 . (4.2.89)

The scalar potential is also complicated. We will give only the result from

a truncation Φ2 = Φ4 = Φ6 = 0. The scalar potential in this truncation is

V =
1

16

[
4 cosh(2Φ1) cosh(2Φ5)

[
cosh(2Φ1) cosh(2Φ5)(g

2
1 − g22) + g21 + g22

]
−

2 cosh(2Φ3)
[
g21 + g22 + cosh(2Φ1) cosh(2Φ5)

×
[
3 cosh(2Φ1) cosh(2Φ5)

(
g21 + g22

)
+ 4(g21 − g22)

]]
+3g1g2 sinh(2Φ3)

[
2 cosh(4Φ5) cosh2(2Φ1) + cosh(4Φ1)− 3

]]
. (4.2.90)

There is an AdS4 critical point at Φi = 0 with

V0 = −1

2
g21, L2 =

3

g21
. (4.2.91)
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However, considering supersymmetry transformations gives

δλi = δi3g1ϵ
3 and δλiA = δi3g1(δA2ϵ

1 − δA1ϵ
2). (4.2.92)

Since the only way to satisfy δλi = 0 and δλiA = 0 is to set ϵA = 0, this implies

that it is a non-supersymmetric critical point. Scalar masses are given in Table

4.4. This critical point is not stable since some of its masses violate the BF bound.

SO(2)× SO(2) representations m2L2

(1,1) −6, −6

(2,1) 0(×2), −15
2

∣∣
(×2)

(1,2) 0(×2), −3g22
2g21

∣∣∣
(×2)

(2,2) −3
2

g21+g22
g21

∣∣∣
(×8)

Table 4.4: Scalar masses at the non-supersymmetric AdS4 critical point with

SO(2)× SO(2) symmetry for SO(2, 2) gauge group

We will now consider a possible half-supersymmetric vacuum in the form

of a domain wall. By using the metric ansatz (4.2.2) and the similar procedures,

we found that the resulting BPS equations and the scalar potential are intensely

complicated. We will consider a simple case with SO(2) × SO(2) symmetry ob-

tained from a truncation with all Φi = 0 except Φ3 and Φ4. The scalar potential

in this truncation is

V = −1

2
g21e

−2Φ3
[
(1 + e4Φ3) cosh(2Φ4)− e2Φ3

]
. (4.2.93)

The matrix SAB is diagonal,

SAB = diag(W1,W1,W2) (4.2.94)

where the superpotentials W1 and W2 are given by

W1 = g1 sinΦ3 coshΦ4, (4.2.95)

W2 = g1 coshΦ4 sinhΦ3 + ig1 coshΦ3 sinhΦ4. (4.2.96)
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In this case, only supersymmetry corresponding to ϵ3 is preserved. The BPS

equations are given by

Φ′
3 = ± cosh−2(2Φ4)

∂W

∂Φ3

= ± g1sech(2Φ4) sinh(2Φ3)√
2
√

cosh(2Φ3) cosh(2Φ4)− 1
, (4.2.97)

Φ′
4 = ∓∂W

∂Φ4

= ∓ g1 cosh(2Φ3) sinh(2Φ4)√
2
√

cosh(2Φ3) cosh(2Φ4)− 1
, (4.2.98)

A′ = ∓W (4.2.99)

where

W = |W2| =
√
2g1
√

cosh(2Φ3) cosh(2Φ4)− 1 . (4.2.100)

There is no supersymmetric AdS4 critical point to these equations. A solution for

A and Φ3 can be given as a function of Φ4,

Φ3 =
1

2
ln
[
1

4

[
csch(2Φ4)

√
10 cosh(4Φ4)− 6− 2 coth(2Φ4)

]]
, (4.2.101)

A = −1

2
ln sinh(2Φ4)− iF (2iΦ4, 5) (4.2.102)

where F is the elliptic function of the first kind which is given by

iF (iΦ3, 5) =

∫ Φ3

0

dχ√
1− 25 sinh3 χ

. (4.2.103)

We are not able to solve for Φ4.

For further analysis, we will consider Φ4 = 0. This gives |W1| = |W2|. The

BPS equations are reduced to

Φ′
3 = ±g1 coshΦ3, (4.2.104)

A′ = ±g1 sinhΦ3 . (4.2.105)

In this case, the supersymmetry is restored to N = 3. An analytic solution to

these equations is

Φ3 = ln tan
[
g1r + C

2

]
, A = − ln sin(g1r + C), (4.2.106)

ds2 = sin−2(g1r + C)dx21,2 + dr2 . (4.2.107)

This solution preserves N = 3 Poincare supersymmetry in three dimensions.
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4.2.4 SO(2, 1) Gauge Group

This gauge group can be obtained by coupling N = 3 supergravity to one vector

multiplet. The structure constants are given by

f Γ
ΛΣ = gϵĀB̄D̄η

D̄C̄ (4.2.108)

where Ā, B̄, . . . = 1, 2, 4 and ηĀB̄ = diag(1, 1,−1).

For SO(2) ⊂ SO(2, 1) invariant scalars, the resulting scalar potential and

BPS equations are the same as SO(2, 2) case with g2 = 0. The scalar potential

also admits only a non-supersymmetric critical point where all scalars vanishing.

There is also a half-supersymmetric domain wall with SO(2) symmetry in the

form of (4.2.107).

4.2.5 SL(3, R) Gauge Group

This gauge group can be obtained from coupling N = 3 supergravity to five vector

multiplets. The structure constants f Γ
ΛΣ = gf̃ Γ

ΛΣ are identified from the SL(3,R)

algebra

[TΛ, TΣ] = f̃ Γ
ΛΣ TΓ , (4.2.109)

where the SL(3,R) generators TΛ are given in a form of Gell-Mann matrices λi,

TΛ = (iλ2, iλ7, iλ5, λ1, λ3, λ4, λ6, λ8). (4.2.110)

There are 30 scalars transforming as (3, 5̄)+(3̄,5) under the SU(3)×SU(5)

local symmetry. The SO(3) maximal compact subgroup can be embedded in the

SL(3,R) as

3 → 3, 8 → 3 + 5. (4.2.111)

The 30 scalars are then transformed under SO(3) as

(3 × 5) + (3 × 5) = (3 + 5 + 7) + (3 + 5 + 7), (4.2.112)

which gives no singlet under SO(3). We then consider singlets under the SO(2) ⊂

SO(3) subgroup. By decomposing (4.2.112), each representation gives one singlet,
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so there are six singlets under SO(2) symmetry. The corresponding non-compact

generators of SU(3, 5) are given by

Y1 = Ŷ24 + Ŷ33, Y2 = Ŷ23 − Ŷ34, Y3 = Ŷ15,

Y4 = Ỹ24 + Ỹ33, Y5 = Ỹ23 − Ỹ34, Y6 = Ỹ15 . (4.2.113)

The coset representative is parametrized by

L = eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 . (4.2.114)

The scalar potential is given by

V = − 1

32
e−4Φ2−4Φ3g2

[
16
√
3e2Φ2(e4Φ2 − 1)(e4Φ3 − 1) cosh(2Φ4) cosh(2Φ5) cosh(2Φ6)

+ cosh2(2Φ5)
[
3e2Φ3(2e4Φ2 − 3e8Φ2 − 3)− 12e2Φ3(e4Φ2)2 cosh(4Φ4)

+(1 + e4Φ3)
[
2(3 + e4Φ2 + 3e8Φ2) + (9− 2e4Φ2 + 9e8Φ2) cosh(4Φ4)

]
cosh(2Φ6)

]
+(1 + e4Φ3) cosh(2Φ6)

[
3 + 4e4Φ2 + 3e8Φ2 + (3− 4e4Φ2 + 3e8Φ2) sinh2(2Φ5)

]
−e2Φ3

[
3 + 14e4Φ2 + 3e8Φ2 + 3(1− 6e4Φ2 + e8Φ2) sinh2(2Φ5)

−8
√
3e2Φ2(1 + e4Φ2) cosh(2Φ4) sinh(4Φ5) sinh(2Φ6)

]]
. (4.2.115)

We have not found other AdS4 critical points besides the trivial critical

point. The cosmological constant and the AdS4 radius at the trivial critical point

are given by

V0 = −3

2
g2, L2 =

1

g2
. (4.2.116)

The scalar masses are shown in Table 4.5. Note that marginal deformations are

corresponding to the scalars in the 7 representation of the broken SO(3) symmetry

beside the Goldstone bosons in representation 5.

The BPS equations, in this case, is also complicated. We will consider a

truncation Φ4 = Φ5 = Φ6 = 0. This truncation gives a real superpotential W ,

W = −g
[
coshΦ3 +

√
3 sinh(2Φ2) sinhΦ3

]
. (4.2.117)

The matrix SAB is diagonal, SAB = 1
2
δABW . Follow the same procedures, the
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SO(3) representations m2L2 ∆

3 10(×3), −2(×3) 5, (1, 2)

5 0(×5), −2(×5) 3, (1, 2)

7 0(×7), −2(×7) 3, (1, 2)

Table 4.5: Scalar masses and the corresponding dimensions of the dual operators at

the N = 3 supersymmetric AdS4 critical point with SO(3) symmetry for SL(3,R)

gauge group

BPS equations are given by

Φ′
1 = 0, (4.2.118)

Φ′
2 = ±1

2

∂W

∂Φ2

= ∓
√
3g cosh(2Φ2) sinh(Φ3), (4.2.119)

Φ′
3 = ±∂W

∂Φ3

= ∓g
[√

3 coshΦ3 sinh(2Φ2) + sinhΦ3

]
, (4.2.120)

A′ = ∓W. (4.2.121)

Note that with the scalar kinetic terms

−1

4
e−4Φ2(1 + e4Φ2)2Φ′2

1 − Φ′2
2 − 1

2
Φ′2

3 , (4.2.122)

the scalar potential (4.2.115) can also be written in terms of W ,

V = −1

4

∂W

∂Φ2

− 1

2

∂W

∂Φ3

− 3

2
W 2

= −1

4
g2 [2 + cosh(2Φ3) + cosh(4Φ2−)[9 cosh(2Φ3)− 6]

+8
√
3 sinh(2Φ2) sinh(2Φ3)

]
. (4.2.123)

Note that we are unable to find an analytic solution for this case.

We now analyze asymptotic behaviors of the solution. Near the trivial AdS4

critical point, we find

1√
3
Φ2 + Φ3 ∼ e−3g1r ∼ e−

3r
L , Φ3 −

√
3

2
Φ2 ∼ e2g1r ∼ e

2r
L , A ∼ g1r ∼

r

L
.

(4.2.124)

The combination 1√
3
Φ2 + Φ3 can be interpreted as a marginal operator. The

combination Φ3 −
√
3
2
Φ2 is dual to an irrelevant operator of dimension ∆ = 5. We
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expect Φ3 −
√
3
2
Φ2 to drive the flow since the marginal operator does not break

conformal symmetry. Note that in this case, the UV SCFT should appear in the

IR since the operator driving the flow is irrelevant at the fixed point.

For large |Φ2|, we find

Φ3 ∼ Φ2 ∼ ∓1

3
ln
[
3
√
3gr

4

]
, A ∼ 1

3
ln r,

ds2 = r
2
3dx21,2 + dr2 . (4.2.125)

This singularity is physical since it yields V → −∞. This should describe an RG

flow in the dual supersymmetric field theory to a conformal fixed point in the IR.

4.2.6 SO(2, 1)× SO(2, 2) Gauge Group

The SO(2, 1)×SO(2, 2) ∼ SO(2, 1)×SO(2, 1)×SO(2, 1) gauge group arises from

coupling N = 3 supergravity to six vector multiplets. The structure constants for

this gauge group are given by

f Γ
ΛΣ = (g1ϵĀB̄D̄η

D̄C̄ , g2ϵīj̄ l̄η
l̄k̄, g3ϵĩj̃ l̃η

l̃k̃) (4.2.126)

where Ā, B̄, · · · = 1, 4, 5, ī, j̄, · · · = 2, 6, 7, ĩ, j̃, · · · = 3, 8, 9 and

ηĀB̄ = diag(1,−1,−1), ηīj̄ = diag(1,−1,−1), ηĩj̃ = diag(1,−1,−1) .

(4.2.127)

There are 36 scalars in the full SU(3, 6)/SU(3)× SU(6)× U(1) coset man-

ifold. However, we will consider only 12 singlets under SO(2) × SO(2) residue

symmetry, chosen to be the first two SO(2)’s. The corresponding non-compact

generators of the SU(3, 6) are given by

Y1 = Ŷ15, Y2 = Ŷ16, Y3 = Ŷ25, Y4 = Ŷ26,

Y5 = Ŷ35, Y6 = Ŷ36, Y7 = Ỹ15, Y8 = Ỹ16,

Y9 = Ỹ25, Y10 = Ỹ26, Y11 = Ỹ35, Y12 = Ỹ36 . (4.2.128)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76

The coset representative is parametrized by

L =
12∏
i=1

eΦiYi . (4.2.129)

The scalar potential is highly complicated. We will not give its explicit form

but rather note that the resulting scalar potential admits a Minkowski vacuum,

V = 0, for all scalars vanishing. It preserves SO(2)× SO(2)× SO(2) and N = 3

supersymmetry. There are six Goldstone bosons arising from breaking SO(2, 1)×

SO(2, 2) into SO(2)× SO(2)× SO(2).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

RG Flows from Four-dimensional

N = 4 Gauged Supergravity

In this chapter, we first review four-dimensional N = 4 gauged supergravity. We

will then discuss N = 4 gauged supergravity obtained from type IIA and IIB

superstring compactifications. We also discuss the possible semisimple gaugings.

In each case, the scalar potential and its possible supersymmetric AdS4 vacua will

be identified along with their possible holographic RG flows. Note that for type

IIB case, we also study examples of supersymmetric Janus solutions.

5.1 N = 4 Gauged Supergravity

We first review four-dimensionalN = 4 gauged supergravity. We follow the general

gauging in embedding tensor formalism given in [45]. Specific parametrizations

will be given later in each section.

The field contents of N = 4 supergravity multiplet are

(eµ̂µ, ψ
i
µ, A

m
µ , χ

i, τ) (5.1.1)

given by the graviton eµ̂µ, four gravitini ψi
µ, six vectors Am

µ , four spinnor fields χi

and a complex scalar field τ in the SL(2,R)/SO(2) coset. The complex scalar field

τ can be parametrized by two real scalar fields, a dilaton ϕ, and an axion χ. Note

that, in this chapter, we use µ, ν = 0, . . . , 3 for spacetime indices, µ̂, ν̂ = 0, . . . , 3 for

tangent indices, i, j = 1, . . . , 4 for SU(4) fundamental indices, and m,n = 1, . . . , 6
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for SO(6) ∼ SU(4) vector representation.

Supergravity multiplet can couple to an arbitrary number n of vector mul-

tiplets. Each vector multiplet in N = 4 supergravity,

(Aµ, λ
i, ϕm), (5.1.2)

contains a vector field Aµ, four gravitini λi, and six scalar fields ϕm. For n vector

multiplets, there are 6n scalar fields parametrizing the SO(6, n)/SO(6) × SO(n)

coset. Hence there are 2 + 6n real scalars parametrizing the SL(2,R)
SO(2)

× SO(6,n)
SO(6)×SO(n)

coset. Note that we use a, b = 1, . . . , n for SO(n) vector indices.

Fermionic fields and supersymmetry parameters in N = 4 gauged super-

gravity transform in the fundamental representation of the SU(4)R ∼ SO(6)R

R-symmetry. The chirality projections of the fundamental fermions are given by

γ5ψ
i
µ = ψi

µ, γ5χ
i = −χi, γ5λ

i = λi . (5.1.3)

For the anti-fundamental representation of SU(4)R, we have

γ5ψµi = −ψµi, γ5χi = χi, γ5λi = −λi . (5.1.4)

Gaugings of N = 4 supergravity can be described by using the embedding

tensor. The embedding tensor encodes all the information for embedding a gauge

group G0 in the global or duality group G = SL(2,R) × SO(6, n). Note that

gaugings in this formalism are covariant under the symmetry group G. A general

gauging can be described by two components of the embedding tensor, fαMNP and

ξαM , with α, β = (+,−) denoting the fundamental representation of the SL(2,R),

andM,N = (m, a) denoting the fundamental representation of the SO(6, n). The

embedding tensor component ΘαMNP can be written as

ΘαMNP = fαMNP + ξα[NηP ]M , (5.1.5)

where ηMN = diag(−1,−1,−1,−1,−1,−1, 1, . . . , 1) is the SO(6, n) invariant ten-

sor.
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To define a consistent gauging, the gauge generators,

XαM = ΘαMNP t
NP − ξβM tαβ, (5.1.6)

must form a closed algebra. This implies that the embedding tensor has to satisfy

the quadratic constraints,

ξα
MξβM = 0,

ξ(α
Pfβ)PMN = 0,

3fαR[MNfβPQ]
R + 2ξ(α[Mfβ)NPQ] = 0,

ϵαβ(ξα
PfβPMN + ξαMξβN) = 0,

ϵαβ(fαMNRfβPQ
R − ξα

RfβR[M [PηQ]N ] − ξα[MfN ][PQ]β + ξα[PfQ][MN ]β) = 0. (5.1.7)

The electric vector fields in ungauged Lagrangian appear asA+M = (Am
µ , A

a
µ).

Together with the dual magnetic vector fields A−M , they form a doublet under the

SL(2,R), denoted by AαM . Note that the particular electric-magnetic frame can

always be chosen such that A+M and A−M have charges +1 and −1, respectively,

under the SO(2).

When gauged, the covariant derivative can be written as

Dµ = ∇µ − gAαM
µ Θ NP

αM tNP + gAM(α
µ ϵβ)γξγM tαβ. (5.1.8)

The generators of the SL(2,R) and SO(6, n) are chosen to be

(tαβ)
δ

γ = 2δδ(αϵβ)γ, (tMN)
Q

P = 2δQ[MηN ]P , (5.1.9)

respectively, with ϵαβ = −ϵβα. Note that the gauge coupling g can be absorbed in

the embedding tensor.

In our work, we will consider solutions with only the metric and scalars non-

vanishing. Furthermore, we will consider cases with only fαMNP components of

the embedding tensor non-vanishing. The quadratic constraints (5.1.7) are then

reduced to

fαR[MNf
R

βPQ] = 0, ϵαβfαMNRf
R

βPQ = 0 . (5.1.10)
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Note that for purely electric gauging, only f+MNP non-vanishing, these constraints

reduce to the usual Jacobi identity for fMNP = f+MNP [42] [43].

In general, a subgroup of both SL(2,R) and SO(6, n) can be gauged, with

only electric vector fields. However, it has been shown that the purely electric

gaugings do not admit AdS4 vacua [43] [44] [83]. In this case, magnetic components

of the embedding tensor, f−MNP , are involved. Since we are interested in gauged

supergravity with AdS4 vacua, we will consider gaugings with both electric and

magnetic vector fields.

InN = 4 gauged supergravity, there are 2+6n scalars parametrizes the scalar

coset manifold SL(2,R)/SO(2)×SO(6, n)/SO(6)×SO(n). The coset representive

of the SL(2,R)/SO(2) sector Vα can be parametrized by

Vα =
1√
Imτ

 τ

1

 . (5.1.11)

This coset representative is equivalent to a symmetric 2× 2 matrix,

Mαβ = Re(VαV∗
β) =

1

Imτ

 |τ |2 Reτ

Reτ 1

 . (5.1.12)

Note that Im(VαV∗
β) = ϵαβ. The complex scalar τ can also be written in terms of

the dilaton ϕ and the axion χ,

τ = χ− ie−ϕ. (5.1.13)

The explicit form is then given by

Vα = eφg/2

 χg − ie−φg

1

 . (5.1.14)

The SO(6, n)/SO(6)× SO(n) factor can be parametrized by the coset rep-

resentative VM
A, where A = (m, a), which transforming by left and right mul-

tiplications under SO(6, n) and SO(6) × SO(n), respectively. The matrix VM
A

satisfies the relation

ηMN = −V m
M V m

N + V a
M V a

N (5.1.15)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81

being an element of SO(6, n). The SO(6, n)/SO(6)×SO(n) can also be parametrized

by a symmetric matrix MMN , defined by

MMN = V m
M V m

N + V a
M V a

N . (5.1.16)

The specific forms of the SO(6, n)/SO(6) × SO(n) coset representative will be

given in each case.

With only the metric and scalars non-vanishing, the bosonic Lagrangian is

given by

e−1L =
1

2
R +

1

16
∂µMMN∂

µMMN − 1

4(Imτ)2∂µτ∂
µτ ∗ − V. (5.1.17)

The scalar potential can be written in term of the coset representative MMN as

V =
g2

16

[
fαMNPfβQRSM

αβ

[
1

3
MMQMNRMPS +

(
2

3
ηMQ −MMQ

)
ηNRηPS

]
−4

9
fαMNPfβQRSϵ

αβMMNPQRS

]
, (5.1.18)

where MMN is the inverse of MMN , and MMNPQRS is defined by

MMNPQRS = ϵmnpqrsV m
M V n

N V p
P V q

Q V r
R V s

S , (5.1.19)

with indices raised by ηMN .

Fermionic supersymmetry transformations of N = 4 gauged supergravity

are given by

δψi
µ = 2Dµϵ

i − 2

3
gAij

1 γµϵj, (5.1.20)

δχi = iϵαβVαDµVβγ
µϵi − 4

3
igAij

2 ϵj, (5.1.21)

δλia = 2iV M
a DµV ij

M γµϵj + 2igA i
2aj ϵ

j . (5.1.22)

The fermion shift functions are defined by

Aij
1 = ϵαβ(Vα)

∗V M
kl V ik

N V jl
P f NP

βM ,

Aij
2 = ϵαβVαV M

kl V ik
N V jl

P f NP
βM ,

A j
2ai = ϵαβVαVM

aVN
ikV

jk
P f P

βMN , (5.1.23)
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where VM
ij is defined in terms of t’ Hooft matrices Gij

m and VM
m,

V ij
M =

1

2
V m
M Gij

m. (5.1.24)

The inverse VM
ij is defined similarly,

VM
ij = −1

2
VM

m(G
ij
m)

∗ . (5.1.25)

t’ Hooft matrices Gij
m convert an SO(6) vector index m to an anti-symmetric pair

of fundamental SU(4) indices [ij]. They satisfy the relations

Gmij = −(Gij
m)

∗ = −1

2
ϵijklG

kl
m . (5.1.26)

The explicit form of t’ Hooft matrices are given in Appendix A.3. The scalar

potential can be written in terms of the fermion shift functions as

V = −1

3
Aij

1 A1ij +
1

9
Aij

2 A2ij +
1

2
A j

2ai A
i

2a j . (5.1.27)

Together with the fermionic supersymmetry transformations, it follows that unbro-

ken supersymmetry corresponds to an eigenvalue of Aij
1 , α, satisfying the relation

V0 = −α2

3
, where V0 is the value of the scalar potential at the vacuum.

5.2 RG flows from type IIB non-geometric com-

pactification

We will consider N = 4 gauged supergravity with six vector multiplets which arise

from a non-geometric compactification of type IIB theory on T 6/Z2 × Z2. This

involves the fluxes of NS and RR three-form fields (H3, F3) and non-geometric

fluxes (P,Q).

We follow [46] and restrict ourselves to solutions preserving at least SO(3)

subgroup of the full gauge group. The residue SO(3) symmetry is embedding in

SO(6, 6) as a diagonal subgroup of SO(3)×SO(3)×SO(3)×SO(3). Note that the

four factors of SO(3) are subgroups of SO(6)×SO(6) ⊂ SO(6, 6). The 36 scalars
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in the SO(6, 6)/SO(6) × SO(6) sector transform as (6,6) under SO(6) × SO(6)

compact subgroup. The embedding of SO(3)× SO(3) into SO(6),

6 → (3,1) + (1,3), (5.2.1)

implies that the 36 scalars transform as

(6,6) → 4× (1 + 3 + 5), (5.2.2)

under the unbroken SO(3) ∼ [SO(3) × SO(3) × SO(3) × SO(3)]diag. The four

singlets are denoted as (φ1, φ2, χ1, χ2). We will use the explicit parametrization

given in [46]. The coset representative is given by

V A
M =

 eT 0

BeT e−1

⊗ I3 (5.2.3)

where the two 2× 2 matrices e and B are given by

e = e
1
2
(φ1+φ2)

 1 χ2

0 e−φ2

 , B =

 0 χ1

−χ1 0

 . (5.2.4)

The explicit form of the coset representative is then given by

VM
A =


e

1
2
(φ1+φ2) 0 0 0

e
1
2
(φ1+φ2)χ2 e

1
2
(φ1−φ2) 0 0

e
1
2
(φ1+φ2)χ1χ2 e

1
2
(φ1−φ2)χ1 e−

1
2
(φ1+φ2) −e 1

2
(φ2−φ1)χ2

−e 1
2
(φ1+φ2)χ1 0 0 e

1
2
(φ2−φ1)

⊗ I3 , (5.2.5)

in terms of four SO(3) singlet scalars. Note that, in this form, it is clear that φ1 and

φ2 are singlets under SO(3)×SO(3) ⊂ [SO(3)×SO(3)]diag × [SO(3)×SO(3)]diag.

With these parametrizations and the definition ϕi = (φg, φ1, φ2, χg, χ1, χ2),

the scalar kinetic terms can be found to be

Lkin = −1

2
Kij∂µϕ

i∂µϕj

= −1

4

(
∂µφg∂

µφg + 3∂µφ1∂
µφ1 + 3∂µφ2∂

µφ2 + e2φg∂µχg∂
µχg

+3e2φ1∂µχ1∂
µχ1 + 3e2φ2∂µχ2∂

µχ2

)
, (5.2.6)
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where we have defined the scalar kinematic metric Kij for later convenience in

setting the BPS equations.

The four SO(3) singlets in SO(6, 6)/SO(6) × SO(6) correspond to non-

compact generators of SO(2, 2) ⊂ SO(6, 6) that commute with the SO(3) sym-

metry. We can split the SO(6, 6) indices M into SO(2, 2) and SO(3) indices,

M = (AI), A = 1, 2, 3, 4 and I = 1, 2, 3. This implies that the fundamental repre-

sentation of SO(6, 6) can be decomposed as (4,3) under SO(2, 2) × SO(3). The

embedding tensor can be written as

fαMNP = fαAIBJCK = ΛαABCϵIJK , (5.2.7)

where ΛαABC = Λα(ABC). The quadratic constraints (5.1.10) then read

ϵαβΛαAB
CΛβDEC = 0, Λ(αA[B

CΛβ)D]EC = 0 . (5.2.8)

The SO(6, 6) fundamental indicesM,N can also be decomposed into (m, m̄),

m, m̄ = 1, . . . , 6. The index m is used to label the T 6 of the T 6/Z2 × Z2 internal

manifold. It can split into m = (a, i) such that a = 1, 3, 5 and i = 2, 4, 6. The

index m̄ can be decomposed similarly, m̄ = (ā, ī). Altogether, the indices A,B

can be written such that A = (1, 2, 3, 4) = (a, i, ā, ī). The indices I, J = 1, 2, 3

label the three T 2’s inside T 6 ∼ T 2 × T 2 × T 2.

In this case, the SO(6, 6) invariant metric and its inverse are chosen to be

ηMN = ηMN =

 0 I6

I6 0

 . (5.2.9)

Note that some extra projections are needed in order to extract the negative and

positive eigenvalues of ηMN . For example, to compute the scalar potential defined

in (5.1.18), we need to project the second index of VM
A by using the projection

matrix

R =
1√
2

 −I6 I6

I6 I6

 . (5.2.10)

Note also that, in this case, we will use the gauge coupling g = 1
2
as in [46].
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The results from [46] show that the effective N = 4 gauged supergravity

theory is not unique. We will only consider the gauged supergravity admitting

the maximally supersymmetric N = 4 vacua. In this case, all the gauge and

non-geometric fluxes lead to the following components of the embedding tensor

f−īj̄k̄ = Λ−444 = −λ, f+āb̄c̄ = Λ+333 = λ,

f−īj̄k = Λ−244 = −λ, f+ab̄c̄ = Λ+133 = λ, (5.2.11)

with λ being constant. The first and second lines correspond to (H3, F3) and

(P,Q) fluxes, respectively. The gauge group that arises from this embedding is

ISO(3)× ISO(3) ∼ [SO(3)⋉ T 3]× [SO(3)⋉ T 3]. This gauge group is embedded

in SO(6, 6) via SO(3, 3)× SO(3, 3) subgroup.

By using the above gauging, the scalar potential is

V =
1

32
eφ1−3φ2−φgλ2

[
e2φ1 − 3e2φ2 + 6eφ1+2φ2+φg − 18e3φ2+φg − 3e4φ2+2φg

− 2e2φ1+3φ2+φg(1 + 3χ2
1) + 3e2(φ1+φ2)(χ1 − χ2)

2 − 12e5φ2+φgχ2
2

+ 3e6φ2χ4
2 + e2φ1+6φ2χ4

2(χ2 − 3χ1)
2 + 3e2φ1+4φ2χ2

2(χ2 − 2χ1)
2 − 3e2(φ2+φg)χ2

g

+ 6eφ1+4φ2+φg(1 + χ2
2) + e2(φ1+φg)χ2

g + 3e2(φ1+φ2+φg)(χ1 − χ2)
2χ2

g

+ 3e6φ2+2φgχ2
2(−1 + χ2χg)

2 + 3e2(φ1+2φ2+φg)(χ1 − 2χ1χ2χg + χ2
2χg)

2

+e2(φ1+3φ2+φg)[1 + χ3
2χg − 3χ1χ2(−1 + χ2χg)]

2
]
. (5.2.12)

This potential admits a trivial critical point at which all scalars are vanishing.

The cosmological constant and the AdS4 radius are given by

V0 = −3

8
λ2, L =

2
√
2

λ
. (5.2.13)

The scalar masses and their corresponding dimensions of the dual operators are

given in Table 5.1. Note that we have used a different convention for scalar masses

from [46]. The scalar masses given in Table 5.1 are obtained by multiplying the

masses given in [46] by 3 due to some difference in convention. This critical

point preserves N = 4 supersymmetry, which could be checked via the Aij
1 tensor,

and has SO(3) × SO(3) symmetry, which is the maximal compact subgroup of

ISO(3)× ISO(3) gauge group.
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Scalar fields m2L2 ∆

φg, χg −2 1, 2

φ1, φ2 4 4

χ1, χ2 0 3

Table 5.1: Scalar masses and their corresponding dimensions at the N = 4 super-

symmetric AdS4 critical point with SO(3)× SO(3) symmetry

To set up the BPS equations, we will use the metric ansatz

ds2 = e2A(r)dx21,2 + dr2. (5.2.14)

We will use Majorana representation for gamma matrices, all γµ real and γ5 purely

imaginary. This implies that ϵi is a complex conjugate of ϵi. All scalars are con-

sidered to be functions of only the radial coordinate r. The projection condition,

γr̂ϵ
i = eiΛϵi , (5.2.15)

is used to solve the δχi = 0 and δλia = 0 equations.

From the equation δψi
µ = 0, for µ = 0, 1, 2, we find

A′ = ±W, eiΛ = ±W
W
, (5.2.16)

where W = |W|, and ′ denotes r-derivative. The superpotential W is defined by

W =
1

3
α, (5.2.17)

where α is the eigenvalue of Aij
1 corresponding to the unbroken supersymmetry.

The definite signs for A′ equation and eiΛ will be chosen such that the N = 4

critical point identified with N = 4 SCFT in the UV corresponds to r → ∞.

For all four SO(3) singlet scalars non-vanishing, the N = 4 is broken into

N = 1 corresponding to the Killing spinor ϵ1. The superpotential is given by

W =
1

4
√
2
e

1
2
(φ1−3φ2−φg)

[
eφ2 [eφ2+φg(−eφ1+φ2λ− 3λ(i+ eφ1χ1)(i+ eφ2χ2))

−eφ1λ(i+ eφ2χ2)
3(i+ eφgχg) + 3λ(i+ eφ1χ1)(i+ eφ2χ2)

2(i+ eφgχg)]
]
.

(5.2.18)
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The real superpotential is then

W =
1

8
√
2
λe

1
2
(φ1−3φ2−φg)

[
[(−3eφ2(−eφ1 + 2eφ2 + e2φ2+φg)χ2 − eφ1+3φ2χ3

2

+ eφg(eφ1 − 3eφ2)χg + 3e2φ2+φg(−eφ1 + eφ2)χ2
2χg + 3eφ1+φ2χ1(−1

− eφ2+φg + e2φ2χ2
2 + 2eφ2+φgχ2χg))

2 + [eφ1(−1 + 3e2φ2χ2
2)

− eφ1+φ2+φgχ2(−3 + e2φ2χ2
2)χg + eφ2(3 + 3eφ2+φg − eφ1+2φ2+φg

− 3e2φ2χ2
2 − 6eφ2+φgχ2χg + 3eφ1χ1(−eφ2(2 + eφ2+φg)χ2

−eφgχg + e2φ2+φgχ2
2χg))]

2]
] 1

2 . (5.2.19)

The scalar potential can be written in terms of W as

V = −2Kij ∂W

∂ϕi

∂W

∂ϕj
− 3W 2. (5.2.20)

The BPS equations from δχi = 0 and δλia = 0 take the form

ϕi′ = 2Kij ∂W

∂ϕj
, (5.2.21)

where Kij is the inverse of the kinetic metric defined in (5.2.6). Note that, in this

form, the BPS equations solve the second-order field equations.

We will first consider subtruncations which preserve some of SO(3)’s, and

later the full SO(3) singlet sector.

5.2.1 RG flows with N = 4 supersymmetry

We now consider RG flows solutions preserving N = 4 supersymmetry to N = 4

non-conformal theories in the IR. Consistent truncations, in this case, should

satisfy the δψi
µ = 0, δλia = 0, and δχi = 0 without setting ϵi zero. From the

analysis, there are two possibilities which preserve N = 4 supersymmetry; by

setting φ1,2 = χ1,2 = 0, and by setting χg = χ1,2 = 0.

N = 4 RG flows by relevant deformations

We will consider a truncation with only φg and χg non-vanishing. The scalars φg

and χg are corresponding to relevant deformations by operators of dimensions 1
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or 2. The consistent truncation of the BPS equations gives

φ′
g = −λe

−φg
2

2
√
2

(e2φg + e2φgχ2
g − 1)√

(1 + eφg)2 + e2φgχ2
g

,

χ′
g = −λe

−φg
2

√
2

χg√
(1 + eφg)2 + e2φgχ2

g

,

A′ =
λe−

φg
2

4
√
2

√
(1 + eφg)2 + e2φgχ2

g . (5.2.22)

Since the φg and χg are scalars in SL(2,R)/SO(2), they are also singlets under

SO(6, 6). Therefore, they are invariant under the SO(3)× SO(3) symmetry. The

solutions to the above equations preserve the full SO(3)× SO(3) symmetry.

Solutions to the BPS equations (5.2.22) preserve N = 4 supersymmetry. It

can be checked that with this truncation, the δλia = 0 satisfies identically. The

equations δψi
µ = 0 and δχi = 0 also held for all ϵi satisfying the γr̂ projector

(5.2.15).

By setting χg = 0, we obtain simpler BPS equations,

φ′
g = − λ

2
√
2
e−

φg
2 (eφg − 1), (5.2.23)

A′ =
λ

4
√
2
e−

φg
2 (1 + eφg). (5.2.24)

The solution to these equations is given by

φg = ln
[
e

rλ
2
√
2
+C − 1

]
− ln

[
e

rλ
2
√
2
+C

+ 1
]
, (5.2.25)

A = ln
[
e

rλ
2
√
2
+C − 1

]
− rλ

2
√
2
. (5.2.26)

The integration constant C can be removed by shifting the coordinate r. Note

that the integration constant for A is neglected since it can be absorbed by scaling

the dx21,2 coordinates.

At large r, we find the solution behaves as

φg ∼ e
− λr

2
√
2 ∼ e−

r
L , (5.2.27)
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which is expected for the dual operators of dimensions ∆ = 1, 2. Near the singu-

larity r → −2
√
2C
λ

, we find

φg ∼ A ∼ ln
[
r +

2
√
2C

λ

]
. (5.2.28)

This singularity is physical since the scalar potential is bounded above, V → −∞.

This solution describes an RG flow from the dual N = 4 SCFT in the UV to an

N = 4 non-conformal field theory with unbroken SO(3)×SO(3) symmetry in the

IR. The metric in the IR is given by

ds2 = (λr + 2
√
2C)2dx21,2 + dr2. (5.2.29)

Note that we have absorbed some constants to dx21,2 coordinates.

To consider RG flows with χg ̸= 0, we introduce a new variable ρ, defined

by
dρ

dr
=

χg√
1− Cχg +

√
1− χg(2C + χg)

. (5.2.30)

The BPS equations (5.2.22) can be solved by

φg = −1

2
ln[1− 2Cχg − χ2

g], (5.2.31)

A = − lnχg +
1

4
ln[1− 2Cχg − χ2

g]

+
1

2
ln
[
1− Cχg +

√
1− 2Cχg − χ2

g

]
, (5.2.32)

ρλ[1− χg(2C + χg)]
3
4 = 4(2)

1
4 (C + χg −

√
1 + C2)

[
1 + C2 +

√
1 + C2(C + χg)

1 + C2

] 3
4

×

2F1

(
1

4
,
3

4
,
5

4
,
χg +

√
1 + C2 − C

2
√
1 + C2

)
, (5.2.33)

where 2F1 is the hypergeometric function.

The solution above interpolates between N = 4 AdS4 vacuum in the UV as

r → ∞, and a singular geometry at a finite value of r in the IR. There are two

possibilities for singular in the IR. The first one is given by

χg ∼ χ0, φg ∼ −2 ln
[√

2rλ(1 + χ2
0)− 4χ0C

8χ0

]
,

A ∼ χ0√
1 + χ0

ln[
√
2rλ(1 + χ2

0)− 4χ0C], (5.2.34)
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where χ0 is constant. In this case, we have ϕg → ∞ and χg → χ0 such that
√
2rλ(1 + χ2

0) → 4χ0C. Note that the constant C in these equations is not the

same as in the equations (5.2.31), (5.2.32) and (5.2.33).

Another possibility is given by

φg ∼ 2 ln
(√

2λr + 4C
)
, χg ∼

C̃

4C +
√
2λr

,

A ∼ ln
(√

2λr + 4C
)
. (5.2.35)

There are singularities at
√
2rλ→ −4C, which lead to φg → −∞ and χg → ±∞

depending on the sigh of the constant C̃. These singularities are physical.

N = 4 RG flows by relevant and irrelevant deformations

We now consider N = 4 supersymmetric RG flows with χg = χ1,2 = 0 truncation.

Solutions in this truncation should preserve SO(3) × SO(3) unbroken symmetry

since φ1 and φ2 are SO(3)×SO(3) singlets. Note that the truncation with χ1,2 = 0

only consistent with χg = 0. This implies that N = 4 supersymmetry does not

allow the operators dual to χg and χ1,2 to be turned on simultaneously with ϕg

and ϕ1,2. It is interesting to find a description in the dual N = 4 SCFT.

In this truncation, the BPS equations are given by

φ′
g =

λ

4
√
2
e

1
2
(φ1−3φ2−φg)

(
3eφ2 − eφ1 − 3e2φ2+φg + eφ1+3φ2+φg

)
, (5.2.36)

φ′
1 =

λ

4
√
2

(
eφ1 − eφ2 − e2φ2+φg + eφ1+3φ2+φg

)
, (5.2.37)

φ′
2 =

λ

4
√
2

(
eφ2 − eφ1 − e2φ2+φg + eφ1+3φ2+φg

)
, (5.2.38)

A′ = − λ

8
√
2
e

1
2
(φ1−3φ2−φg)

(
eφ1 − 3eφ2 − 3e2φ2+φg + eφ1+3φ2+φg

)
. (5.2.39)

To solve these equations, we introduce new variables,

φ̃1 = φ1 − φ2, φ̃2 = φ1 + φ2. (5.2.40)
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The above BPS equations then become

φ̃′
1 =

λ

2
√
2
e

1
2
(φ̃1+φg)(eφ̃1 − 1), (5.2.41)

φ̃′
2 =

λ

2
√
2
e

1
2
(φ̃2−φg)(eφ̃2 − 1), (5.2.42)

φ′
g =

λ

4
√
2
e−

φg
2

(
3e

φ̃2
2 − e

3
2
φ̃2 − 3e

1
2
φ̃1+φg + e

3
2
φ̃1+φg

)
, (5.2.43)

A′ = − λ

8
√
2
e−

φg
2

(
e

3
2
φ̃1+φg + e

3
2
φ̃2 − 3e

φ̃2
2 − 3e

1
2
φ̃1+φg

)
. (5.2.44)

Combinations of these equations give

dA

dφ̃1

− 1

2

dφg

dφ̃1

=
3− eφ̃1

2(eφ̃1 − 1)
, (5.2.45)

dA

dφ̃2

+
1

2

dφg

dφ̃2

=
3− eφ̃2

2(eφ̃2 − 1)
. (5.2.46)

The above equations can be solved by

φg =
3

2
(φ̃1 − φ̃2)− ln

(
1− eφ̃1

)
+ ln

(
1− eφ̃2

)
, (5.2.47)

A =
φg

2
− 3

2
φ̃1 + ln

(
1− eφ̃1

)
. (5.2.48)

Note that the integration constant for φg is chosen to be zero to obtain the AdS4

critical point with all scalars vanishing. The integration constant for A is irrele-

vant.

By substitute the φg, the combination of (5.2.41) and (5.2.42) gives

dφ̃1

dφ̃2

= e2(φ̃1−φ̃2), (5.2.49)

which can be solved by

φ̃1 = −1

2
ln
(
e−2φ̃2 − C1

)
. (5.2.50)

Near the AdS4 critical point, φ̃1 ∼ φ̃2 ∼ 0, which give C1 = 0. This implies that

φ̃1 = φ̃2, which leads to φ2 = 0 and φg = 0. We see that, in this case, the solution

is driven by only the irrelevant operator with dimension ∆ = 4 dual to φ1. We

expect that the N = 4 SCFT dual to the AdS4 critical point to appear in the IR.

Note that the equation (5.2.43) is consistent for φg = 0 only if φ̃1 = φ̃2.
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For φg = 0, the equation (5.2.41) becomes

φ̃′
1 =

λ

2
√
2
e

φ̃1
2 (eφ̃1 − 1). (5.2.51)

This equation can be solved for φ̃1(r),

λr

2
√
2
= 2e−

φ̃1
2 + ln

(
1− e−

φ̃1
2

)
− ln

(
1 + e−

φ̃1
2

)
+ C . (5.2.52)

There is a singularity as r → 2
√
2C
λ

. Asymptotic behavior of the equation near this

singularity gives

φ̃1 ∼ φ̃2 ∼ −2

3
ln 3

2

[
C − λr

2
√
2

]
,

A ∼ −1

2
φ̃1 ∼

1

3
ln 3

2

[
C − λr

2
√
2

]
. (5.2.53)

This singularity gives V → ∞; hence the solution is unphysical.

We now consider another consistent subtruncation with φ̃1 = 0 or φ̃2 = 0.

This is equivalent to setting φ2 = ±φ1. In this case, the solution is found to be

φg = ± ln
[
e−φ1 − C1e

3φ1

2− 2e2φ1

]
,

A = −7

2
φ1 +

1

2
ln
(
1− e2φ1

)
+

1

2
ln
(
1− C1e

4φ1
)
,

λρ

4
√
2

= e−φ1 +
1

2
ln
(
1− e−φ1

)
− 1

2
ln
(
1 + e−φ1

)
+ C, (5.2.54)

where we have introduced the new radial coordinate ρ, defined by dρ = e−
φg
2 dr.

Note that, in this case, the φg is not trivial along the flow. The constant C1 = 1

is chosen to make the solution approach AdS4 critical point. This gives

φg = ± ln coshφ1 . (5.2.55)

The solution becomes singular as ρ → 4
√
2C

3λ
with φ1 → ∞. Near this singularity,

we find

φg ∼ ±φ1 φ1 ∼ − ln
[
C − 3λρ

4
√
2

]
, A ∼ 1

2
ln
[
C − 3λρ

4
√
2

]
. (5.2.56)

These singularities are unphysical since they give V → ∞.
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5.2.2 RG flows with N = 1 supersymmetry

We now consider RG flows with non-trivial χ1 and χ2. This RG flow solutions

preserve N = 1 supersymmetry and break SO(3) × SO(3) symmetry to its diag-

onal subgroup. As in the previous N = 4 case, we will first consider consistent

subtruncations, then move to more general solutions. Note that the truncation

with only φ2 and χ2 non-vanishing is not consistent. It is interesting to find a

description in the dual field theory.

N = 1 RG flows by marginal and irrelevant deformations

We begin with the truncation φg = χg = φ2 = χ2 = 0. This RG flow solution is

driven by irrelevant and marginal operators with dimensions ∆ = 4 and ∆ = 3,

corresponding to φ1 and χ1, respectively. We obtain the BPS equations,

φ′
1 = − λ

2
√
2
e

φ1
2
(3− 4eφ1 + e2φ1 + 9χ2

1e
2φ1)√

(eφ1 − 3)2 + 9χ2
1e

2φ1

, (5.2.57)

χ′
1 = − 3λ

2
√
2

χ1e
φ1
2√

(eφ1 − 3)2 + 9χ2
1e

2φ1

, (5.2.58)

A′ =
λ

4
√
2
e

φ1
2

√
(eφ1 − 3)2 + 9χ2

1e
2φ1 . (5.2.59)

We are not able to analytically solve these equations in full generality. We will

give numerical solutions in this case.

Note that further truncation with χ1 = 0 yields the BPS equations,

φ′
1 =

λ

2
√
2
e

φ1
2 (eφ1 − 1) and A′ = − λ

4
√
2
e

φ1
2 (eφ1 − 3). (5.2.60)

The above equations can be solved by

A = −3

2
φ1 + ln(1− eφ1),

λr

2
√
2

= 2e−
φ1
2 + ln

(
1− e−

φ1
2

)
− ln

(
1 + e−

φ1
2

)
. (5.2.61)

This is the same solution as in the previous section for φ̃2 = φ̃1. Therefore, we

will not further discuss this solution.
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(a) Solution for φ1
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χ1(r)

(b) Solution for χ1
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r
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A(r)

(c) Solution for A

Figure 5.1: An N = 1 RG flow with irrelevant and marginal deformations from

type IIB compactification with λ = 2

For non-vanishing φ1 and χ1, we find an example of these solutions, which

is given in Figure 5.1. At large φ1, the asymptotic behavior of this solution can

be determined from the BPS equations,

χ1 ∼ χ0, φ1 ∼ −2

3
ln
(
rλ
√
2 + 18χ2

0 − 4C1

)
,

A ∼ 1

3
ln
(
rλ
√
2 + 18χ2

0 − 4C1

)
, (5.2.62)

where χ0 is constant. This singularity gives V → ∞; hence it is unphysical.

N = 1 RG flows by relevant, irrelevant and marginal deformations

We now consider RG flow solutions with all six SO(3) scalars non-vanishing. Due

to the complication, we will give an explicit form of the BPS equations in Ap-

pendix A.4. Note that there could be many possible IR singularities due to the

competition between various deformations by operators and vacuum expectation

values present in the UV SCFT, similar to the analysis in [84]. We give some ex-
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amples of the solutions in Figure 5.2, which is given in three different values of λ.

The figure shows that the solutions reach the UV SCFT as r → ∞ and approach

a singularity at the left end of the flows. This singularity leads to V → ∞; hence

it is unphysical.

5.3 Supersymmetric Janus solutions from type

IIB compactification

In this section, we discuss another type of solutions with an AdS3-sliced domain

wall ansatz,

ds2 = e2A(r)
(
e

2ξ
ℓ dx21,1 + dξ2

)
+ dr2 . (5.3.1)

This type of solutions, called Janus solutions, describes a conformal interface of

co-dimension one within the SCFT dual to the AdS4 critical point. This solution

breaks the three-dimensional conformal symmetry SO(2, 3) to SO(2, 2) on the

(1, 1)-dimensional interface.

In this case, we need to modify the BPS equations of the previous RG flow

cases. In the equation δψi
µ = 0, we instead use a γξ̂ projection,

γξ̂ϵi = iκeiΛϵi. (5.3.2)

The γr̂ projection in the equations δλia = 0 and δχi = 0 is still given in (5.2.15),

but the phase eiΛ modified to

eiΛ =
W

A′ + iκ
ℓ
e−A

. (5.3.3)

The integrability of δψi
0̂,1̂

= 0 equations leads to

A′2 +
1

ℓ2
e−2A = W 2 . (5.3.4)

Note that in the limit ℓ→ ∞, we obtain A′ = ±W and eiΛ = W
A′ = ±W

W
as in the

RG flow cases.
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Figure 5.2: An N = 1 RG flow from type IIB compactification with all SO(3)

singlet scalars and λ = 1 (purple), λ = 1.2 (green) and λ = 1.4 (red)
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The constant κ, with κ2 = 1, imposes the chirality condition on the Killing

spinor corresponding to the unbroken supersymmetry on the (1, 1)-dimensional

interface. Note that the Killing spinors depend on both r and ξ coordinates.

Note that we will not analyze the full BPS equations for supersymmetric

Janus solutions since they are usually more complicated than the RG flow cases.

We then consider some consistent truncations of the BPS equations. We will

consider the cases with (φg, χg) and (φ1, χ1) non-vanishing. As studied in [85] [86]

[87], the truncations without the axions or pseudoscalars are not consistent with

the Janus BPS equations.

5.3.1 N = 4 Janus solution

We now consider the case with φg and χg non-vanishing. By setting φ1 = χ1 =

φ2 = χ2 = 0, the equation δλia = 0 is automatically satisfied. Together with

(5.3.4), by solving the real and imaginary parts of the equation δχi = 0 after

applying the phase (5.3.3), we obtain the BPS equations,

φ′
g = −4

A′

W

∂W

∂φg

− 4κe−φg
e−A

ℓW

∂W

∂χg

,

=
−2ℓA′(e2φg − 1 + 2χ2

ge
2φg)− 4κeφg−Aχg

ℓ
[
(1 + eφg)2 + χ2

ge
2φg
] , (5.3.5)

χ′
g = −4

A′

W
e−2φg

∂W

∂χg

+ 4κe−φg
e−A

ℓW

∂W

∂φg

,

=
2κe−A−φg(e2φg − 1 + χ2

ge
2φg)− 4ℓχgA

′

ℓ
[
(1 + eφg)2 + χ2

ge
2φg
] , (5.3.6)

0 = A′2 +
e−2A

ℓ2
− λ2

32
e−φg

[
(1 + eφg)2 + χ2

ge
2φg
]
, (5.3.7)

where the real superpotential is given by

W =
λ

4
√
2
e−

φg
2

√
(1 + eφg)2 + χ2

ge
2φg . (5.3.8)

Note that these equations are similar to the other four-dimensional Janus solutions

in [85] [86] [87]. Since the above equations solve the BPS equations for all ϵi,

i = 1, . . . , 4, any solutions to these equations preserve N = 4 supersymmetry. An

example of numerical solutions is given in Figure 5.3.
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(c) Solution for A

Figure 5.3: An N = 4 Janus solution from type IIB compactification within a

truncation to φg and χg with λ = κ = 1 and ℓ = 2
√
2

The solution in Figure 5.3 interpolates between N = 4 AdS4 vacua at r →

±∞. This can be interpreted as a (1 + 1)-dimensional conformal interface within

the N = 4 SCFT. The interface preserves N = (4, 0) supersymmetry by choice of

the chirality condition κ = 1. Note that the SO(3) × SO(3) symmetry remains

unbroken along the solution.

5.3.2 N = 1 Janus solution

We now consider a truncation with φ1 and chi1 non-vanishing. In this case, the

N = 4 supersymmetry is broken to N = 1 supersymmetry and the solution

preserves only the SO(3) diagonal subgroup of the full SO(3)×SO(3) symmetry.
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The BPS equations in this truncation are given by

φ′
1 = −4

3

A′

W

∂W

∂φ1

− 4

3
κe−φ1

e−A

ℓW

∂W

∂χ1

,

=
2ℓA′(4e2φ1 − 3− 9χ2

1e
2φ1 − e2φ1)− 12κeφ1−Aχ1

ℓ [(eφ1 − 3)2 + 9χ2
1e

2φ1 ]
, (5.3.9)

χ′
1 = −4

3

A′

W
e−2φ1

∂W

∂χ1

+
4

3
κe−φ1

e−A

ℓW

∂W

∂φ1

,

=
2κe−A−φ1(3− 4eφ1 + e2φ1 + 9χ2

1e
2φ1)− 12ℓχ1A

′

ℓ [(eφ1 − 3)2 + 9χ2
1e

2φ1 ]
, (5.3.10)

0 = A′2 +
e−2A

ℓ2
− λ2

32
eφ1
[
(eφ1 − 3)2 + 9χ2

1e
2φ1
]
, (5.3.11)

where the real superpotential in this case is

W =
λ

4
√
2
e

φ1
2

√
(eφ1 − 3)2 + 9χ2

1e
2φ1 . (5.3.12)

Note that, in this case, after an intensive numerical search, we have not found

any solutions interpolating between AdS4 vacua in the limits r → ±∞. All of the

solutions found are singular Janus, which connect singular domain walls at two

finite values of the radial coordinate. An example of these solutions is shown in

Figure 5.4.

The solution in Figure 5.4 should describe a conformal interface between

N = 1 non-conformal phase of the N = 4 SCFT. However, this solution is con-

sidered a bad type. An uplift to type IIB is needed to verify if the solution is

acceptable in the ten-dimensional context.

5.4 RG flows from type IIB GKP compactifica-

tion

There is another class of type IIB compactification, called GKP compactification.

It includes the background of (H3, F3) and O3-plane and/or D3-branes in order

to cancel a flux-induced tadpole∫
10d

(H3 ∧ F3) ∧ C4) ⇒ N3 = H3 ∧ F3, (5.4.1)
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(c) Solution for A

Figure 5.4: An N = 1 Janus solution from type IIB compactification within a

truncation to φ1 and χ1 with λ = κ = 1 and ℓ = 2
√
2

for R-R gauge potential C4. See [88] for more details.

Components of the embedding tensor from this compactification, with an

SO(3) truncation of half-maximal supergravity, are given in [46],

f+īj̄k̄ = Λ+333 = −a0, f−īj̄k̄ = Λ−333 = −b0,

f+īj̄k̄ = Λ+334 = a1, f−īj̄k̄ = Λ−334 = b1,

f+īj̄k̄ = Λ+344 = −a2, f−īj̄k̄ = Λ−344 = −b2,

f+īj̄k̄ = Λ+444 = a3, f−īj̄k̄ = Λ−444 = b3. (5.4.2)

By using the same parametrization and procedures as in the previous type

IIB non-geometric compactification case, the scalar potential is computed. How-

ever, we refrain from giving an explicit form of the scalar potential due to its

complexity. At all scalars vanishing, this scalar potential gives a cosmological

constant

V0 =
1

32
((a0 − b3)

2 + 3(a1 + b2)
2 + 3(a2 − b1)

2 + (a3 + b0)
2). (5.4.3)
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As mentioned in [46], due to the stabilization of the imaginary part of the modulus

T , the H3 fluxed background is related to the F3 via

b3 = a0, b2 = −a1, b1 = a2, b0 = −a3. (5.4.4)

This gives a zero cosmological constant, which corresponds to the Minkowski vac-

uum. Therefore, we will not give any further analysis for this case.

5.5 RG flows from type IIA geometric compact-

ification

We now consider RG flows from a geometric compactification from type IIA the-

ory. We will repeat the same procedure with the same parametrization from the

previous type IIB compactification section. Type IIA compactification involves

gauge (H3, F0, F2, F4, F6) and the geometric fluxes (ω). The fluxes are more com-

plicated than one in the type IIB case. The components of the embedding tensor

given by these fluxes are

Hijk ∼ f−āb̄c̄ = Λ−333 =

√
6

3
λ, Faibjck ∼ f+āb̄c̄ = Λ+333 = −3

√
10

2
λ,

Faibj ∼ f+āb̄k̄ = Λ+334 =

√
6

2
λ, Fai ∼ f+āj̄k̄ = Λ+344 =

√
10

6
λ,

F0 ∼ f+īj̄k̄ = Λ+444 =
5
√
6

6
λ, Habk ∼ f+āb̄k = Λ+233 =

√
6

3
λ,

ωij
c ∼ f−āb̄k̄ = Λ−334 =

√
10

3
λ,

ωka
j = ωbk

i = ωbc
a ∼ f+āj̄k = f+īb̄k = f+ab̄c̄ = Λ+234 = Λ+133 =

√
10λ . (5.5.1)

The N = 4 gauged supergravity from type IIA compactification has a non-

semisimple gauge group ISO(3) ⋉ U(1)6. It admits the minimal N = 1 AdS4

vacuum at which the gauge group is broken down to SO(3) compact subgroup.
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The superpotential for the unbroken N = 1 supersymmetry is given by

W =
λ

24
e

1
2
(φ1−3φ2+φg)

[
2eφ1+2φ2−φg

[
3
√
5i+ e2φ2(

√
3 + 3

√
5χ2)

]
(i+ χge

φg)

−5
√
3eφ1(i+ eφ2χ2)

3 − 3
√
5eφ1+φ2(i+ eφ2χ2)

2 − 9
√
3ieφ1+2φ2

+18
√
5e2φ2(i+ eφ1χ1)(i+ eφ2χ2) + 6

√
3ie3φ2 + 9

√
5eφ1+3φ2

+6
√
3eφ1+3φ2χ1 − 9

√
3χ2e

φ1+3φ2

]
. (5.5.2)

The scalar potential can be written in the form

V = −1

2
Kij ∂W

∂ϕi

∂W

∂ϕj
− 3

4
W 2 , (5.5.3)

where W = |W|. An explicit form of the scalar potential is given by

V =
1

192
eφ1−3φ2−φgλ2

[
20e2φ1+4φ2 + 25e2(φ1+φg) − 240eφ1+4φ2+φg − 180e4φ2+2φg

+ 5e2(φ1+φ2+φg)(1 + 2
√
15χ2 + 15χ2

2) + 12e6φ2+2φg(1 + 2
√
15χ2 + 15χ2

2)

+ e2φ1+6φ2(4 + 8
√
15χ2 + 60χ2

2) + e2(φ1+2φ2+φg)[180χ2
1 − 12χ1(3

√
15

+ 5χ2(2 +
√
15χ2)− 10χg) + 3(9 + 4

√
15χ2 − 4

√
15χg) + 5[4

√
15χ3

2

+ 15χ4
2 − 8χ2χg + 4χ2

g + χ2
2(22− 4

√
15χg)]] + e2(φ1+3φ2+φg) [135

− 54
√
15χ2 + 10

√
15χ5

2 + 25χ6
2 + 12

√
15χg − 4χ3

2(3
√
15 + 60χ1 + 20χg)

+ 8χ2(3χ1 + χg)(18 + 3
√
15χ1 +

√
15χg)− 5χ4

2(−21 + 12
√
15χ1

+ 4
√
15χg) + 4[9χ1(

√
15 + χ1) + 6χ1χg + χ2

g] + χ2
2

[
−9− 40

√
15χg

+60[9χ2
1 − 2χ1(

√
15− 3χg) + χ2

g]
]]]

. (5.5.4)

At the trivial N = 1 AdS4 critical point, the cosmological constant is

V0 = −λ2. (5.5.5)

At this critical point, masses of the six SO(3) singlet scalars are

m2L2 : 0,−2, 4±
√
6,

1

3
(47±

√
159). (5.5.6)

Note that these masses agree with [46] after the change to our convention with a

factor of 3.
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In this case, we have verified that the BPS equations can be written as

A′ = W, φi′ = Kij ∂W

∂ϕj
. (5.5.7)

Note that we refrain from giving explicit forms of the BPS equations since they

are far more complicated than the previous cases. We are not able to find any

consistent subtruncation for this set of equations. An example of RG flows from

N = 1 SCFT dual to the AdS4 critical point to non-conformal N = 1 field theory

in the IR is shown in Figure 5.5.

The numerical analysis near the singularity shown in Figure 5.5 leads to

V → ∞. This implies that the singularity is unphysical.

5.6 RG flows from SO(4) × SO(4) gauged super-

gravity

We will now consider RG flows from N = 4 supergravity coupled to six vector

multiplets, with semisimple gauge groups in the form of simple product G1 ×G2.

One of the two factors is embedded as the electric part of SO(3, 3) ⊂ SO(6, 6) while

another one is embedded as the magnetic part in another SO(3, 3) subgroup of

the SO(6, 6). We will study the cases of G1, G2 = SO(4), SO(3, 1), SO(2, 2). This

makes six different gauge groups, SO(4)×SO(4), SO(3, 1)×SO(3, 1), SO(2, 2)×

SO(2, 2), SO(4) × SO(3, 1), SO(4) × SO(2, 2), and SO(3, 1) × SO(2, 2). The

embedding tensors for these gauge groups are given in [89].

We first consider RG flows from N = 4 gauged supergravity with SO(4) ×

SO(4) gauge group. Non-zero components of the embedding tensor for this gauge

group are given by

f+m̂n̂p̂ =
√
2(g1 − g̃1)ϵm̂n̂p̂, f+âb̂ĉ =

√
2(g1 + g̃1)ϵâb̂ĉ,

f−m̃ñp̃ =
√
2(g2 − g̃2)ϵm̃ñp̃, f−ãb̃c̃ =

√
2(g2 + g̃2)ϵãb̃c̃, (5.6.1)

where M = (m, a) = (m̂, m̃, â, ã), with m̂ = 1, 2, 3, m̃ = 4, 5, 6, â = 7, 8, 9, and

ã = 10, 11, 12.
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(e) Solution for φ2
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(g) Solution for A

Figure 5.5: AnN = 1 RG flow from type IIA compactification with λ = 1 (purple),

λ = 1.2 (green) and λ = 1.4 (red)
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The procedure is the same as in the previous type IIB and type IIA sections.

However, we now use a different parametrization involving non-compact generators

of SO(6, 6),

Yma = em,a+6 + ea+6,m, (5.6.2)

where the 12× 12 matrices eMN are defined by

(eMN)PQ = δMP δNQ . (5.6.3)

There are 36 scalars in SO(6, 6)/SO(6)×SO(6) transforming as (6,6) under

the compact gauge group SO(6)× SO(6). These scalars transform as

(6,6) → (3,3,1,1) + (3,1,1,3) + (1,3,3,1) + (1,1,3,3), (5.6.4)

under the gauge group SO(4)+×SO(4)− ∼ SO(3)1+×SO(3)2+×SO(3)1−×SO(3)2−.

We will consider singlet scalars under the diagonal subgroup SO(4)inv ∼ [SO(3)1+×

SO(3)2+]D × [SO(3)1− × SO(3)2−]D. The scalars transform as

2(1,1) + (3,1) + (1,3) + (1,5) + (5,1) + 2(3,3), (5.6.5)

under the SO(4)inv. Solutions with these two singlet scalars should describe RG

flows breaking the SO(4)× SO(4) symmetry to SO(4)inv ∼ SO(3)× SO(3) sym-

metry, with each scalar corresponding to breaking each of the SO(4)’s. The two

singlets correspond to the SO(6, 6) non-compact generators

Ŷ1 = Y11 + Y22 + Y33, Ŷ2 = Y44 + Y55 + Y66. (5.6.6)

The coset representative is given by

L = eϕ1Ŷ1eϕ2Ŷ2 . (5.6.7)

Together with the scalars from the supergravity multiplet, the scalar poten-
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tial is given by

V =
1

8
e−ϕ−6ϕ1−6ϕ2

[
eϕ+3ϕ2

[
eϕ+3ϕ2g21 + eϕ+12ϕ1+3ϕ2 g̃21 − 3eϕ+4ϕ1+3ϕ2(2g21 + g̃21)

−3eϕ+8ϕ1+3ϕ2(g21 + 2g̃21) + 2e3ϕ1g1[g2(1 + 3e4ϕ2)− e2ϕ2 g̃2(3 + e4ϕ2)]

+6e7ϕ1g1[g2(1 + 3e4ϕ2)− e2ϕ2 g̃2(3 + e4ϕ2)]− 6e5ϕ1 g̃1[g2(1 + 3e4ϕ2)

−e2ϕ2 g̃2(3 + e4ϕ2)− 2e9ϕ1 g̃1[g2(1 + 3e4ϕ2)− e2ϕ2 g̃2(3 + e4ϕ2)]
]

+e6ϕ1
[
[1− 3e4ϕ2(2 + e4ϕ2)](1 + e2ϕχ2)g22 + 16g2g̃2e

6ϕ2(1 + e2ϕχ2)

+e4ϕ2
[
e2ϕ(16e2ϕ2g1g̃1 − 3g̃22χ

2 − 6g̃22e
4ϕ2χ2 + e8ϕ2χ2g̃22)

+(e8ϕ2 − 6e4ϕ2 − 3)g̃22
]]]

. (5.6.8)

This scalar potential admits four supersymmetric AdS4 critical points. One

is a maximally supersymmetric AdS4 critical point with SO(4)×SO(4) symmetry

at

χ = ϕ1 = ϕ2 = 0, ϕ = ln
∣∣∣∣g2 − g̃2
g1 − g̃1

∣∣∣∣ . (5.6.9)

We denote this AdS4 vacuum by critical point I. Without loss of generality, we

can shift the dilaton such that the critical point occurs at ϕ = 0. This implies

g̃2 = g1 + g2 − g̃1 . (5.6.10)

The cosmological constant and the AdS4 radius at this critical point are given by

V0 = −6(g1 − g̃1)
2 and L =

1√
2(g̃1 − g1)

(5.6.11)

where we have assumed that g̃1 > g1. All scalars have masses m2L2 = −2, which

correspond to relevant operators of dimension ∆ = 1, 2.

The remaining three supersymmetric AdS4 critical points are listed below:

• II. Critical point with SO(3)+ × SO(4)− symmetry

ϕ = ln
[
2
√
g1g̃1

g1 + g̃1

]
, ϕ1 =

1

2
ln
[
g1
g̃1

]
, ϕ2 = 0,

V0 = −3(g1 + g̃1)(g1 − g̃1)
2

√
g1g̃1

, L =
(g1g̃1)

1
4

(g̃1 − g1)
√
g1 + g̃1

. (5.6.12)
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• III. Critical point with SO(4)+ × SO(3)− symmetry

ϕ = − ln
[
2
√
g2g̃2

g2 + g̃2

]
, ϕ2 =

1

2
ln
[
g2
g̃2

]
, ϕ1 = 0,

V0 = −3(g2 + g̃2)(g1 − g̃1)
2

√
g2g̃2

, L =
(g2g̃2)

1
4

(g̃1 − g1)
√
g2 + g̃2

. (5.6.13)

• IV. Critical point with SO(4)inv ∼ SO(3)+ × SO(3)− symmetry

ϕ = ln
[√

g1g̃1
g2g̃2

g2 + g̃2
g1 + g̃1

]
, ϕ1 =

1

2
ln
[
g1
g̃1

]
, ϕ2 =

1

2
ln
[
g2
g̃2

]
,

V0 = −3(g2 + g̃2)
2(g1 − g̃1)

2

2
√
g1g̃1g2g̃2

, L =

√
2(g1g̃1g2g̃2)

1
4

(g̃1 − g1)
√
(g1 + g̃1)(g2 + g̃2)

.(5.6.14)

Note that g̃2 in the above equations can be replaced by (5.6.10) to make the critical

point I occurs at χ = ϕ = ϕ1 = ϕ2 = 0. Scalar masses and the corresponding

dimensions at each critical point are shown in Table 5.2, Table 5.3, and Table 5.4,

respectively.

Scalar field representations m2L2 ∆

(1,1,1) −2×2 1, 2

(1,1,1) 4 4

(3,1,1) 0×3 3

(1,3,3) 0×9 3

(5,1,1) −2×5 1, 2

(3,1,3) + (3,3,1) −2×18 1, 2

Table 5.2: Scalar masses and the corresponding dimensions of the dual operators

at theN = 4 supersymmetric AdS4 critical point with SO(3)+×SO(4)− symmetry

(Critical point II)

As in Table 5.2, there are three massless scalars in the representation (3,1,1)

which are Goldstone bosons indicating the symmetry breaking SO(4)− ×SO(4)+

to SO(3)+ × SO(4)−. Similarly, Table 5.3 shows Goldstone bosons live in repre-

sentation (1,1,3) corresponding to the symmetry breaking SO(4)− × SO(4)+ to
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Scalar field representations m2L2 ∆

(1,1,1) −2×2 1, 2

(1,1,1) 4 4

(1,1,3) 0×3 3

(3,3,1) 0×9 3

(1,1,5) −2×5 1, 2

(1,3,3) + (3,1,3) −2×18 1, 2

Table 5.3: Scalar masses and the corresponding dimensions of the dual operators

at theN = 4 supersymmetric AdS4 critical point with SO(4)+×SO(3)− symmetry

(Critical point III)

Scalar field representations m2L2 ∆

(1,1) −2×2 1, 2

(1,1) 4×2 4

(1,5) + (5,1) −2×10 1, 2

(1,3) + (3,1) 0×6 3

(3,3) 0×18 3

Table 5.4: Scalar masses and the corresponding dimensions of the dual operators

at the N = 4 supersymmetric AdS4 critical point with SO(4)inv ∼ SO(3)×SO(3)

symmetry (Critical point IV)

SO(4)+×SO(3)−. This implies that ϕ1 and ϕ2 are corresponding to the deforma-

tion with the symmetry breaking SO(4)+ → SO(3)+ and SO(4)− → SO(3)−, re-

spectively. Table 5.4 also shows six massless scalars indicating both of the SO(4)’s

breaking simultaneously. Note that the remaining massless scalars in each case

are corresponding to marginal deformations in the SCFTs. These deformations

should break some amount of supersymmetry since the N = 4 AdS4 vacua have

no moduli preserving N = 4 supersymmetry [90]. Note that the vacuum structure

of this gauged supergravity is similar to two copies of SO(3) × SO(3) ∼ SO(4)

gauge group considered in the previous N = 3 gauged supergravity Section 4.2.1.
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5.6.1 RG flows between N = 4 SCFTs

We now consider holographic RG flows interpolating between the previous AdS4

vacua, I, II, III, and IV. By following the same procedure as in the previous type

IIB section, except that for the following the superpotential W is defined by

W =
2

3
α, (5.6.15)

where α is the eigenvalue of Aij
1 corresponding to the unbroken supersymmetry.

For the case with SO(4)inv singlet scalars, Aij
1 is diagonal and takes the form

of W ,

Aij
1 =

3

2
Wδij, (5.6.16)

where the superpotential is given by

W =
1

4
√
2
e−

ϕ
2
−3ϕ1−3ϕ2

[
3ig̃1e

ϕ+2ϕ1+3ϕ2 + ig̃1e
ϕ+6ϕ1+3ϕ2

+e3ϕ1(i+ eϕχ)[g2(1 + 3e4ϕ)− g̃2e
2ϕ2(3 + e4ϕ2)]

−ig1eϕ+3ϕ2 − 3ig1e
ϕ+4ϕ1+3ϕ2

]
. (5.6.17)

The equation δλia = 0 gives the BPS equations

ϕ′
1 = − i

2
√
2
eiΛe

ϕ
2
−3ϕ1(e4ϕ1 − 1)(e2ϕ1 g̃1 − g1), (5.6.18)

ϕ′
2 = − 1

2
√
2
eiΛe−

ϕ
2
−3ϕ2(e4ϕ2 − 1)(e2ϕ2 g̃2 − g2)(e

ϕχ− i). (5.6.19)

The consistency of the equation (5.6.18) implies that the phase eiΛ is purely imag-

inary, eiΛ = ±i. With this choice, the equation (5.6.19) requires χ = 0. Note that,

with eiΛ = ±i, the superpotential given in (5.6.17) is purely imaginary, which is

in agreement with the phase defined in (5.2.16).

We will choose the definite sign to identify the critical point I at the limit

r → ∞. Together with the equation δχi = 0, the BPS equations with the above

conditions can be written in term of W as

ϕ′ = −4
∂W

∂ϕ
, χ′ = 0, ϕ′

1 = −2

3

∂W

∂ϕ1

, ϕ′
2 = −2

3

∂W

∂ϕ2

, A′ = W.

(5.6.20)
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Explicit forms of these equations are given by

ϕ′
1 = − 1

2
√
2
e

ϕ
2
−3ϕ1(e4ϕ1 − 1)(e2ϕ1 g̃1 − g1), (5.6.21)

ϕ′
2 =

1

2
√
2
e−

ϕ
2
−3ϕ2(e4ϕ2 − 1)(e2ϕ2 g̃2 − g2), (5.6.22)

ϕ′ = − 1

2
√
2
e−

ϕ
2
−3ϕ1−3ϕ2

[
3g̃1e

ϕ+2ϕ1+3ϕ2 − g1e
ϕ+3ϕ2 − 3g1e

ϕ+4ϕ1+3ϕ2

+g̃1e
ϕ+6ϕ1+3ϕ2 + e3ϕ1 [g̃2e

2ϕ2(3 + e4ϕ2)− g2(1 + 3e4ϕ2)]
]
, (5.6.23)

A′ =
1

4
√
2
e−

ϕ
2
−3ϕ1−3ϕ2

[
3g̃1e

ϕ+2ϕ1+3ϕ2 − g1e
ϕ+3ϕ2 − 3g1e

ϕ+4ϕ1+3ϕ2

+g̃1e
ϕ+6ϕ1+3ϕ2 + e3ϕ1 [g2(1 + 3e4ϕ2)− g̃2e

2ϕ2(3 + e4ϕ2)]
]
. (5.6.24)

The scalar potential can be written in terms of W as

V = 4

(
∂W

∂ϕ

)2

+
2

3

(
∂W

∂ϕ1

)2

+
2

3

(
∂W

∂ϕ2

)2

− 3W 2 . (5.6.25)

We will not give the explicit form of the scalar potential due to its complexity.

Solution near the SO(4)× SO(4) critical point at r → ∞ behaves as

ϕ, ϕ1, ϕ2 ∼ e
− r

LI , (5.6.26)

which is expected since all of these scalars are dual to operators of dimensions

∆ = 1, 2. Note that LI is the AdS4 radius at the critical point I given in (5.6.11).

RG flow from critical point I to critical point II

The flow between critical points I and II can be solved from the BPS equations

(5.6.21) to (5.6.24) with ϕ2 = 0. By considering ϕ and A as functions of ϕ1, the

BPS equations can be written as

dϕ

dϕ1

= −g1(1 + 3e4ϕ1) + e2ϕ1 [4(g2 − g̃2)e
ϕ1−ϕ − g̃1(e

4ϕ1 + 3)]

(e4ϕ1 − 1)(g̃1e2ϕ1 − g1)
(5.6.27)

dA

dϕ1

=
g1(1 + 3e4ϕ1)− e2ϕ1 [4(g2 − g̃2)e

ϕ1−ϕ + g̃1(3 + e4ϕ1)]

2(e4ϕ1 − 1)(g̃1e2ϕ1 − g1)
. (5.6.28)

The first equation can be solved by

ϕ = ln
[
g2 − g̃2 + C1(e

4ϕ1 − 1)

g̃1e3ϕ1 − g1eϕ1

]
. (5.6.29)
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The integration constant C1 =
g̃21(g2−g̃2)

g̃21−g21
is chosen to make the solution interpolate

between the SO(4)× SO(4) critical point with ϕ = 0 and the SO(3)+ × SO(4)−

with ϕ = ln
[√

g1g̃1
g1+g̃1

]
. The equation (5.6.29) is then

ϕ = ln
[
(g2 − g̃2)(g1 + g̃1e

2ϕ1)e−ϕ1

g̃21 − g21

]
. (5.6.30)

With this solution, the second equation in (5.6.28) can be solved by

A =
ϕ1

2
− ln

(
1− e4ϕ1

)
+ ln

(
g1 − g̃1e

2ϕ1
)
+

1

2
ln
(
g1 + g̃1e

2ϕ1
)
. (5.6.31)

Note that an irrelevant additive integration constant has been removed.

To find a flow solution for ϕ1, we introduce a new radial coordinate r̃, defined

by dr̃
dr

= e
ϕ
2 . The equation (5.6.21) becomes

dϕ1

dr̃
= − 1

2
√
2
e−3ϕ1(e4ϕ1 − 1)(g̃1e

2ϕ1 − g1). (5.6.32)

The solution to the above equation is given by

(g21 − g̃21)r̃√
2

= (g1 − g̃1) tan−1 eϕ1 − (g1 + g̃1) tanh−1 eϕ1

+2
√
g1g̃1 tanh−1

[√
g̃1
g1
eϕ1

]
. (5.6.33)

Near critical point II at r → −∞, the scalars ϕ and ϕ1 behave as

ϕ ∼ e
− r

LII and ϕ1 ∼ e
r

LII . (5.6.34)

This implies that the operator dual to ϕ1 becomes irrelevant with dimension∆ = 4.

The operator dual to ϕ remains relevant with dimensions ∆ = 1, 2.

RG flow from critical point II to critical point IV

We now consider the flow between critical points II and IV. By using similar

analysis with ϕ1 =
1
2
ln g1

g̃1
along the flow, we find solutions of ϕ and A as functions

of ϕ2,

ϕ = ln
[
2
√
g1g̃1(g2 + g̃2)e

2ϕ2

(g1 + g̃1)(g2 + g̃2e2ϕ2)

]
, (5.6.35)

A =
ϕ2

2
− ln

(
1− e4ϕ2

)
+ ln

(
g̃2e

2ϕ2 − g2
)
+

1

2
ln
(
g2 + g̃2e

2ϕ2
)
. (5.6.36)
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The solution for ϕ2 is given by

(g1 − g̃1)(g2 + g̃2)√
2

r̄ = (g̃1 − g1) tan−1 eϕ2 − (g2 + g̃2) tanh−1 eϕ2

+2
√
g2g̃2 tanh−1

[
eϕ2

√
g̃2
g2

]
, (5.6.37)

where r̄ is defined by dr̄
dr

= e−
ϕ
2 .

RG flow from critical points I to critical point III

The flow solution between critical points I and III is given by

ϕ1 = 0, (5.6.38)

ϕ = ln
[
eϕ2(g2 + g̃2)

g2 + e2ϕ2 g̃2

]
, (5.6.39)

A =
ϕ2

2
− ln

(
1− e4ϕ2

)
+ ln

(
e2ϕ2 g̃2 − g2

)
+

1

2
ln
(
g2 + g̃2e

2ϕ2
)
,

(5.6.40)

−(g22 − g̃22)r̄√
2

= (g2 − g̃2) tan−1 eϕ2 − (g2 + g̃2) tanh−1 eϕ2

+2
√
g2g̃2 tanh−1

[√
g̃2
g2
eϕ2

]
. (5.6.41)

RG flow from critical points III to critical point IV

The flow solution between critical points III and IV is given by

ϕ2 =
1

2
ln
[
g2
g̃2

]
, (5.6.42)

ϕ = ln
[
e−ϕ1(g2 + g̃2)(g1 + g̃1e

2ϕ1)

2(g1 + g̃1)
√
g2g̃2

]
, (5.6.43)

A =
ϕ1

2
− ln

(
1− e4ϕ1

)
+ ln

(
g1 − e2ϕ1 g̃1

)
+

1

2
ln
(
g1 + g̃1e

2ϕ1
)
,

(5.6.44)
(g21 − g̃21)r̃√

2
= (g1 − g̃1) tan−1 eϕ1 − (g1 + g̃1) tanh−1 eϕ1

+2
√
g1g̃1 tanh−1

[√
g̃1
g1
eϕ1

]
. (5.6.45)
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Figure 5.6: A numerical RG flow from critical point I to critical point IV with

g1 = 1, g̃1 = g̃2 = 2 and g2 = 3

RG flow from critical points I to critical point IV

In this case, we give a numerical solution describing RG flow from critical point I

to critical point IV in Figure 5.6.

RG flow from critical points I to critical point II to critical point IV

The numerical solution describing RG flow from critical point I to critical point

II, then to critical point IV is given in Figure 5.7.

Note that, by an intensive numerical search, we have not found a solution

flow from critical point I to critical point III to critical point IV. It would be

interesting to see this description in the dual N = 4 SCFT.
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Figure 5.7: A numerical RG flow from critical point I to critical point II to critical

point IV with g1 = 1, g̃1 = g̃2 = 2 and g2 = 3

5.6.2 RG flows to N = 4 non-conformal theory

There is another consistent truncation for N = 4 supergravity with SO(4)×SO(4)

gauge group, which is obtained by setting ϕ1 = ϕ2 = 0. In this case, there are

only the scalars from the supergravity multiplet. As mentioned in the previous

section, the axion χ cannot be turned on simultaneously with ϕ1 and ϕ2.

In this case, the superpotential is given by

W =
1√
2
e−

ϕ
2

[
(g2 − g̃2)χe

ϕ − i(g̃2 − g2 + eϕ(g1 − g̃1))
]
. (5.6.46)

The scalar potential is given by

V = 4

(
∂W

∂ϕ

)2

+ 4e−2ϕ

(
∂W

∂χ

)2

− 3W 2

= −(g1 − g̃1)
2e−ϕ[1 + 4eϕ + e2ϕ(1 + χ2)], (5.6.47)

where we have use g̃2 = g1 + g2 − g̃1. This scalar potential admits only one AdS4

critical point at ϕ = χ = 0, which is the same as critical point I in the previous

section.
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The BPS equations, in this truncation, are given by

ϕ′ = −4
∂W

∂ϕ
= −

√
2(g1 − g̃1)[e

2ϕ(1 + χ2)− 1]√
(1 + eϕ)2 + e2ϕχ2

, (5.6.48)

χ′ = −4e−2ϕ∂W

∂χ
= − 2

√
2(g1 − g̃1)e

−ϕ
2χ√

(1 + eϕ)2 + e2ϕχ2
, (5.6.49)

A′ = W =
1√
2
(g1 − g̃1)e

−ϕ
2

√
(1 + eϕ)2 + e2ϕχ2 . (5.6.50)

Near the AdS4 critical point, we find

ϕ ∼ χ ∼ e
− r

LI , (5.6.51)

which implies that ϕ and χ are corresponding to the relevant operators of dimen-

sions ∆ = 1, 2.

By considering ϕ and A as functions of χ, we can combine the BPS equations

into

dϕ

dχ
=

e2ϕ(1 + χ2)− 1

2χ
, (5.6.52)

dA

dχ
= −1 + 2eϕ + e2ϕ(1 + χ2)

4χ
. (5.6.53)

The above equations can be solved by

ϕ = −1

2
ln
(
1− 2Cχ− χ2

)
, (5.6.54)

A = − lnχ+
1

2
ln[1− Cχ+

√
1− 2Cχ− χ2] +

1

4
ln
(
1− 2Cχ− χ2

)
.

(5.6.55)

Note that we have neglected an additive integration constant for A. However, we

keep the constant C ̸= 0 to obtain the correct behavior near the AdS4 critical

point as given in (5.6.51).

To solve for χ as a function of r, we need to substitute (5.6.54) into (5.6.49),

we find the equation for χ′,

χ′ =
2(g1 − g̃1)(1− 2Cχ− χ2)3/4χ

(1− Cχ+ (1− 2Cχ− χ2)1/2)1/2
. (5.6.56)

We are not able to solve the equation (5.8) for χ analytically. We will then look

for a numerical solution. The equation (5.6.54) gives ϕ → 0 in the limit χ → 0,
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which is corresponding to the AdS4 critical point I. The equation (5.6.54) also has

singularities at χ0, which 1− 2Cχ0 − χ2
0 = 0. This implies that ϕ flows from the

value of 0 at the AdS4 critical point to the singular value ϕ → ∞, while χ flows

from the value of 0 to χ0 = −C±
√
1 + C2. Examples of numerical solutions for χ

are given in Figure 5.8. Note that the equation (5.8) also gives χ′ = 0 at the value

of χ = χ0, which is in agreement with the fact that χ flows between the values of

0 to χ0.

-4 -2 2 4
r

0.1

0.2

0.3

0.4

(r)

Figure 5.8: Solutions for χ with g1 = 1, g̃1 = 2 and χ0 =
√
1 + C2 − C for C = 1

(red), C = 5 (green) and C = 10 (blue) in SO(4)× SO(4) gauging

Near the singularity ϕ→ ∞ and χ→ χ0, we find

χ− χ0 ∼ r4, ϕ ∼ − ln r2, A ∼ ln r . (5.6.57)

The metric (5.2.14) is then

ds2 = r2dx21,2 + dr2 . (5.6.58)

We find that V → −∞ near this singularity, regardless of the value of χ0. Hence,

the singularity is physical. This solution should describe an RG flow from the N =

4 SCFT in the UV to a non-conformal field theory in the IR. Note that this RG

flow preserves the SO(4)× SO(4) symmetry and N = 4 Poincare supersymmetry

in three dimensions.
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5.7 RG flows from SO(3, 1) × SO(3, 1) gauged su-

pergravity

We now consider N = 4 supergravity coupled to six vector multiplets with the

gauge group SO(3, 1)×SO(3, 1). The non-vanishing components of the embedding

tensor are given by

f+123 = f+189 = f+729 = −f+783 =
1√
2
(g1 − g̃1),

f+789 = f+183 = f+723 = −f+129 =
1√
2
(g1 + g̃1),

f−456 = f−4,11,12 = f−10,5,12 = −f−10,11,6 =
1√
2
(g2 − g̃2),

f−10,11,12 = f−4,11,7 = f−10,5,6 = −f−45,12 =
1√
2
(g2 + g̃2). (5.7.1)

We will follow the same procedure as in the previous sections.

To parametrize the coset SO(6, 6)/SO(6)× SO(6), we will use scalars that

are invariant under the SO(3) × SO(3) ⊂ SO(3, 1) × SO(3, 1) subgroup. In this

case, there are two SO(3)× SO(3) singlets which corresponding to SO(6, 6) non-

compact generators

Ỹ1 = Y11 + Y22 − Y33, Ỹ2 = Y44 + Y55 − Y66 . (5.7.2)

The coset representative is parametrized by

L = eϕ1Ỹ1eϕ2Ỹ2 . (5.7.3)
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The scalar potential is given by

V =
1

8
e−ϕ−6ϕ1−6ϕ2

[
2g2e

ϕ+3ϕ1+9ϕ2(e6ϕ1g1 − 3g1e
2ϕ1 − g̃1 + 3g̃1e

4ϕ1)

−6g2e
ϕ+3ϕ1+5ϕ2(g1e

6ϕ1 − 3g1e
2ϕ1 − g̃1 + 3g̃1e

4ϕ1)

+6g̃2e
ϕ+3ϕ1+7ϕ2(3g̃1e

4ϕ1 − 3g1e
2ϕ1 + g1e

6ϕ1 − g̃1)

−2g̃2e
ϕ+3ϕ1+3ϕ2(g1e

6ϕ1 − 3g1e
2ϕ1 − g̃1 + 3g̃1e

4ϕ1)

+3e6ϕ1+4ϕ2 [e4ϕ2(2g22 − g̃22)(1 + χ2e2ϕ)− 3(g22 − 2g̃22)(1 + χ2e2ϕ)]

+g22e
6ϕ1+6ϕ2(1 + χ2e2ϕ) + g̃22e

6ϕ1(1 + χ2e2ϕ)

+e6ϕ2
[
3(2g21 − g̃21)e

2ϕ+8ϕ1 + 16e6ϕ1 [g2g̃2 + e2ϕ(g1g̃1 + g2g̃2χ
2)]

+g21e
2ϕ+12ϕ1 g̃21e

2ϕ − 3(g21 − 2g̃21)e
ϕ+4ϕ1

]]
. (5.7.4)

This scalar potential admits an AdS4 critical point at

ϕ =
1

2
ln
[
g1g̃1(g

2
2 + g̃22)

2(g21 + g̃21)
2

g2g̃2

]
, χ = 0,

ϕ1 =
1

2
ln
[
− g̃1
g1

]
, ϕ2 =

1

2
ln
[
− g̃2
g2

]
. (5.7.5)

Note that this critical point preserves N = 4 supersymmetry and SO(3)× SO(3)

maximal subgroup of the SO(3, 1)× SO(3, 1) gauge group. We can also shift the

scalars to make the critical point occurs at ϕ = χ = ϕ1 = ϕ2 = 0, which can be

done by setting

g̃1 = −g1, g̃2 = −g2, g2 = −g1 . (5.7.6)

The cosmological constant and the AdS4 radius with these values are given by

V0 = −6g21 and L2 =
1

2g21
. (5.7.7)

Note that there is another choice with

g̃1 = −g1, g̃2 = −g2, (5.7.8)

at which the critical point occurs at ϕ = χ = ϕ1 = ϕ2 = 0 but this is a dS4 with

V0 = 2g21.

Scalar masses and their corresponding dimensions of the dual operators are

given in Table 5.5. Note that these scalars are in the representation of the SO(3)×
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SO(3). We see that there are two singlets scalars in the representation (1,1),

corresponding to ϕ1 and ϕ2, dual to the irrelevant operators of dimensions ∆ = 4,

and six Goldstone bosons in the representation (1,3) + (3,1). This indicates

that the SO(3, 1) × SO(3, 1) breaks down into its maximal compact subgroup

SO(3)× SO(3).

Scalar field representations m2L2 ∆

(1,1) −2×2 1, 2

(1,1) 4×2 4

(1,5) + (5,1) −2×10 1, 2

(1,3) + (3,1) 0×6 3

(3,3) 0×18 3

Table 5.5: Scalar masses and their corresponding dimensions at the N = 4 su-

persymmetric AdS4 critical point with SO(3) × SO(3) symmetry for SO(3, 1) ×

SO(3, 1) gauge group

5.7.1 RG flows without vector multiplet scalars

Since there is only one supersymmetric critical point, there is no supersymmetric

flow between the dual SCFTs. We will instead consider RG flows from the SCFT

dual to N = 4 AdS4 critical point. For a truncation ϕ1 = ϕ2 = 0, with SO(3) ×

SO(3) symmetry, the superpotential in this truncation is given by

W =
3i

2
√
2
g1e

−ϕ
2 [1 + eϕ(1− iχ)]. (5.7.9)

The scalar potential can be written in the form of W = |W|,

V =
16

9

(
∂W

∂ϕ

)2

+
16

9
e−2ϕ

(
∂W

∂χ

)2

− 4

3
W 2

= −g21e−ϕ[1 + 4eϕ + e2ϕ(1 + χ2)]. (5.7.10)
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The BPS equations in this truncation are given by

ϕ′ = −8

3

∂W

∂ϕ
= −

√
2g1e

−ϕ
2 [e2ϕ(1 + χ2)− 1]√

(1 + eϕ)2 + e2ϕχ2
, (5.7.11)

χ′ = −8

3
e−2ϕ∂W

∂χ
= − 2

√
2g1e

−ϕ
2χ√

(1 + eϕ)2 + e2ϕχ2
, (5.7.12)

A′ = W =
3

2
√
2
g1e

−ϕ
2

√
(1 + eϕ)2 + e2ϕχ2 . (5.7.13)

The solution to the above equations near AdS4 critical point behaves

ϕ ∼ χ ∼ e−
√
2g1r ∼ e−

r
L , (5.7.14)

which is expected for the dual operators of dimensions ∆ = 1, 2.

Similar to the SO(4)× SO(4) case in Section 5.6.2, the solution to (5.7.11)

to (5.7.13) is given by

ϕ = −1

2
ln
(
1− χ2 − 2Cχ

)
, (5.7.15)

A = −3

2
lnχ+

3

8
ln
(
1− 2Cχ− χ2

)
+

3

4
ln
(
1− Cχ+

√
1− 2Cχ− χ2

)
.

(5.7.16)

We give an example of numerical solutions for χ in Figure 5.9. As shown in the

figure, the solution for χ flows from χ = 0 to χ = χ0 = −C±
√
1 + C2. With these

values of χ, the equation (5.7.15) implies that ϕ flows from ϕ→ 0 to ϕ→ ∞. This

singularity gives V0 → −∞, hence it is physical. This solution should describe

an RG flow from N = 4 SCFT in the UV with SO(3) × SO(3) symmetry to a

non-conformal field theory in the IR.

5.7.2 RG flows with vector multiplet scalars

We now consider RG flows with non-vanishing ϕ1 and ϕ2. Note that in this case,

we need to set χ = 0 to make the solutions of the BPS equations consistent with
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Figure 5.9: Solutions for χ with g1 = 1, g̃1 = 2 and χ0 =
√
1 + C2 − C for C = 5

in SO(3, 1)× SO(3, 1) gauging

the second-order field equations. The BPS equations, in this case, are given by

ϕ′
1 =

√
2g1e

ϕ
2 cosh(2ϕ1) sinhϕ1, (5.7.17)

ϕ′
2 =

√
2g1e

−ϕ
2 cosh(2ϕ2) sinhϕ2, (5.7.18)

ϕ′ =
√
2g1e

−ϕ
2

[
eϕ coshϕ1(cosh(2ϕ1)− 2)− coshϕ2(cosh(2ϕ2)− 2)

]
,

(5.7.19)

A′ =
1√
2
g1e

−ϕ
2

[
eϕ coshϕ1(cosh(2ϕ1)− 2) + coshϕ2(cosh(2ϕ2)− 2)

]
.

(5.7.20)

These equations can be solved numerically with suitable boundary conditions. An

example of numerical solutions is given in Figure 5.10. Note that the singularity

shown in Figure 5.10 leads to V → ∞, hence the singularity is unphysical. We

will look at some consistent truncations in which the BPS equations can be solved

analytically.

We first consider a truncation with ϕ = 0 and ϕ1 = ϕ2. The BPS equations

are then

ϕ′
1 =

√
2g1 cosh(2ϕ1) sinhϕ1, (5.7.21)

A′ =
√
2g1 coshϕ1[cosh(2ϕ1)− 2]. (5.7.22)
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Figure 5.10: A numerical flow from AdS4 critical point with g1 = 1 in SO(3, 1)×

SO(3, 1) gauging

A solution to the above equations is given by

2g1r = ln
[
1−

√
2 coshϕ1

1 +
√
2 coshϕ1

]
− 2

√
2 tanh−1 eϕ1 , (5.7.23)

A = ln
(
1 + e4ϕ1

)
− ln

(
1− e2ϕ1

)
− ϕ1 . (5.7.24)

The solution for ϕ1 has a singularity at a finite value of r. Near this singularity,

we find

ϕ1 ∼ ±1

3
ln
[
C − 3g1r

2
√
2

]
, A ∼ −1

3
ln
[
C − 3g1r

2
√
2

]
, (5.7.25)

where C is a constant. Note that ϕ1 and ϕ2 are dual to irrelevant operators

of dimensions ∆ = 4. In this case, the N = 4 SCFT should appear in the IR.

However, the singularity leads to V → ∞; therefore, this singularity is unphysical.

Another truncation is obtained by setting ϕ2 = 0. The BPS equations in
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this truncation are

ϕ′
1 =

√
2g1e

ϕ
2 cosh(2ϕ1) sinhϕ1, (5.7.26)

ϕ′ =
√
2g1e

−ϕ
2 (1 + eϕ coshϕ1)[cosh(2ϕ1)− 2], (5.7.27)

A′ =
1√
2
g1e

−ϕ
2 [eϕ coshϕ1(cosh(2ϕ1)− 2)− 1]. (5.7.28)

A solution to the above equations is given by

ϕ = ln
[
coshϕ1 −

1

2
C cosh(2ϕ1)cschϕ1

]
, (5.7.29)

√
2g1r̃ = ln[C − tanh(2ϕ1)], (5.7.30)

A = ln[cosh(2ϕ1)]−
1

2
ln(sinhϕ1)

−1

2
ln[C cosh(2ϕ1)− sinh(2ϕ1)] (5.7.31)

where the coordinate r̃ is defined by dr̃
dr

= e−
ϕ
2 . The constant C ̸= 0 is needed to

obtain the correct behavior of ϕ and ϕ1 near the AdS4 critical point. Note that

this solution is singular at a finite value of r̃. Near the singularity, we find

ϕ1 ∼ ±1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ , (5.7.32)

where C̃ is constant.

The behaviors of ϕ and A depend on the value of the constant C. For the

case ϕ→ ∞, we find

ϕ ∼ −ϕ1 ∼
1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ ,
A ∼ ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ , (5.7.33)

for C = 2, and

ϕ ∼ ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ ,
A ∼ ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ , (5.7.34)

for C ̸= 2. Both of these singularities lead to V → ∞. Therefore, they are

unphysical.
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For the case ϕ→ −∞, we find

ϕ ∼ ϕ1 ∼
1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ ,
A ∼ −ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ , (5.7.35)

for C = −2 and

ϕ ∼ −ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ ,
A ∼ −ϕ1 ∼ −1

4
ln
∣∣∣√2g1r̃ − C̃

∣∣∣ (5.7.36)

for C ̸= −2. These singularities lead to V → ∞, hence they are unphysical. The

solutions in this particular truncation do not describe RG flows in N = 4 SCFT.

A similar truncation with ϕ1 = 0 also leads to unphysical singularities. It

would be interesting to uplift these solutions to ten or eleven dimensions and

determine if these singularities are resolved.

5.8 RG flows from SO(2, 2) × SO(2, 2) gauged su-

pergravity

We now considerN = 4 supergravity coupled to six vector multiplets with SO(2, 2)×

SO(2, 2) gauge group. The components of the embedding tensor in this gauging

are given by

f+189 =
1√
2
(g1 − g̃1), f+723 =

1√
2
(g1 + g̃1),

f−10,5,6 =
1√
2
(g2 + g̃2), f−4,11,12 =

1√
2
(g2 − g̃2). (5.8.1)

We will consider four SO(2) × SO(2) × SO(2) × SO(2) singlet scalars cor-

responding to the SO(6, 6) non-compact generators,

Y1 = Y1,7, Y2 = Y1,10, Y3 = Y4,10, Y4 = Y4,7. (5.8.2)

The coset representative is parametrized by

L = eϕ1Y1eϕ2Y2eϕ3Y3eϕ4Y4 . (5.8.3)
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The scalar potential in this gauging is given by

V =
1

4

(
sinhϕ

((
χ2 − 1

)
(g̃2 + g2)

2 + (g̃1 + g1)
2
)
+ coshϕ

((
χ2 + 1

)
(g̃2 + g2)

2

+(g̃1 + g1)
2
)
+ 4 (g̃1 + g1) (g̃2 + g2) (sinhϕ1 sinhϕ3 coshϕ4

− sinhϕ2 sinhϕ4 coshϕ1)) . (5.8.4)

However, in order to obtain consistent BPS equations, we need to impose the

relation

g̃1 = −g1, g̃2 = −g2. (5.8.5)

This relation gives V = 0 for any values of the scalars; hence this gauging gives

a Minkowski vacuum. We will not perform any further analysis since it does not

give a holographic description.

5.9 RG flows from SO(4)×SO(3, 1) gauged super-

gravity

We now considerN = 4 supergravity coupled to six vector multiplets with SO(4)×

SO(3, 1) gauge group. The SO(4) and SO(3, 1) are electrically and magnetically

embedded in the SO(3, 3) × SO(3, 3), respectively. The components of the em-

bedding tensor in this gauging are given by

f+123 =
√
2(g1 − g̃1), f+789 =

√
2(g1 + g̃1),

f−456 = f−4,11,12 = f−10,5,12 = −f−10,11,6 =
1√
2
(g2 − g̃2),

f−10,11,12 = f−4,11,7 = f−10,5,6 = −f−45,12 =
1√
2
(g2 + g̃2). (5.9.1)

We will consider scalars fields that invariant under SO(4)inv ∼ SO(3) ×

SO(3) ⊂ SO(4)×SO(3) ⊂ SO(4)×SO(3, 1). These scalars correspond to SO(6, 6)

non-compact generators

Ŷ1 = Y11 + Y22 + Y33, Ỹ2 = Y44 + Y55 − Y66. (5.9.2)
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The coset representative is parametrized by

L = eϕ1Ŷ eϕ2Ỹ2 . (5.9.3)

The scalar potential, in this case, is given by

V =
1

8
e−ϕ−6ϕ1−6ϕ2

[
(g1 + g2)

2e2ϕ+12ϕ1+6ϕ2 − 3(3g21 + 2g1g2 + g22)e
2ϕ+4ϕ1+6ϕ2

+e6ϕ1
[
g22(1 + e2ϕχ2)(1 + e4ϕ2)3 + 16e6ϕ2 [e2ϕ(g21 + g1g2 − g22χ

2)− g22]
]

+8g2e
ϕ+3ϕ1+6ϕ2 [g1(e

2ϕ1 − 1)3 + g2e
2ϕ1(3 + e4ϕ1)] coshϕ2 ×

[cosh(2ϕ2)− 2]− 3(3g21 + 4g1g2 + 2g22)e
2ϕ+8ϕ1+6ϕ2 + g21e

2ϕ+6ϕ2
]
. (5.9.4)

Note that we have imposed the relations

g̃1 = g1 + g2 and g̃2 = −g2 (5.9.5)

in order to obtain an N = 4 supersymmetric AdS4 critical point with SO(4) ×

SO(3) symmetry for all scalars vanishing.

This scalar potential admits two supersymmetric AdS4 critical points with

N = 4 supersymmetry. The first is a trivial critical point, at which all scalars

are vanishing, with SO(4)×SO(3) symmetry. The cosmological constant and the

AdS4 radius at this critical point are given by

V0 = −6g22, L =

√
3

g2
. (5.9.6)

Scalar masses and the corresponding dimensions of the dual operators are given

in Table 5.6.

Another one is a non-trivial critical point, which is given by

ϕ2 = χ = 0, ϕ1 =
1

2
ln
[

g1
g1 + g2

]
,

ϕ =
1

2
ln
[
4g1(g1 + g2)

(2g1 + g2)2

]
. (5.9.7)

At this critical point, the cosmological constant and the AdS4 radius are given by

V0 = −3g22(2g1 + g2)√
g1(g1 + g2)

, L =

√
3(g1(g1 + g2))

1
4

g2(2g1 + g2)
1
2

. (5.9.8)

This critical point preserves an SO(3)× SO(3) symmetry. Scalar masses and the

corresponding dimensions of the dual operators are given in Table 5.7
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Scalar field representations m2L2 ∆

(1,1,1) −2×2 1, 2

(1,1,1) 4 4

(1,1,3) 0×3 3

(3,3,1) 0×9 3

(1,1,5) −2×5 1, 2

(1,3,3) + (3,1,3) −2×18 1, 2

Table 5.6: Scalar masses and the corresponding dimensions of the dual operators

at the N = 4 supersymmetric AdS4 critical point with SO(4)× SO(3) symmetry

for SO(4)× SO(3, 1) gauge group

Scalar field representations m2L2 ∆

(1,1) −2×2 1, 2

(1,1) 4×2 4

(1,5) + (5,1) −2×10 1, 2

(1,3) + (3,1) 0×6 3

(3,3) 0×18 3

Table 5.7: Scalar masses and the corresponding dimensions of the dual operators

at the N = 4 supersymmetric AdS4 critical point with SO(3)× SO(3) symmetry

for SO(4)× SO(3, 1) gauge group

5.9.1 RG flow between SO(4) × SO(3) and SO(3) × SO(3)

critical points

We now consider a supersymmetric RG flow between the AdS4 critical points with

SO(4)×SO(3) and SO(3)×SO(3) symmetries. As in the previous cases, we need

to set χ = 0 in the presence of vector multiplet scalars.

With χ = 0, the superpotential is given by

W =
i

4
√
2
e−

ϕ
2
−3ϕ1−3ϕ2

[
g1e

ϕ+3ϕ2 + 3g1e
ϕ+4ϕ1+3ϕ2 − 3(g1 + g2)e

ϕ+2ϕ1+3ϕ2

+g2e
3ϕ1(1 + e2ϕ2)(1− 4e2ϕ2 + e4ϕ2)− (g1 + g2)e

ϕ+6ϕ1+3ϕ2
]
. (5.9.9)
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The scalar potential can be written as

V = 4

(
∂W

∂ϕ

)2

+
2

3

(
∂W

∂ϕ1

)2

+
2

3

(
∂W

∂ϕ2

)2

− 3W 2 . (5.9.10)

The BPS equations, in this case, are given by

ϕ′
1 = −2

3

∂W

∂ϕ1

= − 1

2
√
2
e

ϕ
2
−3ϕ1(e4ϕ1 − 1)(e2ϕ1(g1 + g2)− g1), (5.9.11)

ϕ′
2 = −2

3

∂W

∂ϕ2

=
1

2
√
2
g2e

−ϕ
2
−3ϕ1(e2ϕ2 − 1)(e4ϕ1 + 1), (5.9.12)

ϕ′ = −4
∂W

∂ϕ
= − 1

2
√
2
e−

ϕ
2
−3ϕ1

[
4g2e

3ϕ1 coshϕ2[cosh(2ϕ2)− 2]

+eϕ
[
[(e2ϕ1 − 1)3g1 + e2ϕ1(3 + e4ϕ1)g2]

]]
, (5.9.13)

A′ =
1

4

√
2e−

ϕ
2
−3ϕ1

[
eϕ[(e2ϕ1 − 1)3g1 + e2ϕ1(3 + e4ϕ1)g2]

−4g2e
3ϕ1 coshϕ2[cosh(2ϕ2)− 2]

]
. (5.9.14)

Since both of the critical points have ϕ2 = 0, we can consistently truncate

ϕ2 out. Note that ϕ2 is dual to an irrelevant operator with dimension ∆ = 4,

which can also be seen from the linearized BPS equations,

ϕ ∼ ϕ1 ∼ e−
r
L , ϕ2 ∼ e

r
L . (5.9.15)

The solution with ϕ2 = 0 is given by

g2(2g1 + g2)r̃ =
√
2g2 tan−1 eϕ1 +

√
2(2g1 + g2) tanh−1 eϕ1

−2
√
2g1(g1 + g2) tanh−1

[
eϕ1

√
g1 + g2
g1

]
, (5.9.16)

ϕ = ln
[
e−ϕ1g1 + eϕ1(g1 + g2)

2g1 + g2

]
, (5.9.17)

A =
1

2
ϕ1 − ln

(
1− e4ϕ1

)
+ ln[(e2ϕ1 − 1)g1 + e2ϕ1g2]

+
1

2
ln[g1 + (g1 + g2)e

2ϕ1 ] (5.9.18)

where r̃ is defined by dr̃
dr

= e
ϕ
2 . Note that this solution preserves N = 4 super-

symmetry in three dimensions. This should describe N = 4 RG flow from N = 4

SCFT in the UV with SO(4)× SO(3) symmetry to another N = 4 SCFT in the

IR with SO(3) × SO(3) symmetry. Note that the flavor symmetry SO(3) in the

UV is broken by the relevant operator dual to ϕ1.
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We can also truncate out the vector multiplet scalars. However, it leads

to a similar structure as in the previous case. Hence we will not consider this

truncation.

5.10 RG flows from SO(4) × SO(2, 2) gauged su-

pergravity

We now considerN = 4 supergravity coupled to six vector multiplets with SO(4)×

SO(2, 2) gauge group. The SO(4) and SO(2, 2) are electrically and magnetically

embedded in the SO(3, 3) × SO(3, 3), respectively. The components of the em-

bedding tensor in this gauging are given by

f+123 =
√
2(g1 − g̃1), f+789 =

√
2(g1 + g̃1),

f−10,5,6 =
1√
2
(g2 + g̃2), f−4,11,12 =

1√
2
(g2 − g̃2). (5.10.1)

We will consider four singlet scalars corresponding to the SO(6, 6) non-

compact generators,

Y1 = Y1,7 + Y2,8 + Y3,9, Y2 = Y4,10, Y3 = Y5,11 + Y6,12, Y4 = Y5,12 − Y6,11.

The coset representative is parametrized by

L = eϕ1Y1eϕ2Y2eϕ3Y3eϕ4Y4 . (5.10.2)
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The scalar potential in this gauging is given by

V =
1

8
e−ϕ−6(ϕ1+ϕ2)

(
χ2e2(ϕ+3ϕ1+6ϕ2)g̃22 − 3χ2e2ϕ+6ϕ1+4ϕ2

(
g̃22 + 2g22

)
−3χ2e2ϕ+6ϕ1+8ϕ2

(
2g̃22 + g22

)
+ 16e2(ϕ+3(ϕ1+ϕ2))

(
g2χ

2g̃2 + g1g̃1
)

+e2(ϕ+6ϕ1+3ϕ2)g̃21 + e6(ϕ1+2ϕ2)g̃22 − 6g2e
ϕ+5ϕ1+3ϕ2 g̃1

−2g2e
ϕ+9ϕ1+3ϕ2 g̃1 − 18g2e

ϕ+5ϕ1+7ϕ2 g̃1 − 6g2e
ϕ+9ϕ1+7ϕ2 g̃1

−3e2ϕ+4ϕ1+6ϕ2
(
g̃21 + 2g21

)
− 3e2ϕ+8ϕ1+6ϕ2

(
2g̃21 + g21

)
−6g1e

ϕ+3ϕ1+5ϕ2 g̃2 − 18g1e
ϕ+7ϕ1+5ϕ2 g̃2 − 2g1e

ϕ+3ϕ1+9ϕ2 g̃2

−6g1e
ϕ+7ϕ1+9ϕ2 g̃2 + 16g2e

6(ϕ1+ϕ2)g̃2 + 6eϕ+9ϕ1+5ϕ2 g̃1g̃2

+6eϕ+5ϕ1+9ϕ2 g̃1g̃2 + 18eϕ+5(ϕ1+ϕ2)g̃1g̃2 + 2eϕ+9(ϕ1+ϕ2)g̃1g̃2

−3e6ϕ1+4ϕ2
(
g̃22 + 2g22

)
− 3e6ϕ1+8ϕ2

(
2g̃22 + g22

)
+ g22χ

2e2ϕ+6ϕ1

+g21e
2ϕ+6ϕ2 + g22e

6ϕ1 + 6g1g2e
ϕ+7ϕ1+3ϕ2 + 6g1g2e

ϕ+3ϕ1+7ϕ2

+2g1g2e
ϕ+3(ϕ1+ϕ2) + 18g1g2e

ϕ+7(ϕ1+ϕ2)
)
. (5.10.3)

Note that, in order to find consistent BPS equations, we have to impose the

relation

g̃1 = g1, g̃2 = g2. (5.10.4)

This leads to the Minkowski vacuum, V0 = 0, for all scalars vanishing. We will

not perform any further analysis since it does not give a holographic description.

5.11 RG flows from SO(3, 1)×SO(2, 2) gauged su-

pergravity

We now considerN = 4 supergravity coupled to six vector multiplets with SO(3, 1)×

SO(2, 2) gauge group. The SO(3, 1) and SO(2, 2) are electrically and magneti-

cally embedded in the SO(3, 3) × SO(3, 3), respectively. The components of the
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embedding tensor in this gauging are given by

f+123 = f+189 = f+729 = −f+783 =
1√
2
(g1 − g̃1),

f+789 = f+183 = f+723 = −f+129 =
1√
2
(g1 + g̃1),

f−10,5,6 =
1√
2
(g2 + g̃2), f−4,11,12 =

1√
2
(g2 − g̃2). (5.11.1)

We will consider eight singlet scalars corresponding to the SO(6, 6) non-

compact generators,

Y1 = Y1,7 + Y2,8, Y2 = −Y1,8 + Y2,7, Y3 = Y3,9, Y4 = Y3,10

Y5 = Y4,9, Y6 = Y4,10, Y7 = Y5,11 + Y6,12, Y8 = Y5,12 − Y6,11 (5.11.2)

The coset representative is parametrized by

L = eϕ1Y1eϕ2Y2eϕ3Y3eϕ4Y4eϕ5Y5eϕ6Y6eϕ7Y7eϕ8Y8 . (5.11.3)

The scalar potential computed with these scalars is highly complicated. We

refrain from giving its explicit form here. However, in order to obtained N = 4

supersymmetric critical point with all scalars vanishing, we need to impose the

relation,

g1 = 0, g̃1 = 0, g̃2 = −g2. (5.11.4)

This leads to the Minkowski vacuum, V0 = 0. We will not perform any further

analysis since it does not give a holographic description.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

Summary

In this dissertation, we have mainly focused on the study of holographic RG flows

from N = 3 and N = 4 gauged supergravities in four dimensions. We have

reviewed the AdS/CFT correspondence, which includes N = 4 super Yang-Mills

theory, type IIB string theory on AdS5 × S5. We have adopted the principle to

study holographic RG flows in the context of the AdS4/CFT3 correspondence.

We have reviewed some general features of N > 2 gauged supergravities in four

dimensions, mainly focused on 2 < N ≤ 4.

We have studied holographic RG flows from N = 3 gauged supergravity in

four dimensions. We have studied various types of semisimple gauge groups and

identified their vacua. For SO(3) × SO(3) gauge group, we have found two su-

persymmetric AdS4 critical points. One is a supersymmetric AdS4 critical point,

at which all scalars vanish, and a non-trivial AdS4 critical point with SO(3)diag

symmetry and unbroken N = 3 supersymmetry. We have given a holographic RG

flow interpolating between SO(3)×SO(3) and SO(3)diag critical points. We have

also given a number of RG flows to non-conformal theories, preserving N = 3

or N = 1 supersymmetry. For SO(3, 1) gauge group, we have found a super-

symmetric AdS4 critical point and a non-supersymmetric AdS4 critical point with

SO(3) symmetry. A supersymmetric RG flow to a non-conformal theory is given.

For SO(2, 2) gauge group, we have found a non-supersymmetric AdS4 critical

point when all scalars vanish. We have also given a half-supersymmetric domain

wall solution preserving N = 3 supersymmetry. For SO(2, 1) gauge group, the

scalar potential admits only non-supersymmetric critical point. There is also a
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half-supersymmetric domain wall with SO(2) symmetry in the same form as in

SO(2, 2) case. For SL(3, R) gauge group, we have found an N = 3 supersym-

metric AdS4 critical point with SO(3) symmetry. For SO(2, 1)× SO(2, 2) gauge

group, the scalar potential admits a Minkowski vacuum with all scalars vanishing.

We have also studied holographic RG flows from N = 4 gauged supergravity

in four dimensions, obtained from type IIA and IIB string theories compactified

on T 6/Z2 × Z2 with non-semisimple gaugings. For the gauged supergravity from

type IIB compactification, the scalar potential admits a trivial AdS4 critical point

which preserves N = 4 supersymmetry. In this case, we have given various RG

flows together with examples of supersymmetric Janus solutions. The scalar po-

tential obtained from type IIB GKP compactification admits only a Minkowski

vacuum when all scalars vanish. The scalar potential from the gauged supergrav-

ity obtained from type IIA compactification admits an N = 1 AdS4 critical point

at all scalar vanishing. We have also given some examples of numerical flows.

We have considered the N = 4 gauged supergravity with various semisimple

gaugings. For SO(4) × SO(4) gauge group, we have found four supersymmetric

AdS4 critical points, with SO(4) × SO(4), SO(3) × SO(4), SO(4) × SO(3), and

SO(4)diag symmetries. We have given a number of RG flows between these critical

points together with RG flows to N = 4 non-conformal theories. For SO(3, 1) ×

SO(3, 1) gauge group, we have found a supersymmetric AdS4 critical point and

discussed RG flows to non-conformal theories. The scalar potential for SO(2, 2)×

SO(2, 2) gives a class of Minkowski vacuum. For SO(4)×SO(3, 1), we have found

two supersymmetric AdS4 critical points with N = 4 supersymmetry. The RG

flow between critical points with SO(4) × SO(3) and SO(3) × SO(3) is given.

For SO(4)× SO(2, 2) and SO(3, 1)× SO(2, 2) gauge groups, we have found only

Minkowski vacua in both cases.

We would like to note that the gaugings considered in chapter 4 are electric

gaugings, in which only electric gauge fields are involving. It would be interesting

to apply the embedding tensor formalism to the N = 3 gauged supergravity,

similar to N = 4 gauged supergravity in chapter 5, and look for more general
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gaugings, such as magnetic or dyonic gaugings in which magnetic gauge fields

participate.

There are many possibilities for future investigations. It would be interesting

to identify the SCFTs or non-conformal gauge theories dual to the gravity solutions

obtained here. This should allow us to identify the dual operators driving the RG

flows obtained in this dissertation. It could be interesting to look for more general

solutions by restoring the truncated scalars or turn on more scalars. Uplifting the

solutions found in this dissertation to higher dimensions could be interesting, as it

will give new AdS4 backgrounds in the context of string/M-theory. The unphysical

singularities found in this dissertation could be also checked by identifying the g00
component of the ten-dimensional metric according to the criterion proposed by

Maldacena and Nunez. Finding other types of solutions, such as Janus solutions

or flows across dimensions to AdS2 ×Σ2, with Σ2 being a Riemann surface, could

be useful in the holographic study of defect SCFTs and black hole physics.
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APPENDIX A

Appendix

A.1 General relativity formula

A derivative of frame field dea = 1
2
(∂µe

a
ν − ∂νe

a
µ)dx

µ ∧ dxν does not transform as

vector under local Lorentz transformation. We can add a term with spin connec-

tion ωa
b to restore the property,

dea + ωa
b ∧ eb ≡ T a, (A.1.1)

which implies spin connection local Lorentz transformation ω
′
µ

a

b
= Λ−1a

cdΛ
c
b +

Λ−1a
cω

c
dΛ

d
c. The torsion 2-form T a is now transformed as a vector under local

Lorentz transformation, T ′a = Λ−1a
bT

b.

The covariant derivative of an arbitrary tensor is defined by a partial deriva-

tive plus correction terms. For example the standard covariant derivative acts on

rank (1, 1),

∇µX
ρ
σ = ∂µX

ρ
σ + Γµ

ρ
λX

λ
σ − Γµ

λ
σX

ρ
λ . (A.1.2)

We can also define a local Lorentz covariant derivative using the spin connection

in the same way the standard covariant derivative does, i.e.

DµX
a
b = ∂µX

a
b + ωµ

a
cX

c
b −Xa

cωµ
c
b . (A.1.3)

Note that for type (p, q) tensors, p connection terms contract on the left while the

remain q connection terms contract on the right. One can show that it relates to

Christoffel connection by using ∇µV
ν = eaµDaV

ν

ωµ
a
b = eaνe

λ
bΓµ

ν
λ − eλb∂µe

a
λ, (A.1.4)
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which is also known as ”tetrad postulate” [91] by simple manipulation of A.1.4.

In tetrad language, the Riemann curvature tensor can be written as (1, 1)-

tensor-valued two-form Ra
bµν ,

Ra
b = dωa

b + ωa
c ∧ ωc

b . (A.1.5)

It is equivalent to the standard Riemann tensor,

Rρ
σµν = ∂µΓν

ρ
σ + Γµ

ρ
αΓν

α
σ − ∂νΓµ

ρ
σ − Γν

ρ
αΓµ

α
σ, (A.1.6)

which can be written in 2-form as

Rρ
σ = Rρ

σµνdx
µ ∧ dxν . (A.1.7)

The Ricci tensor Rµν = Rλ
µλν can be defined as a vector-value-1-form,

Ra
µdx

µ, in vierbein language. The curvature scalar is then R = gµνRµν =

eµaR
a
µ(ω).

A.1.1 Non-linear σ-model

One of an important application of differential geometry is non-linear σ-model

which describe dynamics of scalar fields in spacetime. In general, it is a field

theory in which fields are restricted to a manifold as a map from spacetime to

target space or internal space. For a map from coordinates xµ, µ = 0, . . . , D − 1

of a flat spacetime MD to local coordinates ϕi(xµ), i = 1, . . . , n of n-dimensional

Riemannian manifold Mn. Hence it is a field theory with n scalar fields.

The action describing the dynamics of scalar fields (maps) is given by

S[ϕ] = −1

2

∫
dDxgij(ϕ)η

µν∂µϕ
i∂νϕ

j (A.1.8)

where gij(ϕ) is the metric tensor of local coordinates and ηµν is the Minkowski

metric. The equations of motion are in the form

□ϕi + Γi
jk(ϕ)∂

µϕj∂µϕ
k = 0 . (A.1.9)
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A.2 Anti-de Sitter Space in Various Dimensions

Anti-de Sitter space (AdS) is an example of maximally symmetric space. A max-

imally symmetric space in D dimensions of arbitrary signature (i.e. Euclidean or

Minkowski) is a space with 1
2
D(D+1) Killing vectors. In our definition, its metric

obeys

RMNPQ = k(gMP gNQ − gMQgNP ) (A.2.1)

where k is a constant known as curvature constant. Recall that

ΓP
MN =

1

2
gPQ(∂MgQN + ∂NgQM − ∂QgMN) (A.2.2)

RMNP
Q = ∂MΓQ

NP − ∂NΓ
Q
MP + ΓQ

MRΓ
R
NP − ΓQ

NRΓ
R
MP . (A.2.3)

Any two spaces with the same k and same signature are isomorphic.

The value of curvature constant k determines the maximal space geometry.

In Euclidean signature, k > 0 is a sphere SD, k = 0 is a Euclidean space RD, and

k < 0 is a hyperbolic space HD. In Minkowski signature, k > 0 is the de Sitter

space dSD, k = 0 is the Minkowski space RD,1 and k < 0 is the anti-de Sitter space

AdSD.

A maximally symmetric space obeys Einstein equation with a cosmological

constant Λ,

RMN − 1

2
g −MNR +

Λ

2
gMN = 0 (A.2.4)

which is given by a variation δS = 0 of the action

S =
1

2κ2

∫
dDx

√
g(R− Λ). (A.2.5)

By the definition A.2.1, one can obtain Ricci tensor and scalar,

RMN = gPQRMPNQ = k(D − 1)gMN (A.2.6)

R = gMNRMN = kD(D − 1). (A.2.7)
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Therefore by A.2.4, we can get the curvature constant as a function of cosmological

constant k = Λ
(D−2)(D−1)

. This relation is for D > 2 only. Thus we see that Λ > 0

for de Sitter space and Λ < 0 for anti-de Sitter space.

Maximally symmetric space can be embedded into a flat space one dimension

higher as hyperboloids Rp,q with invariant metric

η = diag(−1, . . . ,−1︸ ︷︷ ︸
p

,+1, . . . , 1︸ ︷︷ ︸
q

). (A.2.8)

A maximally symmetric space of signature (p, q − 1) can be embedded as

ηABY
AY B = −(Y⃗p)

2 + (Y⃗q)
2 = L2 (A.2.9)

where A,B = 1, . . . , D + 1 and p+ q = D + 1. Its metric also be embedded as

ds2 = −
p∑

i=1

(dYi)
2 +

q∑
j=1

(dYj)
2 (A.2.10)

for mostly negative signature. The space is manifest isometry SO(p, q) since it

is invariant under coordinate transformation Y ′A = ΛA
BY

B. List of embedded

spaces are shown in Table A.1. For example, the space S5 has isometry SO(6)

and AdS5 has isometry SO(4, 2). Note that the cosmological constant Λ can be

written as

Λ = −(D − 1)(D − 2)

L2
. (A.2.11)

It can be found that the equation of motion for the action (A.2.5) is

Rµν = −D − 1

L2
gµν . (A.2.12)

A.2.1 AdS5 metric

Let’s discuss on AdS5 metric. From the embedded space A.2.9, we can write a

coordinate relation for AdS5,

−(Y1)
2 − · · · − (Y4)

2 + (Y5)
2 + (Y6)

2 = L2. (A.2.13)
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Relation Space Isometry

+(Y1)
2 + (Y2)

2 + · · ·+ (YD+1)
2 = L2 Sphere SD SO(D + 1)

−(Y1)
2 + (Y2)

2 + · · ·+ (YD+1)
2 = L2 de Sitter dSD SO(1, D)

... ... ...

−(Y1)
2 − · · · − (YD−1)

2 + (YD)
2 + (YD+1)

2 = L2 anti de Sitter AdSD SO(D − 1, 2)

−(Y1)
2 − · · · − (YD)

2 + (YD+1)
2 = L2 Sphere SD SO(D, 1)

−(Y1)
2 + · · · − (YD+1)

2 = L2 no solution

Table A.1: Relations of coordinates ofD dimensions embedded inD+1 dimensions

and their isometry

We can redefine the coordinate YA into 5-dimensional spacetime coordinates (t, xi)

by using

Yi = rxi, where
4∑

i=1

(xi)2 = 1

Y5 =
√
L2 + r2sin(t/L), Y6 =

√
L2 + r2cos(t/L). (A.2.14)

The metric is then

ds2 = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ3 (A.2.15)

A patch of AdS5 metric can be written as

ds2 =
r2

L2
(dxµ)2 +

L2

r2
dr2. (A.2.16)

It is usually more practical to change variable r to z = L2/r for which

ds2 =
L2

z2
(
(dxµ)2 + dz2

)
(A.2.17)

which makes it clear that the boundary z = 0 has a Minkowski signature. This

metric does not cover the whole hyperboloid

Y1 =
Lx1

z
, Y2 =

Lx2

z
, Y3 =

Lx3

z
,

Y4 =
z

2

(
1 +

L2 − xµ2

z2

)
, Y5 =

Lx0

z
, Y6 =

z

2

(
1 +

L2 + xµ2

z2

)
. (A.2.18)
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It is also possible to find a global metric covering the whole hyperboloid,

Y1 = L sinh ρn̂1, Y2 = L sinh ρn̂2, Y3 = L sinh ρn̂3,

Y4 = L sinh ρn̂4, Y5L cosh ρ cos τ, Y6 = L cosh ρ sin τ (A.2.19)

with n̂2 = 1 parameterizing a 3-sphere. The metric is then

ds2 = L2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ3

)
. (A.2.20)

Notice that to have a mostly plus metric one must define ds2 as the pull-back of

−ηABdY
AdY B for AdS.

A.2.2 AdS4 metric

For AdS4 we repeat the same procedure. Starting from relation

−(Y1)
2 − · · · − (Y3)

2 + (Y4)
2 + (Y5)

2 = L2. (A.2.21)

Redefine Yi as 4-dimensional spacetime coordinate

Yi = rxi, where
3∑

i=1

(xi)2 = 1 (A.2.22)

Y4 =
√
L2 + r2sin(t/L), Y5 =

√
L2 + r2cos(t/L). (A.2.23)

The AdS4 metric is then

ds2 = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2 (A.2.24)

A.3 ’t Hooft Matrices

To describe the SO(6) spinor representation in N = 4 supergravity theory,

the SO(6) indices are converted to a fundamental SU(4) indices due to (4 ⊗

4)antisymmetric ∼= 6. An SO(6) vector index m can be converted to a pair of anti-

symmetric SU(4) indices [ij] in the following ways

ϕij =
1

2

6∑
m=1

[Gm]
ijϕm, ϕij = −1

2

6∑
m=1

[Gm]ijϕm (A.3.1)
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where ϕm is a generic SO(6) vector, and G’s are the ’t Hooft matrices with the

following explicit form

[G1]
ij =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 , [G2]
ij =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 ,

[G3]
ij =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , [G4]
ij =


0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

 , (A.3.2)

[G5]
ij =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , [G6]
ij =


0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0

 .

To be consistent with (ϕij)
∗ = ϕij, these matrices satisfy the relation

[Gm]ij = −1

2
ϵijkl[Gm]

kl = −([Gm]
ij)∗ . (A.3.3)

VM
ij =

1

2

6∑
m=1

[Gm]
ijVM

m (A.3.4)

VM
ij = −1

2

6∑
m=1

[Gm]ijVM
m (A.3.5)
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A.4 BPS equations for type IIB compactification

In this section, we give the full BPS equations form the non-geometric compacti-

fication of type IIB theory. The BPS equations are given by

φ′
g =− 1

32W
eφ1−3φ2−φgλ2[−e2φ1 − 9e2φ2 + 6eφ1+φ2 + e2(φ1+3φ2+φg)

+ 9e4φ2+2φg − 6eφ1+5φ2+2φg + 6e3φ2+2φg(2eφ1 − 3eφ2 − e2φ1+φ2

+ 2eφ1+2φ2)χ2χg + 2e5φ2+2φg(6eφ1 − 9eφ2 + e2φ1+φ2)χ3
2χg + e2(φ1+φg)χ2

g

+ 9e2(φ2+φg)χ2
g − 6eφ1+φ2+2φgχ2

g + 3e4φ2(e2φ1 + 3e2φ2 − 2eφ1+φ2)χ4
2(−1

+ e2φgχ2
g) + e2φ1+6φ2χ6

2(−1 + e2φgχ2
g) + 3e2φ2χ2

2(−e2φ1 − 6e2φ2 + 4eφ1+φ2

+ 3e4φ2+2φg + e2φg(e2φ1 + 6e2φ2 − 4eφ1+φ2)χ2
g) + 9e2(φ1+φ2)χ2

1(1

+ e2φ2χ2
2)(−1 + e2(φ2+φg) − 2e2(φ2+φg)χ2χg + e2φgχ2

g + e2φ2χ2
2(−1 + e2φgχ2

g))

− 6e2(φ1+φ2)χ1(−e2φg(−1 + e2φ2)χg + e4φ2+2φgχ2
2χg − e4φ2+2φgχ4

2χg

− χ2(1 + e4φ2+2φg − e2φgχ2
g) + 2e2φ2χ3

2(−1 + e2φgχ2
g) + e4φ2χ5

2(−1 + e2φgχ2
g))]

(A.4.1)

χ′
g =− 1

16W
eφ1−3φ2−φgλ2[3e3φ2(2eφ1 − 3eφ2 − e2φ1+φ2 + 2eφ1+2φ2)χ2

+ e5φ2(6eφ1 − 9eφ2 + e2φ1+φ2)χ3
2 + (eφ1 − 3eφ2)2χg + 3e2φ2(e2φ1 + 6e2φ2

− 4eφ1+φ2)χ2
2χg + 3e4φ2(e2φ1 + 3e2φ2 − 2eφ1+φ2)χ4

2χg + e2φ1+6φ2χ6
2χg

+ 9e2(φ1+φ2)χ2
1(1 + e2φ2χ2

2)(−e2φ2χ2 + χg + e2φ2χ2
2χg)− 3e2(φ1+φ2)χ1(1

− e2φ2 + e4φ2χ2
2 − e4φ2χ4

2 + 2χ2χg + 4e2φ2χ3
2χg + 2e4φ2χ5

2χg)] (A.4.2)
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φ′
1 =− 1

32W
eφ1−3φ2−φgλ2[e2φ1 + 3e2φ2 − 4eφ1+φ2 − 4eφ1+2φ2+φg + 6e3φ2+φg

+ e2(φ1+3φ2+φg) + 2e2φ1+3φ2+φg − 4eφ1+4φ2+φg + 3e4φ2+2φg − 4eφ1+5φ2+2φg

+ 2e3φ2+2φg(4eφ1 − 3eφ2 − 3e2φ1+φ2 + 4eφ1+2φ2)χ2χg + 2e5φ2+2φg(4eφ1

− 3eφ2 + e2φ1+φ2)χ3
2χg + e2(φ1+φg)χ2

g + 3e2(φ2+φg)χ2
g − 4eφ1+φ2+2φgχ2

g

+ e2φ1+6φ2χ6
2(1 + e2φgχ2

g) + e2φ2χ2
2(3e

2φ1 + 6e2φ2 − 8eφ1+φ2 + 6e3φ2+φg

− 6e2φ1+3φ2+φg + 4eφ1+4φ2+φg + 3e4φ2+2φg + e2φg(3e2φ1 + 6e2φ2

− 8eφ1+φ2)χ2
g) + e4φ2χ4

2(3e
2φ1 + 3e2φ2 − 4eφ1+φ2 + 4eφ1+2φ2+φg

+ e2φg(3e2φ1 + 3e2φ2 − 4eφ1+φ2)χ2
g) + 9e2(φ1+φ2)χ2

1(1 + e2φ2χ2
2)((1 + eφ2+φg)2

− 2e2(φ2+φg)χ2χg + e2φgχ2
g + e2φ2χ2

2(1 + e2φgχ2
g))− 6e2(φ1+φ2)χ1(−e2φg(−1

+ e2φ2)χg + e4φ2+2φgχ2
2χg − e4φ2+2φgχ4

2χg + e4φ2χ5
2(1 + e2φgχ2

g)

+ 2e2φ2χ3
2(1 + eφ2+φg + e2φgχ2

g) + χ2(1 + 2eφ2+φg − 2e3φ2+φg

− e4φ2+2φg + e2φgχ2
g))] (A.4.3)

φ′
2 =− 1

32W
eφ1−3φ2−φgλ2[−e2φ1 − 3e2φ2 + 4eφ1+φ2 + 2eφ1+2φ2+φg

+ e2(φ1+3φ2+φg) − 2eφ1+4φ2+φg + 3e4φ2+2φg − 4eφ1+5φ2+2φg + 2e4φ2+2φg(−3

− e2φ1 + 4eφ1+φ2)χ2χg + 2e5φ2+2φg(4eφ1 − 9eφ2 + e2φ1+φ2)χ3
2χg

− e2(φ1+φg)χ2
g − 3e2(φ2+φg)χ2

g + 4eφ1+φ2+2φgχ2
g + e2φ1+6φ2χ6

2(1 + e2φgχ2
g)

+ e2φ2χ2
2(−e2φ1 + 6e2φ2 + 12e3φ2+φg − 4e2φ1+3φ2+φg + 6eφ1+4φ2+φg

+ 9e4φ2+2φg − e2φg(e2φ1 − 6e2φ2)χ2
g) + e4φ2χ4

2(e
2φ1 + 9e2φ2 − 4eφ1+φ2

+ 6eφ1+2φ2+φg + e2φg(e2φ1 + 9e2φ2 − 4eφ1+φ2)χ2
g)− 2e2(φ1+φ2)χ1(−e2φg(1

+ e2φ2)χg + 3e4φ2+2φgχ2
2χg − 3e4φ2+2φgχ4

2χg + 3e4φ2χ5
2(1 + e2φgχ2

g)

+ 2e2φ2χ3
2(1 + 2eφ2+φg + e2φgχ2

g)− χ2(1 + 4e3φ2+φg + 3e4φ2+2φg + e2φgχ2
g))

+ 3e2(φ1+φ2)χ2
1(−1 + e2(φ2+φg) − 2e2(φ2+φg)χ2χg − 6e4φ2+2φgχ3

2χg − e2φgχ2
g

+ 3e4φ2χ4
2(1 + e2φgχ2

g) + e2φ2χ2
2(2 + 4eφ2+φg + 3e2(φ2+φg) + 2e2φgχ2

g))]

(A.4.4)
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χ′
1 =

1

16W
eφ1−φ2−φgλ2[−e2φg(−1 + e2φ2)χg + e4φ2+2φgχ2

2χg − e4φ2+2φgχ4
2χg

+ e4φ2χ5
2(1 + e2φgχ2

g) + 2e2φ2χ3
2(1 + eφ2+φg + e2φgχ2

g) + χ2(1 + 2eφ2+φg

− 2e3φ2+φg − e4φ2+2φg + e2φgχ2
g)− 3χ1(1 + e2φ2χ2

2)((1 + eφ2+φg)2

− 2e2(φ2+φg)χ2χg + e2φgχ2
g + e2φ2χ2

2(1 + e2φgχ2
g))] (A.4.5)

χ′
2 =− 1

16W
eφ1−3φ2−φgλ2[eφ2+2φg(2eφ1 − 3eφ2 − e2φ1+φ2 + 2eφ1+2φ2)χg

+ e3φ2+2φg(6eφ1 − 9eφ2 + e2φ1+φ2)χ2
2χg + e2φ1+4φ2χ5

2(1 + e2φgχ2
g)

+ χ2(e
2φ1 + 6e2φ2 − 4eφ1+φ2 + 6e3φ2+φg − 2e2φ1+3φ2+φg + 2eφ1+4φ2+φg

+ 3e4φ2+2φg + e2φg(e2φ1 + 6e2φ2 − 4eφ1+φ2)χ2
g) + 2e2φ2χ3

2(e
2φ1 + 3e2φ2

− 2eφ1+φ2 + 2eφ1+2φ2+φg + e2φg(e2φ1 + 3e2φ2 − 2eφ1+φ2)χ2
g)− e2φ1χ1(1

+ 2eφ2+φg − 2e3φ2+φg − e4φ2+2φg + 2e4φ2+2φgχ2χg − 4e4φ2+2φgχ3
2χg

+ e2φgχ2
g + 5e4φ2χ4

2(1 + e2φgχ2
g) + 6e2φ2χ2

2(1 + eφ2+φg + e2φgχ2
g))

+ 3e2(φ1+φ2)χ2
1(−e2φgχg − 3e2(φ2+φg)χ2

2χg + 2e2φ2χ3
2(1 + e2φgχ2

g)

+ χ2(2 + 2eφ2+φg + e2(φ2+φg) + 2e2φgχ2
g))] (A.4.6)

where W is given in (5.2.19).
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