CHAPTER 11

THE SEQUENTIAL WIENER INTEGRAL

In the first part of this chapter, we study the definition
of the sequential Wiener integral with complex parameters. And in the
last part of this chapter, we consider the case in which the parameter
is real and positive.

In chapter I, the Wiener measure with positive real parameters
is defined, but it is not defined for non-real variance parameters.
For defining the kernel by (2.1.2) below, we have that

(*) K (£,C)] dC= {1a\2 Re(0~2)}
3y

and this clearly approaches « with —if Re(c) > 0 and Im(a) * 0. For
each Wiener measurable set E on c[a,b], we define

E) = K(t,g)dg
E*

where E* is the restricting set of E. W claim that  is not a
complex measure on c[a,bj . Suppose on contrary th:at ' is a complex
measure on c[a,b].Therefore,the total variation of * is finite,i.e.,

(**) WJ(Cla,bj) <



For each E £ s we define
E) = ¢ K (e S

thus we have
WEn) =+ | (T,c)ldC
f
(- = sup { E:1I /EK (x,C)dC I: " En= R},

Since  I(c[a, ]) = sup{ E lé xgdg| E = c[a,h]

and E is Wiener measurable} 5

it follows from ( **) that

0!(cfa, ]) >/ [Ka(T,C)dC

en
for all new. Hence, we have hy () that

0l(c[a,)]) * »
which contradicts (). Thus is not a complex measure on c[a, |,
so that there is no integration theory in the usual measure theoretic
sense is possible for non-real variances.
Next 9 we shall define the integral in the other sense for
complex parameters.

Let c[ab] denote the space of real continuous functions on the
interval [a, ] which vanish at the initial point a, and let Q[a%]



denote the set of all polygonal functions contained in c[a, ]. Let o
be a fixed non-vanishing complex number such that larg o| i / .

Let + = [t ,... ,Tn] denote a variable vector of a variable
number of dimensions whose components form a subdivision of [a,b] 5
s0 that a << T< .. <Tn-k>and let Tgq=a. Wecall Ta
subdivision vector and we define the norms of subdivisions by

M= max - T )
j=l5... 9

Let k = £7,...dCJ denote an unrestricted real vector, where
is determined by T, and let £ =0. Let g 5(t) denote an element

of whose vertices have the abscissas + and ordinates 50
that we have

THC(TL) =€ I =0,1,...N
and  ¢(t) is linear on [ul for i =1,..., . Finally, let R

denote an n-dimensional Euclidean space and oC the element of volume in
En, i.e., € =dsl-.. dc .

Using the above terminology, we now define the sequential Wiener
integral with parameter o (or I integral) for functionals F(x) for
which the definition has meaning.

Definition 2.1 If the limit exists, we define

0
2.1.1 m |/ dc |
LA g gy FOC= AR KExe)F (e Jog
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Where

2.12) K(TC) = exp
R (A a2y (rit0). (v v g2 T oEle

The parameter 0 will sometimes be called the standard deviation parameter.
and 0™ will be called the variance parameter.

In particular, the existence of the integral of F implies
that Fis defined over all elements of ([a,b] or at least over almost
all of them in the sense that for each X, F(i|/¢5,g.) is defined for almost

all £in Rn. It of course also implies that K(t&;)f(i(>r»£) IS integrable
in £ over R for each T,

Example.  Let F(x) = x(t,). Then we have from (2.1.2) that

2
K(tf) = op N
[it(20 )(t. Tq)] ? 20 (tj-1})

and re>e ¢) = (1 (x) = £1. Thus according to (2.1.1) we get

g K /t.CIfU ;. p)df
cfa b] X)ax i e/ tCitUnp
2
f iex g
Itmo [tt(20 )(t1- :0)] g p 20 (1 0)
_ 1 _ Z ---------
Put =—-= 3 50 that £ = of2(t1-t0) 1 and
0il2(t -T )

k. 2(6 v dnl - Mence



= i [2(t1-T0) /1 exp(-n?) dnl

05

since exp(-nN)dr)™ = 0. Therefore,

P Ewdx = 0
cfa, ] -
Definition 2.2 If  is pure imaginary, the integral (2.1.1) will
he called a Feynman integral, and we use the term fp integral to denote
the /A integral, where p and Re /I are positive. Thus we define
W /i

f
(2.2.1) é[a, ]F(x)dx = ] F(x)dx.

Remark 2.3

(1) When the subscript — or p is unity, it will usually be
dropped from the symbol a or f .
(1) For each positive number p,

(2.3.1) Kpo(t,C) = p_nKa(T,p_1C).

It follows from (2.1.2), since



1

0T o 10y . T 1y M2

= p
[»n(ai2)n(T1-T0)... (Tn-Tn_1)] 112
= p"nka (T p"10)

(ii1) For each positive number p5

Sj\p Z

(2.3.2) c/[a,b] F(x)dx é[a,bj

F(px)dx

- (L1)
=1 2p202(xr-'ﬁ-i ] i-l]

(p-"-pd 17

exp
=12 (e gy

where the existence of either member implies that of the other. In

particular, from (2.2.1) we have in the same sen

(2.3.3) F(x)dx (px)dx.

R

(2.3.2) follows from (2.1.1) and (2.3.1) since

|
c[a,b]

~ F = K (t -
o P =y L K gary 0 G

«IIIT(O e/n p'\(T p")F (41T )«

R

Em [ K( IHpJ )dn
Ht® TN

Se

= fin [ p“nK (t5 )F TaD)pndn , ( =p_l)
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F(px)d
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The real sequential Wiener integral. W& now consider the case in which
a is real and positive, and we give a set of sufficient conditions for
the existence of the limit in the right member of (2.1.1).

Definition 2.n. W say that a functional F(x) is continuous in the
uniform topology on c[a,b] if for each xec[a,b] and £ >0, there is 6 >0
such that for all  y e c[ab] 5|F(x)“F(y)] <e whenever jix~y| <6.

Lenma 2.5 Let F(x) be a Borel functional defined on c[a,b]. Then
for each »_r(t) ¢ Q[a,b] 3 H(¢) = o ) is measurable in G over Rn.

Proof ~ Case 1. If Fis the characteristic functional Xj of
a Borel subset | of c[a,b] 5 let Ebe a rectangle in Rn defined by

E = ((x{r1), ' «xce )} xe 1}
Thus for each it ¢(t) e CQ[ab] 5

H(¢) Xg(r )
o B R
) i g 1f “’r,g'f I
. <f 1 if <h,5(V s> Ve (1)) e E
Lo if (“’r,g(Tl) vty (T i



r1 it 1, E
0 if o wEN)( E

= x-0(c) is measurable in C.

Case 2. If Fis asimple functional; i.e. 9if Fis any finite linear
combination of characteristic functionals of disjoint Borel subsets of
c[a,b] 9then by case I's H(E) is measurable in « over R.

Case 3- If Fis an extendednon-negative functional on c[ad] 9 then
there exists a non-decreasing sequence of non-negative simple functionals
F* which converges to F at each point of c[a,b] . Hence by case 2, the
corresponding sequence of non-negative non-decreasing simple functions
converges to Hat each point of Rn9so that His measurable in Cover Rn.

Case no  Finally, if Fis a Borel functional on c[aw] 9then F = FH-F 9
so that we have by case 3 that the corresponding functions H- and H are
measurable in C over R9and hence H=H- H is measurable in « over R

Corollary 2.6 Under the same hypothesis of Lemma 2.5» we have

261) 1 RE KOG = | [ago]F(x AW(x) 9

where xT denotes the polygonal function which has the same value as x
at T for i =099...9 and is linear in between
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Xi(v = x(Ti> =010
(1=t % (8) = (% =t)x(r,  )+(ter, )x(x,)
R
Proof: By Lemme 2.5, F(y_ .) = H(f) is measurable in &

T,5

hence it follows from Theorem 1 (in cﬁapter ) that the functional
F(xt) = F(x(t") ... ox(c1) defined on c[ad] is Wiener measurable
and (2.6.1) holds. A

Theorem 2.7 Let F(x) be Borel measurable over c[a3] and continuous
in the uniform topology almost everywhere (in the Wiener sense) on the
space c[a%]. If Fis bounded on c[ad] 3 then the real
sequential Wiener integral of F exists for 0=1 and equals the Wiener
integral

(2.7.1) F(x)dw(x).

F(x)d .
ag] T Lt
Proof: It readily follows from corollary 2.6 that

ke OF(GTAE = ¢ AF(XT)IWE)

where .. denotes the polygonal function which has the same value as .
at t, fori=0,1,..33andis linear in between

XT(1) = x(xi)  i=0,1,.,
(G-Ti DXT(Y) = (TAMTAL)HETi 1)x(ed)

T &l € Ty w
i-1 i



By the continuity of F and of .. ve have for almost all . in c[a, ]5

ﬁ\imo F(x_t) = F(x) .

Since F(x) is uniformly hounded and measurable on C[a, ] and C[a, ]
has a finite Wiener measure, by the Dominated Convergence Theorem

F(x)dx

iy KOy ) o6

f
cla, .
- Aim / F(x )dW(x)
ANNO C[a, ]

ca, ] (/}i%KoF(X ) i)

f F(x)dW(x)

cla, ]

Therefore, the theorem is proved. j
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