CHAPTER |

N THE WENER VEASURE

In this chapter, we recall without proof some facts about the
Wiener measure and the Wiener integral! sufficiently for use in this
thesis. The materials of this chapter are drawn from the reference [I] .

A, The Wiener Space.

The Wiener space Cof functions of one variable is the collec-
tion of real-valued continuous functions . defined on [o,l] and satis-
fying x(0) = 0.

Cis a separable Banach space with the norm |'| defined by

Il =

Ix(t)l 3 .eC

max
0<t<l
Let } be a finite collection of numbers satisfying

0< <tg<ee. <t 1 andlet Ebe aBorel set of the n-dimensional
Euclidean space @, i.e., EEJ(R). Asubset I of Cdefined by

(1.1 | = {xeC: (x(t1) x (tn)eE}

will be called a quasi-interval in G The points t~,..., t and the
set Ewill be called the restriction points and the restricting set of I.
In particular, if Eis a rectangle in Rn, then I which we will denote
by L3 will be called an interval in C; i.e.,

(1.2) P ={xEC: <x(tN) < i=1,. '}



or any set obtained by replacing any or all of the signs by <
Let Ebe a set in (hand let k be an integer, I'i kin.
We define

E®IR = v erM

(v ,,,ak-lak.. V. £E and *e R}
Then E L] B E3(IRnd) whenever E ed(IRn)-

Note that for a given collection of restriction points
tA,...,t and a given restricting set E there is associated a unique
subset 1 of ¢ given by (I.1), but the converse is not true. For
instance, for the subset 1 defined by (I.1) we may throw in a few
more points in (0,1], so that there are madditional points in (o,1]»
let the restriction at each of the additional restriction points t

be the trivial restriction, < x(t ) <=5 and let the restricting
set be E fﬁ(i !Rl?((l ...on B. aBorel set in Rntm, where

m
En ®® eee@@” = {(@L,... , Lav Ok tpreeerak 2»
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Then the subset of Cdefined with (n+m) restriction points and the

restricting set E 00 R Q) ... }) R is identical with the one defined
kI k2 km
by (1.1).



k

Let  be the collection of all quasi-intervals defined by (I.1)
and o be the collection of all intervals defined by (1.2). Then
Is an algebra of sets and o is a semialgebra of sets.

B. The Wiener Measure.

Let ¢ be a positive constant and et RU {-°0®} .
If I ¢ + is defined by (I.1) then c(l) is given by
(1.3) (1) * c .. MY dCLdn
Wwhere
K{t Jeeejt
g v
| LIy O

with the understanding that £0 =0 =tQ.

(1) is independent of the choice of restriction points and
restricting set that decribe |.

has the following properties :

(i) The value of (1) is non-negative for any 1 £ -
(if) ¢ (0) =0
(i) (c) =1.

(iv) cis additivesi.e., if 15 006 170 1 =0

and 11 12 e ' then 0(11 lg) = 0(11) + ¢(12).



(v) IS countably additive , i.e.j if a sequence of quasi-
intervals {IQ} in $ is such that I"n | =0 fori #jand | = i |ﬁd ,
then '

wce (1) - ~ 1

Then ¢ is a measure on ¢ and together with property (iii) it
IS a probability measure. Since ¢ is an arbitrary positive number,
is a measure on ¢ for all ¢ >0,

The outer measure of an arbitrary set r¢ c is defined to be

75N ()

Wwhere {IK} ranges over all sequences from ¢ such that r cr | .
Aset + £ ¢ is called Wiener measurable if for every set
A C we have

)= A ),

The collection . of all Wiener measurable sets, the

Caratheodory extension of 4 o is a 0-algebra containing ¢ and if we
define for each ¢ > 0

we(r) = ¥ (re dw)

then ¢ is a measure on ¢f and we denote this measure space by

(c.ef 0).



The -algebra afcr] 9 generated by ¢ is the collection s(c)
of all Borel sets of ¢ and we have a[* ] =o[if] = <8(c).

Since &° is a semi-algebra of sets, if we define  °(I1°) = ¢(I )

for every 1° £y 1, then according to the properties of  and the fact
that °c § , we have that ° has a unique extension to a measure on the
algebra sx generated by ~ If we extend ° on X by the Caratheodory
extension, we have (for each ¢ >o0) a measure 0 on the a-algebra xf 0

C :
containing + Let US denote this measure space by (c, c¢f 0> 0 ) Then

C

it can be shown that (c,xf"c9 C) =c,. 0, C), this will enable US to

express any Wiener measurable set in termsCof members of '
We simply write c(n instead of We(r) or w°(r) even for set r
in . 0call ¢ a Wiener measure in ¢. In case ¢ =1, we will

denote 1 by . The integral in ¢ with respect to  is called a Wiener
integral.  If Fis a Wiener measurable functional on ¢, its integral
will be denoted by

Theorem 1. Let 0 <11 <. <t si and HEL  £1) be a Borel
measurable function of real variables ¢”~,....En. Then the functional
H(y(t"),...,y(t )) defined on ¢ is Wiener measurable and for each ¢ >0

(1.5) r H{y(t1)9..., y(tn)) diE(y)

C



where Kit-*  stn,£1,...,£ s defined by (1.x) and the existence of one
side implies that of the other and the validity of the equality.

Example.  Let t and be any two points in [o,l].
Then

(@) - x(s)2d cx) = | |t=sj .

C

Solution.  Assume t < .

Case 1. If t =0, then according to (1.5) we have

() C/ (x(s))ddwAx) = ﬁygy “{0 £2 exp(~ 9 df

Let = s Tlien () becomes
[ (x(s) )2Me(x) = [ 2 exp(-r|2) dn

OSr) exp (~n2)d 2

since exp (- 2)dp2 = éz and t =0,

Case If t &0, then according to (1.s5) we have
A ¢ t(s-t)
Let 1 £2-£1 Then

[ct [cs-ct

et (cs-ct)
d£1d£2.

!



3 1»2) /
1,2)

[cs-ct [cs-ct

and hence

f(x(t)-x(s))2Me(x) ~~ f f.2(cs-ctJexpt-n*-h*drrdn2

@ () )
=" (cs-ct) [ exp(-n")dnl f 2 exp(-ns
00 x CO <
()
Since |/ exp (-n2)dn = /n and
—00
LD 2 exp(-n2)dn2 = -~ we have
[ (x(t)-x(s) )2de(x) - —(s-t) = ft-s|. (P
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