References

Allied. Technical and Processing Data for Dispex: <u>Product Data Sheet</u>, Allied Chemicals.

Alubit 90. Product Data Sheet. , Industrial Ceramic Division, Industrie Bitossi S.p.A.,

Alumina. Mitchell Market Reports on Advanced Materials, 1987.

Alustein 90. Product Data Sheet , A.S.A.International Company.

American Society for Testing and Material (ASTM.)

"Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials." ASTM. Designation: E 18., p.176-189, ASTM, New York, 1989.

"Standard Test Methods for Notched Bar Impact Testing of Metallic Materials." <u>ASTM. Designation: E 23.</u>, p.197-212, ASTM, New York, 1988.

"Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays." <u>ASTM. Designation: C 326.</u> p. 89-90, New York, Reapproved 1988.

"Standard Test Method for Linear Thermal Expansion of Porcelain Enamel and Graze Frits and Fired Ceramic Whiteware Products by the Dilatometer Method." <u>ASTM. Designation: C 372.</u>, p.108-111, ASTM, New York,1988.

"Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products." <u>ASTM. Designation: C 373.</u>, p.112-113, ASTM, New York, 1988. "Standard Test Methods for Flexural Properties of Ceramic Whiteware Materals." <u>ASTM. Designation: C 674.</u>, p.203-206, ASTM, New York, 1988.

Arleite . Product Data Sheet. Ferro Company, France.

- Berry, K.A. and Harmer, M.P. "Effect of MgO Solute on Microstructure Development in Al₂O₃." <u>J. Am. Ceram. Soc.</u> 62 (1986) :143-149.
- Bruch, C.A. "Sintering Kinetics for the High Density Alumina Process." <u>Am. Cer. Soc. Bull</u>. vol 41, no. 12 (1962):790-806.
- Cahoon, H.F. and Christensen C.J. "Sintering and Grain Growth of Alpha-Alumina." <u>J. AM. Ceram. Soc.</u> vol. 39 no. 10, 1956: 337-344.
- CTI. Product Data Sheet, CTI Ceramica Technica Industrail SA.
- Cutler, I.B. "Strength Properties of Sintered Al₂O₃ in Relation to Porosity and Grain Size." <u>J. Am. Ceram. Soc.</u>50 (1957): 20-23.
- Dorre, E., and Hubner, H. <u>Alumina</u> : <u>Processing</u>, <u>Properties</u> and <u>Application</u>. Springer-Verlag Berlin, Heidelberg, 1984.
- Gitzen, W.H. <u>Alumina As a Ceramic Material</u>. The American Ceramic Society, Ohio ,1970.
- Hauth, W.E.Jr. "Slip Casting of Aluminum Oxide." <u>J.Am. Ceram.</u> <u>Soc</u>.vol.32 no. 12 (1949): 394-398.
- Kirchner, H.F. <u>Strengthening of Ceramic</u>., Ceramic Finishing Company, State College, Pennsylvania.

44

- Kwon, Oh-Hun. " Liquid Phase Sintering." <u>Advanced Ceramics.</u>, Norton Company : 285-290.
- Lewis, D. and Lindley, M.W. "Enhanced Activity and The Characterization of Ball-Milled Alumina." J.Am.Ceram.Soc. 49,49-50 (1966).
- Materials Handbook for Refractories, Traditional and Advanced Ceramics. Ceramic Industry , January (1991).

McVickers,R.C. "Polishing and Etching Techniques for Dense Al₂O₃." <u>J. Am. Ceram. Soc</u>. 45 (1962) : 199.

Nippon Light Metal. Product Data Sheet. , Japan.

- Onoda, G.Y., and Hench, L.L. Ceramic Processing Before Firing . John Wiley & Sons, New York, 1978.
- Fassmore, E.M. ,and Spriggs, E.M. "Strength Grain Size-Porosity Relation in Al₂O₃." J. Am. Ceram. Soc. 48 (1965) : 1-7.
- Pearson, A., Marhanka,J.E., MacZURA, G., and Hart, L.D. "Dense, Abrasion-Resistant 99.8 % Alumina Ceramic." Am. Ceram.Soc. Bull. vol. 47, no. 7 (1968): 654-658.
- Rado, P. "Slip Casting of Non-Clay Ceramics." <u>Interceram</u>: no. 4 (1987).
- Reed, J.S. <u>Introduction to the Principles of Ceramic Processing</u>. John Wiley & Sons, New York, 1988.

- Richerson, D.W. "Properties ,Processing, and Use in Design." <u>Modern Ceramic Engineering</u> . Garette Turbine Engine Company: Phoenix , Arizona.
- Showa, Product Data Sheet , Showa Denko Company., Japan.
- Smothers, W.J. and Reynolds, H.J. "Sintering and Grain Growth of Alumina."Institute of Science and Technology,University of Arkansas, Fayetteville, Arkansas.
- White, J.F. and Clavel, A.L. "Extrusion Properties of Non-Clay Oxides." Am.Ceram. Soc. Bull., vol. 42, no. 11 (1963): 698-702.

Sumitomo. Product Data Sheet , Sumitomo Company, Japan.

APPEND LCES

Appendix 1.

Pot Mill Grinding Times

In determining the appropriate grinding time by using rapid pot mill [with 400 rpm. revolution], the LI-23 composition was chosen.

Procedure ;- pot mill with mill volume 1,000 cc.,

- balls , diameter 1.5-2.0 cm., total weight 900 gm.,
- total batch weight 800 gm.[LI-23 composition],
- water added 560 cc.,
- 0.2 gm./cc. Dispex N 40 = 8 cc.,
- the sample after grinding time 25, 45, 65, and 85 mins. were picked up, dried and sieving through 150 mesh.,
- the powders were characterized by SEM and particle size analyzer.,
- the appropriate grinding time was determined from SEM. photographs and particle size distribution curves.

Ball mill Grinding times

In determining the appropriate grinding time by using ball mill (with 33 rpm revolution), the LI-23 composition was chosen.

```
procedure: - Ball mill with mill volume = 110 lts.
            - 50% of mill volume occupied by balls. = 55.0 lt.
            - By using 3 sizes of ball; 5.3 cm., 4.3 cm., 2.8 cm.
             with ratio by weight
                                        20%
                                                 60%
                                                          20%
            - From experiment we got 8.4 kg. of balls had bulk
             volume = 4.3 lts.
            - So, we must used total ball weight = 55.0 x 8.4
                                                 = 107.5 kg.
             which were divided into :
                     20 % large balls
                                           = 21
                                                       kg.
                     60 % medium balls
                                           = 65.5 kg.
                     20 % small balls
                                              = 21
                                                       kg.
           - Density of balls = 3.3 gm./cm.3
                                              = 107.5 = 32.6 lt.
                     True volume of balls
                                                 3.3
                     Void volume between balls = 55-32.6
                                               = 22.4 lts.
           - Batch volume must bigger than void volume between
             balls and = 20 - 25 % of mill volume,
                 assumed 20.0 % = 0.2x110 lts. = 22.0 lts.
           - From experiment, the density of LI-23 is 3.61 gm./cm.<sup>3</sup>
             Batch weight = 22.0x3.61 = 79.42 = 80 Kg.
           - Water content = 70 % of batch weight = 56 Kg.
           - 0.1 % deflocculant (Dispex N40 with 0.2 gm./cc.)
             = 400 cc.
```

Result from Pot Mill Grinding Times.

In determining the appropriate grinding time by using rapid pot mill [with revolution 400 rpm.] , the LI.-23 composition was chosen.

1. Morphology.

From SEM micrographs, the morphology of powders shown particle agglomerates of plate-liked, irregular shape in milled alumina powders, the size of agglomeration depended on grinding times, as shown in following figure.

SEM. micrographs of composition by pot mill grinding.

25 min.

45 min.

65 min.

130

10 Jum.

The particle size distributions, measured by sedimentation technique were presented in data and figure as followed.

% cumulative larger than [CUMUL%]						
micron	25 mins.	45 mins.	65 mins.	35 mins.		
35.0	0.0	0.0	0.0	0.0		
20.0	19.4	10.7	15.8	9.2		
10.0	36.7	30.9	26.7	16.5		
8.0	44.1	37.7	32.1	22.4		
6.0	54.5	50.1	41.6	34.0		
5.0	60.2	56.3	48.3	41.3		
4.0	67.5	62.9	56.3	50.5		
3.0	74.7	69.4	65.3	60.0		
2.0	81.4	76.9	73.7	69.7		
1.0	88.6	86.0	84.4	80.9		
0.8	90.5	88.6	87.4	84.2		
0.6	92.6	91.2	90.7	88.0		
0.5	93.8	92.6	92.4	90.0		
0.4	-	94.0	-	_		

Particle size distribution of powders composition by pot mill grinding

Grinding time [min.]	20 % by weight finer than [micron]
05	
25	2.20
45	1.60
65	1.25
85	1.10

From the distribution curves, the particle size distribution after various grinding times were presented as followed ;

The appropriate grinding time for labolatory rapid pot mill was 85 minutes because the increased grinding time (more than 85 min.) was not effective.

Result from Ball Mill Grinding.

In determining the appropriate grinding times of ball mill, the LI.-23 composition was chosen and the batch weight was 80 kg.

1. Morphology

From SEM micrographs, the morphology of powders shown particle aggromerates of plate-liked, irregular-shaped in milled alumina powders as the same as grinding from rapid pot mill, as followed.

SEM. micrographs of composition by ball mill grinding.

24 hr.

2. Particle Size Distribution.

The particle size distributions, measured by sedimentation technique, were presented in data and figure as followed.

Particle size distribution of powders composition by ball mill grinding.

		% cumulative larger than [CUMUL%]					
micron	24 hrs.	36 hrs.	48 hrs.	60 hrs.	72 hrs.	84 hrs.	
35.0	0.0	0.0	0.0	0.0	0.0	0.0	
20.0	8.3	5.2	8.6	17.3	11.6	4.3	
10.0	24.1	22.5	17.6	21.7	16.3	9.9	
8.0	29.0	30.7	27.0	27.4	23.0	17.0	
6.0	41.6	43.4	38.7	37.1	33.6	26.7	
5.0	49.8	50.6	47.1	44.2	41.2	36.3	
4.0	58.2	57.9	55.7	52.9	50.6	46.7	
3.0	68.2	67.9	65.9	63.1	61.4	59.1	
2.0	76.4	76.4	74.4	72.4	70.6	69.9	
1.0	86.2	85.4	84.0	83.6	82.0	81.5	
0.8	88.6	87.6	86.4	86.6	85.1	84.9	
0.6	91.3	90.3	89.1	89.9	88.6	88.6	
0.5	-	91.4	90.6	91.6	90.4	90.6	
0.4	_	93.2	92.1	_	-	-	

Grinding time [hrs.]	20 % by weight finer than [micron]	
24	1.6	
36	1.6	
48	1.4	
60	1.3	
72	1.2	
84	1.15	

From the distribution curves, the particle size distribution after various grinding times were presented as followed ;

The appropriate grinding time for ball milling was 84 hours, because increased grinding time [more than 84 hours] was not effective and at this time the particle size distribution of the composition was nearly the same as from 85 min. laboratory testing.

.

Appendix 2.

Physical properties of the LI-16 and LI-19 test specimens after firing from curve A.

Physical properties	LI-16	LI-19
Bulk density[gm./cm. ³]	3.325	3.303
% Apparent porosity	0.169	0.194
% Water absorption	0.051	0.058
MOR.[kg./cm. ²]	2222.120	2402.470
% Al ₂ O3 content	82.460	79.890
[from EDS.]		

These results showed that the sintering temperture was neary reached [the water absorption are neary zero] , but the bulk densities and % alumina contents were to low by comparing to the commercial liners.

Physical properties of the LI-24 test specimens after firing from curve D.

Bulk density[gm./cm. ³]	3.511
% Apparent porosity	1.487
% Water absorption	0.432
MOR.[kg./cm. ²]	3289.600
% Al ₂ O ₃ content	91.050
[from EDS.]	

These results showed that at this firing condition, the sintering point of this composition was not reached [the water absorption was more than 0.03 %].

		a).	From firing cu		
LI-22,	no.	V	D	P	А
	1.	8.16	3.140	11.397	3.630
	2.	7.77	3.081	14.671	4.762
	3.	7.95	3.126	12.075	3.863
	4.	7.55	3.295	1.060	0.322
	5.	8.10	3.122	11.852	3.796
	6.	7.59	3. 191	7.642	2.395
	7.	8.12	3.278	1.601	0.488
	8.	7.68	3.251	2.241	0.681
	9.	7.70	3.213	4.416	1.374
	10.	8.05	3.097	13.292	4.292
Aver	age	-	3.179	8.022	2.560
Standar	d Deviation	_	0.073	5.007	1.627
<u>LI-23</u> ,	1.	8.33	3.148	10.564	3.356
	2.	8.45	3.281	5.207	1.587
	3.	8.38	3.130	10.621	3.393
	4.	8.44	3.160	17.891	5.662
	5.	8.42	3.290	5.463	1.661
	6.	8.13	3.214	7.872	2.449
	7.	8.25	3.178	8.970	2.822
	8.	8.27	3.058	17.412	5.694
	9.	8.50	3.114	11.176	3.589
	10.	8.44	3.280	5.924	1.806
Ave	rage	-	3.185	10.110	3.202
Standar	d Deviation	-	0.075	4.300	1.418

Appendix 3.

Yolume, bulk density, % apparent porosity, % water absorpton.

b). From firing curce B.

<u>LI-22.</u>	no.	V	D	Р	А
	1.	10.76	3.439	0.093	0.027
	2.	11.38	3.295	3.866	1.173
	3.	10.97	3.258	5.014	1.539
	4.	11.67	3.367	1.542	0.458
	5.	8.91	3.317	3.479	1.049
	6.	11.38	3.262	5.272	1.616
	7.	12.05	3.394	0.332	0.098
	8.	10.31	3.380	1.164	0.344
	9.	10.13	3.414	0.197	0.058
	10.	11.77	3.254	5.438	1.671
Average -		-	3.338 2.640		0.803
Standar	d Dev	iation -	0.066	2.092	0.643
<u>LI-23.</u>	1.	11.33	3.142	12.268	3.904
	2.	12.74	3.133	12.088	3.859
	З.	12.46	3.137	12.440	3.965
	4.	11.90	3.277	8.571	2.615
	5.	11.89	3.388	3.617	1.068
	6.	11.22	3.406	1.693	0.497
	7.	12.09	3.345	4.384	1.311
	8.	11.97	3.307	6.015	1.819
	9.	11.94	3.224	9.464	2.936
	10.	12.00	3.163	11.417	3.609
Avera	ge	_	3.252	8.196	2.558
Standar	d Dev	iation -	0.101	3.800	1.237

LI-22.	no.	V	D	Р	А
	1.	7.14	3.497	0.280	0.080
	2.	10.39	3.473	0.385	0.111
	3.	11,56	3,450	0.173	0.050
	4.	9.96	3.443	0.301	0.088
	5.	9.54	3.434	0.419	0.122
	6.	10.90	3.503	0.183	0.052
	7.	10.53	3.492	0.285	0.082
	8.	10.02	3.507	0.200	0.057
	9.	11.00	3.511	0.182	0.052
	10.	8.86	3,498	0.339	0.097
Aver	age	-	3.481	0.275	0.079
Standar	d Dev	riation -	0.027	0.084	0.025
<u>LI-23</u> ,	1.	10.87	3.451	0.920	0.267
	2.	10.50	3.467	1.429	0.412
	3.	10.74	3.547	0.279	0.079
	4.	10.56	3.520	0.379	0.108
	5.	11.33	3.462	1.412	0.408
	6.	10.83	3.549	0.369	0.104
	7.	11.39	3.482	0.966	0.277
	8.	10.10	3 483	0.594	0.171
	9.	10.47	3.448	0.860	0.249
	10	-	1.0	÷	-
Avera	ge	-	3.490	0.801	0.231
Standar	d Dev	istion -	0.037	0.407	0.118

From firing curve D.

<u>LI-22</u> ,	no.	V	D	Р	А
	1.	8.54	3.501	0.117	0.033
	2.	9.12	3.492	0.000	0.000
	3.	11.12	3.497	0.000	0.000
	4.	9.89	3.503	0.000	0.000
	5.	11.22	3.504	0.000	0.000
	6.	10.71	3.499	0.000	0.000
	7.	9.29	3.497	0.108	0.031
	8.	9.82	3.507	0.000	0.000
	9.	10.70	3.467	0.000	0.000
	10.	9.38	3.499	0.000	0.000
Aver	age	-	3.497	0.023	0.006
Standar	d Dev	iation -	0.011	0.045	0.013
<u>LI-23</u> ,	1.	10.71	3.534	0.093	0.026
	2.	11.72	3.532	0.085	0.024
	З.	10.65	3.544	0.094	0.026
	4.	11.55	3.513	0.000	0.000
	5.	10.50	3.537	0.000	0.000
	6.	11.61	3.550	0.000	0.000
	7.	12.12	3.533	0.000	0.000
	8.	9.43	3.539	0.000	0.000
	9.	11.91	3.563	0.084	0.024
	10.	10.38	3.550	0.096	0.027
Avera	uge	-	3.540	0.045	0.013
Standar	d Dev:	iation -	0.013	0.044	0.013

Appendix 4.

MOR. of specimens.

a). MOR. of the specimens from firing curve A

no.	LI-22	LI-23
1.	2810.49	2527.55
2.	2282.87	2462.21
3.	2641.25	2888.26
4.	2510.27	2885.64
5.	2385.42	2198.21
6.	3329.18	2629.49
7.	2587.55	2200.83
8.	2693.07	2958.83
9.	2444.87	-
10.	2875.88	-
MOR. average	2656.07	2593.88
Standard Deviation	284.59	282.63 kg./cm. ²

	b). MOR. of	specimens	from firm	ng curve	В
1.	2907	.09		3386.52	
2.	2984	1.38		2777.31	
3.	2809	0.00		2636.52	
4.	3023	8.02	:	8035.84	
5.	2927	.90		2544.37	
6.	2707	'.94		2659.56	
7.	2609	0.84	2	2925.77	
8.	3382	2.69		2792.67	
9.	2609	.84	2	2559.73	
10.	2886	5.28		-	
MOR. average	2884	.80	2	2813.14	
Standard Devatio	on 216	. 22		254.73	kg,/cm.2

c). MOR. of specimens from firing curve C

no.	LI-22	LI-23
1.	2983.85	2562.63
2.	2567.57	2637.83
3.	2655.68	2693.54
4.	3226.93	2487.42
5.	2640.49	2818.89
6.	2558.45	3008.30
7.	2579.72	2888.53
8.	3424.43	2242.30
9.	3257.31	2999.94
10.	2795.46	-
MOR. average	2868.99	2704.38
Standard Deviation	312.20	238.51 kg./cm. ²

d). MOR. of specimenc from firing curve D

1.	3174.91	2940.33
2.	2730.67	3024.67
3.	2671.64	2742.56
4.	2721.35	2605.87
5.	2892.21	3338.77
6.	3740.30	3379.49
7.	2941.92	3600.52
8.	3100.35	3059.57
9.	2823.87	2972.32
10.	2966.77	_
11.	3740.30	-
MOR. average	3045,84	3073.79
Standard Deviation	359.13	298.23 kg./cm. ²

Appendix 5.

% wt. loss/hr. (400 rpm. testing) of bodies sintered from firing curves A,B,C, and D in 48 mins./cycle.

grinding cycle.	Α.	Β.	C.	D.
lst.	0.8413	0.6649	0.4819	0.4902
2nd.	0.7260	0.7293	0.4233	0.4306
3th.	0.5477	0.5501	0.2427	0.3704
4th.	0.4890	0.5526	0.4258	0.3096
5th.	0.7364	0.4317	0.3662	0.3103
6th.	0.9259	0.3061	0.3061	0.3111
7th.	0.4975	0.4296	0.4260	0.2495
8th.	0.1875	0.3695	0.3695	0.1875
9th.	0.4397	0.2470	0.2470	0.1878
10th.	0.6281	0.1856	0.1856	0.1881
11th.	0.3157	0.1859	0.1859	0.1883
12th.	0.3797	0.1862	0.1862	0.1886

Appendix 6.

Impact Energy of Liner-Product

No.of Specimen	Impact Ene:	rgy
1.	10.2	kp.cm./cm ²
2.	8.2	
3.	10.2	
4.	8.2	
5.	12.2	
Average	9.8	
Standard Deviation	1.50	

146

12

SQ: SETUP DEFINITIONS

Sd: QUANTIFY

.

Alumina 27-APR-93. Standardless Analysis 15.0 kV 51.0 Degrees

Refit_NAK'_NAK"_MGK'_MGK"_11K'_T1K" Refit_S1K'_S1K"_CAK"_FEL"_F1.'_K K" Chi-sqd = 3.63

Element	Rel. K-ratio	Het Counts	
A1-K	0.91354 +/- 0.00748	29665 4 '-	243
Si-K	0.04791 +/- 0.00182	1761 47-	67
Ca-K	0.01060 +/- 0.00190	E19 +	40
Na-K	0.00872 +/- 0.00193	131 +/-	29
Fe-K	0.00729 +/- 0.00403	63 +/-	35
Ma-k	0.00519 +/- 0.00220	144 +,-	61
K - K	0.00407 +/- 0.00148	102 -	37
Ti-K	0.00268 +/- 0.00213	44 +/	35

ZAF Correction 15.00 KV 51.00 deg No.of Iterations = 4

Element	K-ratio	2	64	ţ.	CAF	Atom%	Wt%
AL-K	0.060	1.002	1.027	0.998	1.027	89.90	88.32
Si-K	0.045	0.974	1.752	1.000	1.706	7.47	7.69
Ca-K	0.010	1.004	1.001	1.000	1.034	0.74	1.08
Na-K	0.008	0.995	1.156	0.979	1.125	1.10	0.92
Ferk	0.007	1.116	1.007	1.000	1.123	0.33	0.77
Mg-K	0.005	0.971	1.068	0.955	0.990	0.54	0.48
K -K	0.004	1.025	1.112	0.9999	1.145	0.31	0.44
T1-+*	0.003	1.102	1.041	0.999	1.146	0.15	0.29
				Totet= 100.00%			

NORAN SERIES II WER TISTE HER TUE 27-APR-93 14:01 Cursor: 0.000keV . 0

.

SQ: QUANTIFY

AL'UMINA <u>(228)</u> 16/DEC/92. [<u>1500'C.</u>] Standardless Analysis 15.0 kV 51.0 Degrees

Refit _MGK' _MGK" _NAK' _NAK" _TIK' _TIK" _K K' _K K" _FEK' _FEK" Refit _SIK" _CAK' Chi-sqd = 2.43

Element	Rel. K-ratio	Net Counts		
A1-K	0.88779 +/- 0.01052	17641 +/-	209	
Si-K	0.06147 +/- 0.00271	1383 +/-	61	
Ca-K.	0.01958 +/- 0.00505	248 +/-	6.4	
Mg-K	0.00851 +/- 0.00307	144 +/-	52	
Na-K	0.00926 +/- 0.00272	85 +/-	25	
Ti-K	0.00332 +/- 0.00229	33 +/-	23	
	0.00298 +/- 0.00176	46 +/-	27	
Ferk	0.00708 +/- 0.00414	38 +/-	22	

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 4

Element	K-ratio	Z	A	F	ZAF	Atom%	"Wt%	
A1-K	0.824	1.002	1.034	0.998	1.035	86.45	85.24	
Si-K	0.057	0,975	1.728	1.000	1.684	9.36	9.61	
Ca-K	0.018	1,005	1.081	0.999	1.086	1.35	1.97	
Mg-K	0.008	0.971	1.074	0.957	0,999	0.89	0.79	
Na-F	0.009	0,996	1.165	0.980	1.136	1.16	0.98	
Ti-P.	0.003	1.103	1.042	0.999	1.148	0.20	0.35	
K -E	0.003	1.026	1.117	0.998	1.144	0.22	0.32	1
Fe-K	0.007	1.116	1.007	1.000	1.124	0.36	0.74	
					Total	= 100.00	7.	

NORAN SERIES II #0## TISTR #0## WED 16-DEC-92 15:02 Cursor: 0.000keV = 0

.

SQ: SETUP DEFINITIONS

.

SQ: QUANTIFY

ALUMINA <u>22B 1500c(Shr)</u> 18/FEB/93. Standardless Analysis 15.0 kV 51.0 Degrees

Refit _MGK' _MGK" _FEK' _FEK" _NAK' _NAK" _TIK' _TIK'' _K K' _K K" Refit _SIK" _CAK' Chi-sqd = 4.39

Element	Rel. K-ratio	Net Counts	
A1-K	0.89022 +/- 0.00569	63186 +/-	404
Si-K	0.05688 +/- 0.00139	4570 +/-	112
Ca-K	0.01731 +/- 0.00276	783 +/-	125
Mg-K	0.01446 +/- 0.00162	875 +/-	98
Fe-K	0.00852 +/- 0.00247	162 +/-	47
Na-K	0.00820 +/- 0.00134	269 +/-	44
Ti-K	0.00287 +/- 0.00134	103 +/-	48
K -K	0,00155 +/- 0,00095	85 +/-	52

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 4

Element	k-ratio	2	A	F	ZAF	Atom%	Wt%
A1-K	0.826	1.002	1.038	0.998	1.039	86.87	85.77
S1-K	0.053	0.975	1.736	1.000	1.692	8.69	,8,93
Ca-K	0.016	1.005	1.081	0.999	1.025	1.19	1.74
Ma-K	0.013	0.971	1.072	0.958	0.997	1.50	1.34
Ferk	0.008	1.117	1.007	1.000	1.125	Q.44	0.89
Na-H	0.008	0,996	1.163	0.980	1.135	1.03	0.86
Tink	0.003	1.103	1.041	0.999	1.147	0.17	0.31
K -K	0.001	1.026	1.118	0.998	1.144	0.11	0.16
					Total	= 100.0	0%

NORAN SERIES II **** TISTR **** THU 18-FEB-93 14:31 Cursor: 0.000keV = 0

SQ: QUANTIFY

 $\tilde{t}=0$

```
ALUMINA 228 1520c(15min) 18/FEB/93.
Standardless Analysis
15.0 kV 51.0 Degrees
```

Refit _NAK' _NAK" _MGK' _MGK" _TIK' _TIK" _K K' _K K" Refit _SIK" _FEK' Chi-sqd = 5.08

Element	Rel. K-ratio	Net Counts			
A1-K	0.90487 +/- 0.00556	66090 +/- 406			
Si-K	0.05612 +/- 0.00134	4641 +/- 111			
Ca-K	0.02019 +/- 0.00273	940 +/- 127			
Na-K	0.00617 +/- 0.00130	208 +/- 44			
Fe-K	0.00486 +/- 0.00455	95 +/- 89			
Mg-K	0.00390 +/- 0.00154	243 +/- 96			
Ti-K	0.00252 +/- 0.00135	93 +/- 50			
$\kappa - \kappa$	0.00136 +/- 0.00096	77 +/- 54			
	É.	U 23 30 10 10 1080 109			

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 3

Element	k-ratio	Z	A	F	ZAF	Atom%	Wt%
A1-K	0,849	1.002	1,025	0.998	1.025	88.22	87.07
51-10	0.053	0.975	1.738	1.000	1.6.94	8.69	8.92
Carr	0.019	1.005	1.081	1.000	1,086	1.40	2.06
Na-K	0.006	0.995	1.154	0.978	1.123	0.77	0.65
Fe-k	0.005	1.116	1.007	1.000	1.124	0.25	0.51
Mg-K	0.004	0.971	1.067	0.955	0.989	0.41	0.36
T1-1.	500.0	1.103	1.042	1.000	1.148	0.16	0.27
*	0.001	1.026	1.118	0.998	1.144	0.10	0.15
					Total	= 100.00	5%

NORAN SERIES II *** TISTR *** THU 18-FEB-93 14:45 Cursor: 0 000keV = 0

•

.

SQ: QUANTIFY

.

```
ALUMINA <u>22B 1520<sup>2</sup>(3hr)</u> 18/FEB/93.
Standardless Analysis
15.0 kV 51.0 Degrees
```

24

Refit _MGK' _MGK" _NAK' _NAK" Refit _FEK" Chi-sqd = 5.06

Element	Rel. K-ratio	Net Counts	
A1-K	0.88028 +/- 0.00890	31467 +/-	318
Si-K	0.08212 +/- 0.00514	3353 +/-	508
Ca-K	0.02059 +/- 0.00426	469 +/-	97
Fe-K	0.00966 +/- 0.00376	92 +/-	36
Ma-K	0.00511 +/- 0.00233	156 +/-	71
Na-K	0.00230 +/- 0.00212	38 +/-	35

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 3

1	Element	K-ratio	Z	Ĥ.	F	ZAF	Atom%	Wt%
	A1K ·	0.814	1.003	1.027	0.997	1.027	84.93	83.58
	S1-K	0.076	0.976	1.707	1.000	1.665	12.34	12.64
	Ca-K	0.019	1.006	1.082	1.000	1.038	1.42	2.07
	Fe-K	0.009	1.118	1.008	1.000	1.126	0.49	1.01
	Ma-K	0.005	0.972	1.067	0.956	0.991	0.53	• 0.47
	Na-K	0.002	0.995	1.163	0.979	1.133	0.29	0.24
		/				Total	= 100.00	%

NORAN SERIES	II	***	TISTR	***
Curson: 0 000	lkeV	= 0		

THU 18-FEB-93 15:28

SQ: QUANTIFY

ALUMINA <u>23B (1500c.)</u> 14/JAN/93. Standardless Analysis 15.0 kV 51.0 Degrees

Refit _CAK' _CAK" _TIK' _TIK" Refit _SIK" Chi-sqd = 1.45

1

 $\sim \infty$

Element	Rel. K-ratio	Net Counts	
AL-K	0.92474 +/- 0.01447	8051 +/-	126
Si-K	0.05363 +/- 0.00396	529 +/-	39
Ca-K	0.01715 +/- 0.00342	95 +/-	19
Ti-K	0.00448 +/- 0.0038	20 +/-	17
		1	
ZAF Com	rection 15.00 kV - 51.00 de	eg.	
No.of Ite	erations = 3		

Element	K-ratio	2	A	F	ZAF	Atom%	Wt%
A1-K	0.880	1.002	1.012	0.998	1.012	90.07	89.05
SI-K	0.051	0,975	1.746	1.000	1.702	8.44	8.69
Ca-K	0.016	1.005	1.081	1.000	1.086	1.21	1.77
Ti-K	0.004	1.103	1.041	1.000	1.148	0.28	0.49
					Total	= 100.00	0%

NORAN SERIES II #000K TISTR #000K THU 14-JAN-93 15:32 Cursor: 0.000keV = 0

. -

SQ: QUANTIFY

ALUMINA 23B 15002(3hr) 18/FEB/93. Standardless Analysis 15.0 kV 51.0 Degrees

Refit_FEK'_FEK" Refit_CAK'_CAK"_NAK"_T1K' Chi-sqd = 7.59

Element	Rel. K-ratio	Net Counts	
AL-K	0.92430 +/- 0.00572	62566 +/-	387
S1-K	0.04496 +/- 0.00324	3445 +/-	248
Ca-K	0.01134 +/- 0.00139	489 +/-	60
Fe-K	0.00791 +/- 0.00259	143 +/-	47
Na-K	0.00744 +/- 0.00137	233 +/-	43
Ti-8	0.00405 +/- 0.00286	139 +/-	98

0.6

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 3

Element	K-ratio	Z	A	F	ZAF	Atom%	Wt%
A1-K	0.9/76	1.001	1.022	0.999	1.022	90.52	89.47
Si-K	0.043	0,974	1.758	1.000	1.712	7.09	. 7.29
Ce-K	0.011	1.003	1.080	0,999	1.083	0.79	1.16
Fe-K	0.007	1.115	1.007	1.000	1.123	0.41	0.84
Na-K	0.007	0.994	1.152	0.978	1.120	0.94	0.79
TI-K	0.004	1.102	1.040	0.999	1.145	0.25	0.44
					Total=	= 100.00	D%

NORAN SERIES II *** TISTR *** Cursor: 0.000KeV = 0

THU 18-FEB-93 14:27

*X 'SQ SQ -38/80

1 ¹

SQ: SETUP DEFINITIONS

SQ: QUANTIFY

ALUMINA 23B 1520c(15min) 18/FEB/93. Standardless Analysis 15.0 kV 51.0 Degrees

Refit _NAK' _NAK" _MGK' _MGK" Refit _SIK' _SIK" _FEK' Chi-sqd = 4.98

Element	Rel. K-ratio	Net Counts
A1-K	0.91965 +/- 0.00539	62767 +/- 368
Si-K	0.04964 +/- 0.00131	3836 +/- 101
Ca-K	0.01151 +/- 0.00269	501 +/- 117
Na-K	0.00318 +/- 0.00139	258 +/- 44
Fe-K	0.00809 +/- 0.00476	148 +/- 87
Mg-K	0.00293 +/- 0.00160	170 +/- 93

-

ZAF Correction 15.00 KV 51.00 deg - - - - - - No.of Iterations = 4

Element	k-ratio	2	Ä	F	ZAF	Atom%	Wt%
A1-K	0.868	1.002	1.023	0.998	1.024	89.69	88.83
Si~K	0.047	0.974	1.754	1.000	1.709	7.76	8.00
Ca-K	0.011	1.004	1.080	1.000	1.084	0.80	1.18
Na-K	0.008	0,994	1.149	0,978	1.117	1.02	0.86
Fe-K	0.098	1.116	1.007	1.000	1.123	0.42	0.86
Mg-K	0.003	0.971	1.066	0.954	0.986	0.31	0.27
					Total	= 100.00	%

START? DL

*

SQ: QUANTIFY

ALUMINA 238 15200 (3hr) 18/FEB/93. Standardless Analysis 15.0 kV 51.0 Degrees Refit _K K' _K K" _NAK' _NAK" _TIK' _TIK" _MGK' _MGK" Refit _SIK' _FEK' _FEK" Chi-sqd = 4.95 Net Counts Element Rel. K-ratio 35088 +/- 563 A1-K 0.91703 +/- 0.00752 0.05597 +/- 0.00364 2217 +/- 144 Si-K 95 219 +/-0.00982 +/- 0.00426 Cark 0.00555 +/- 0.00395 52 +/-37 Fe-K 86 +/-42 0.00317 +/- 0.00156 K -K 49 +/-0.00305 +/- 0.00229 37 Na-K 0.00270 +/- 0.00226 48 +/-40 Ti-K Mg-K 0.00270 +/- 0.00235 81 +/-70

ZAF Correction 15.00 KV 51.00 deg No.of Iterations = 3

Element	K-ratio	Z	A	F	ZAF	Atom%	Wt%
A1-F	0.866	1.002	1.019	0.998	1.019	89.23	88.22
S1-K	0.053	0.974	1.744	1.000	1.699	8.73	8.98
Carl	0.009	1.004	1,081	1.000	1.085	0.68	1.01
Fe-K	0.005	1.116	1.007	1.000	1.124	0.29	Q. 59
KK	500.O	1.026	1.119	0.999	1.146	0.24	0.94
Na-E.	0.003	0.994	1.148	0.977	1.116	0.33	0.32
T11:	0.003	1.102	1,041	1.000	1.147	0.17	0.29
Ma-K	0.003	0.971	1.059	0.952	0.979	0.28	0.25
					Total	= 100.00	5%

NORAN SERIÉS II XXX TISTR XXX THU 18-FEB-93 15:25 Curson: 0 000KeV = 0

SQ: QUANTIFY

PRODUCT(RIM) 9-MAR-93. Standardless Analysis 15.0 KV - 51.0 Degrees

Refit _FEK' _FEK" _K K' _K K" Refit _SIK' _SIK" _NAK" Chi-sqd = 3.14

		the second se	net counts	
A	1-+:	0.91389 +/- 0.00675	32256 +/-	237
. 3	1-10	0.05747 +/- 0.00186	2284 +/-	74
C	a −K	0.00938 +/- 0.00362	210 +/-	81
M	a-k	0.00311 +/- 0.00197	132 +/-	32
F	e-k	0.00479 +/- 0.00309	45 +/-	29
K	K<	0.00136 +/- 0.00133	37 +/-	36

ZAF Correction 15.00 kV 51.00 deg No.of Iterations = 3

Element	K-ratio	2	A	F	ZAF	Atom%	Wt%
A1-K	0.867	1.002	1.018	0.998	1.018	89.05	88.31
Si - K	0.054	0.975	1.745	1.000	1.701	8.94	9.22
Ca-K	0.009	1.004	1.081	1.000	1.086	0.65	0.96
Na-k.	0.008	0.995	1.142	0.977	1.110	1.01	0.85
Ferk	0.005	1.116	1,007	1.000	1.124	0.25	0.51
K -K	0.001	1.026	1.119	0,999	1.147	0.10	0.15
					Total	= 100.0	0%

NORAN SERIES II #XXX TISTR XXXX TUE 09-MAR-93 12:03 Cursor: 0.000KeV = 0

- 22

112 FRODUCT(RIM) 9-MAR-93.

 \mathbb{Q}^{2}

SQ: QUANTIFY

+

 \dot{c}

1

PRODUCT (CENTER) 9-MAR-98. Standardless Analysis 15.0 IV 51.0 Degrees Refit _CAK' _CAK" _FEK' _FEK" _TIK' _TIK' Refit _SIK' Cm - sqd = 3.86Element Rel. K-ratio Net Counts 0.93171 +/- 0.00671 0.03780 +/- 0.00508 32630 +/- 235 A1-1 Si-K 1499 +/-122 Na-K 0.01340 +/- 0.00570 217 +/-60 0.00753 +/- 0.00175 0.00667 +/- 0.00341 Ca HK 168 +/-39 Fe-I: 62 +/-38 Ti-K 0.00289 +/- 0.00198 51 +/-34

ZAF Correction 15.00 EV 51.00 deg No.of Iterations = 4

Element	* ratio	2	÷.	F	ZAF	Atom%	Wt%
61-1	0.885	1.001	1.023	0.999	1.023	91.27	90.58
Stek	0.036	0,974	1.770	1.000	1.724	5.99	6.19
Nart	0.012	0.994	1.148	0.978	1.116	1.68	1.42
Ca-k	0.007	1,003	1.080	1.000	1.083	0.53	0.78
Fert	C.OOE	1.115	1.007	1.000	1.123	0.35	0.71
T1-K	0.003	1.102	1.040	0.999	1.145	0.18	0.31
					Total:	= 100.00)%

NORAM SERIES II KOK TISTR NOK TUE 09-MAR-93 11:58 Cursor: 0 000keV = 0

157

.

Appendix 8.

From XRD patterns of the liner-product , the 20 angles and d-spacings of $\&-Al_2O_3$ and spinels were presented as followed.

The 20 angles of $\not{\rm L}$ -Al2O3 were ;

20 angle	correspond to	d-spacing
25.60		3.477
35.20		2.547
37.80		2.378
43.40		2.088
52.60		1.738
57.50		1.601
59.70		1.545
61.30		1.510

The 20 angles of spinel, $MgAl_{2}O_{4},$ were ;

20 angle	correspond to	d-spacing
19.10		4.634
28.00		3.184
31.35		2.855
36.85		2.434
44.82		2.021
59.40		1.554

Appendix 9

10-173 .m.o.

MINOR CORRECTION						2
d 2.09 2.55 1.60 3.48 a-	AL 203					10 31
1/1, 100 90 80 75 ALU	MINUM OXIDE		(Cor	(אטמאט)		4 20
tad. CuKas A 1.5405 Filter Ni Dia.	A b	I/I,	hkl	A b	1/1,	blu
ut off I/I_1 DIFFRACTOMETER ef. NAT. BUR. STANDARDS (U.S.) CIRC. 539 9 3 (1 ye. TRIGONAL S.G. $D_{3D}^6 - R3c$ (167) 14.758 b. c. 12.991 A C B y Z 6 ef. 101D.	3.479 1959) 2.552 2.379 2.7303 2.085 3.987 1.964 1.740 1.601 1.546 1.514	75 90 40 < 1 100 2 45 80 4 5	012 104 110 006 113 202 024 116 211 122	1.1382 1.1255 1.1246 1.0988 1.0831 1.0781 1.0426 1.0175 0.9976 .9857	2 6 4 8 4 14 2 12 < 1	311 312 128 0.2.10 0.0.12 134 226 402 1.2.10 1.1.12
/ D Hip Color at. SAMPLE ANNEALED AT 1400°C FOR FOUR HOURS IN AN RUGIBLE. SPECT. ANAL. BHOMED <0.1\$ K,NA,SIS <(U, FE,MG,PBS <0.001\$ B,CR,LI,MN,NI. ATTERN MADE AT 26°C.	AL203 0.01\$ CA, 1.510 1.404 1.374 1.377 1.276 1.239 1.2343 1.1898 1.1600 1.1470	3 30 50 2 4 16 8 d <1 6	018 124 030 125 208 - 1.0.10 119 230 306 223	-9819 .9431 .9413 .9345 .9178 .2076 .9052 .8991 .8884	4 <1 4 4 14 4 3 <1	404 321 1.2.11 318 229 324 0.1.14 410 235

-

1 -	1152									1.00	
d	2.44	2.02	1,43	4,66	HgA1204						×
1/1	100	65	55	35	Magnesium Al	uminum O	tide	4	(Spinel) maria
	Cutarr	E 4 0 E 4	Riles M			d A	1/11	hki	d A	1/1	hkl
Rad. Cut ø Ref.	Hational (1971)	I/II DI Burseu ei	f Standard	ter a, Mone,	26, Soc, 9	4,66 2,858 2,437 3,115	35 40 100	111 220 311 222	.9038 .8872 .8820	6 2 (2	840 911 842
Sys. ag a Ref.	Cubie 8.0831 bo p ID1d:		S.G. 9 9	Fd3m (A Z	227) C Da 3,576	2.020 1.650 1.5534. 1.4289 1.3662	65 10 45 55 4	400 422 811 440 531	.8474 .8249 .8123 .7927 .7814	8 18 42 2 12	931 844 933 1020 951
ía JV Rel,	Ibid. D	nωβ 1.	.718 c mp	y. Cola	Sign Coloriess	1,2780 1,2330 1,2187 1,1666	4 8 2 6	620 533 622 444	-		
The s of Mi furns erush I/fee Pette	ample was nes, Coll as and re ing. r.=1.7 rm at 25°	furnishe ege Park, moved an C	ed by H. R , Md. He excess of	, Shell o used a ca 'MgO with	f the Bureau rbon electrode hot HCl after	1.1320 1.0802 1.0524 1.0104 0.9537 .9334 .9274	2 6 12 8 2 8 2	711 642 731 800 822 751 662			

.

. ...

VITA.

Mrs. Aree Poopaibool recieved her Bachelor Degree of Science from General Science Department, Faculty of Science, Chulalongkorn University in 1974.

She has started her work in ceramic industry since May, 1974 and now she is working with Compound Clay Co;Ltd. and Asian Insulator Co;Ltd.

She began her master study in June, 1991 and completed the programme in May, 1993.

.